Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 15, 2008 - Issue 2
112
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Possible evolutionary links between immunoglobulin light chains and other proteins involved in amyloidosis

Pages 96-107 | Published online: 06 Jul 2009

References

  • Westermark P. Aspects on human amyloid forms and their fibril polypeptides. Febs J 2005; 272: 5942–5949
  • Westermark P, Benson M D, Buxbaum J N, Cohen A S, Frangione B, Ikeda S, Masters C L, Merlini G, Saraiva M J, Sipe J D. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2005; 12: 1–4
  • Westermark P, Engstrom U, Johnson K H, Westermark G T, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 1990; 87: 5036–5040
  • Sletten K, Westermark P, Natvig J B. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 1976; 143: 993–998
  • Stridsberg M, Wilander E. Islet amyloid polypeptide (IAPP). A short review. Acta Oncol 1991; 30: 451–456
  • Muff R, Born W, Fischer J A. Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol 1995; 133: 17–20
  • Williams A F. The immunoglobulin superfamily takes shape. Nature 1984; 308: 12–13
  • Williams A F, Barclay A N. The immunoglobulin superfamily – domains for cell surface recognition. Annu Rev Immunol 1988; 6: 381–405
  • Holness C L, Simmons D L. Structural motifs for recognition and adhesion in members of the immunoglobulin superfamily. J Cell Sci 1994; 107: 2065–2070
  • Bateman A, Eddy S R, Chothia C. Members of the immunoglobulin superfamily in bacteria. Protein Sci 1996; 5: 1939–1941
  • Teichmann S A, Chothia C. Immunogloublin superfamily proteins in Caenorhabditis elegans. J Mol Biol 2000; 296: 1367–1383
  • Halaby D M, Poupon A, Mornon J. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 1999; 12: 563–571
  • Wang J, Springer T A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol Rev 1998; 163: 197–215
  • Del Mar C, Greenbaum E A, Mayne L, Englander S W, Woods V L, Jr. Structure and properties of alpha-synuclein and other amyloids determined at the amino acid level. Proc Natl Acad Sci USA 2005; 102: 15477–15482
  • Greenbaum E A, Graves C L, Mishizen-Eberz A J, Lupoli M A, Lynch D R, Englander S W, Axelsen P H, Giasson B I. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 2005; 280: 7800–7807
  • Dobson C M. Protein misfolding, evolution and disease. Trends Biochem Sci 1999; 24: 329–332
  • Guijarro J I, Sunde M, Jones J A, Campbell I D, Dobson C M. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 1998; 95: 4224–4228
  • Fandrich M, Fletcher M A, Dobson C M. Amyloid fibrils from muscle myoglobin. Nature 2001; 410: 165–166
  • Pertinhez T A, Bouchard M, Tomlinson E J, Wain R, Ferguson S J, Dobson C M, Smith L J. Amyloid fibril formation by a helical cytochrome. FEBS Lett 2001; 495: 184–186
  • Nilsson M R, Dobson C M. In vitro characterization of lactoferrin aggregation and amyloid formation. Biochemistry 2003; 42: 375–382
  • Nagano N, Orengo C A, Thornton J M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 2002; 321: 741–765
  • Grishin N V. Fold change in evolution of protein structures. J Struct Biol 2001; 134: 167–185
  • Chen Y, Borowicz S, Fackenthal J, Collart F R, Myatt E, Moy S, Babnigg G, Wilton R, Boernke W E, Schiffer M, Stevens F J, Olopade O I. Primary structure-based function characterization of BRCT domain replicates in BRCA1. Biochem Biophys Res Commun 2006; 345: 188–196
  • Putnam F W. Immunoglobulin structure: variability and homology. Science 1969; 163: 633–644
  • Brigandt I. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. J Exp Zoolog B Mol Dev Evol 2003; 299: 9–17
  • Fitch W M. Homology a personal view on some of the problems. Trends Genet 2000; 16: 227–231
  • Haggqvist B, Naslund J, Sletten K, Westermark G T, Mucchiano G, Tjernberg L O, Nordstedt C, Engstrom U, Westermark P. Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 1999; 96: 8669–8674
  • Larsson A, Peng S, Persson H, Rosenbloom J, Abrams W R, Wassberg E, Thelin S, Sletten K, Gerwins P, Westermark P. Lactadherin binds to elastin – a starting point for medin amyloid formation?. Amyloid 2006; 13: 78–85
  • Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid 2005; 12: 96–102
  • Enqvist S, Peng S, Persson A, Westermark P. Senile amyloidoses – diseases of increasing importance. Acta Histochem 2003; 105: 377–378
  • Peng S, Westermark G T, Naslund J, Haggqvist B, Glennert J, Westermark P. Medin and medin-amyloid in ageing inflamed and non-inflamed temporal arteries. J Pathol 2002; 196: 91–96
  • Orengo C A, Michie A D, Jones S, Jones D T, Swindells M B, Thornton J M. CATH – a hierarchic classification of protein domain structures. Structure 1997; 5: 1093–1108
  • Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grant A, Lee D, Akpor A, Maibaum M, Harrison A, Dallman T, Reeves G, Diboun I, Addou S, Lise S, Johnston C, Sillero A, Thornton J, Orengo C. The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 2005; 33: D247–D251
  • Beauchemin N, Benchimol S, Cournoyer D, Fuks A, Stanners C P. Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol Cell Biol 1987; 7: 3221–3230
  • Hefta S A, Hefta L J, Lee T D, Paxton R J, Shively J E. Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Proc Natl Acad Sci USA 1988; 85: 4648–4652
  • Najmudin S, Guerreiro C I, Carvalho A L, Prates J A, Correia M A, Alves V D, Ferreira L M, Romao M J, Gilbert H J, Bolam D N, Fontes C M. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J Biol Chem 2006; 281: 8815–8828
  • Stevens F J. Homology vs analogy: possible evolutionary relationship of immunoglobulins, cupredoxins, and Cu,Zn-superoxide dismutase. J Molec Recognit 2008; 21: 20–29
  • Ficko-Blean E, Boraston A B. The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem 2006; 281: 37748–37757
  • Masse K, Baldwin R, Barnett M W, Jones E A. X-epilectin: a novel epidermal fucolectin regulated by BMP signaling. Int J Dev Biol 2004; 48: 1119–1129
  • Bianchet M A, Odom E W, Vasta G R, Amzel L M. A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 2002; 9: 628–634
  • Salter-Cid L, Kasahara M, Flajnik M F. Hsp70 genes are linked to the Xenopus major histocompatibility complex. Immunogenetics 1994; 39: 1–7
  • Stevens F J. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: validation. J Mol Recognit 2005; 18: 139–149
  • Stevens F J, Kuemmel C, Babnigg G, Collart F R. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: application. J Mol Recognit 2005; 18: 150–157
  • Pearson W R, Sierk M L. The limits of protein sequence comparison?. Curr Opin Struct Biol 2005; 15: 254–260
  • Doolittle R F. Similar amino acid sequences: chance or common ancestry?. Science 1981; 214: 149–159
  • Doolittle R F. Searching through sequence databases. Meth Enzymol 1990; 183: 99–110
  • Doolittle R F. Stein and Moore Award address. Reconstructing history with amino acid sequences. Protein Sci 1992; 1: 191–200
  • Rost B. Twilight zone of protein sequence alignments. Protein Eng 1999; 12: 85–94
  • Rost B. Rising accuracy of protein secondary structure prediction. J Struct Biol 2001; 34: 204–218
  • Rost B. Enzyme function less conserved than anticipated. J Mol Biol 2002; 318: 595–608
  • Stevens F J. Amyloid formation: an emulation of matrix protein assembly?. Amyloid 2004; 11: 232–244
  • Stevens F J. Hypothetical structure of human serum amyloid A protein. Amyloid 2004; 11: 71–80
  • Orengo C A, Jones D T, Thornton J M. Protein superfamilies and domain superfolds. Nature 1994; 372: 631–634
  • Bork P, Holm L, Sander C. The immunoglobulin fold: Structural classification, sequence patterns and common core. J Mol Biol 1994; 242: 309–320
  • Halaby D M, Poupon A, Mornon J.-P. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 1999; 12: 563–571
  • Crabbe M J, Goode D. Protein folds and functional similarity; the Greek key/immunoglobulin fold. Comput Chem 1995; 19: 343–349
  • Fialho A M, Stevens F J, Das Gupta T K, Chakrabartty A M. Beyond host-pathogen interactions: microbial defense strategy in the host environment. Curr Opin Biotechnol 2007; 18: 279–286
  • Sorgjerd K, Ghafouri B, Jonsson B H, Kelly J W, Blond S Y, Hammarstrom P. Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol 2006; 356: 469–482
  • Sandford R, Mulroy S, Foggensteiner L. The polycystins: a novel class of membrane-associated proteins involved in renal cystic disease. Cell Mol Life Sci 1999; 56: 567–579
  • Yoder B K, Mulroy S, Eustace H, Boucher C, Sandford R. Molecular pathogenesis of autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2006; 8: 1–22
  • Miller S L. A production of amino acids under possible primitive earth conditions. Science 1953; 117: 528–529
  • Wachtershauser G. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 1992; 58: 185–201
  • Wachtershauser G. Origin of life. Life as we don't know it. Science 2000; 289: 1307–1308
  • Huber C, Eisenreich W, Hecht S, Wachtershauser G. A possible primordial peptide cycle. Science 2003; 301: 938–940
  • Wachtershauser G. On the chemistry and evolution of the pioneer organism. Chem Biodivers 2007; 4: 584–602
  • Dobson C M. Protein chemistry. In the footsteps of alchemists. Science 2004; 304: 1259–1262
  • Dobson C M. Protein folding and misfolding. Nature 2003; 426: 884–890
  • Stefani M, Dobson C M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 2003; 81: 678–699
  • Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993; 90: 3334–3338
  • Gilbert W. The RNA world. Nature 1986; 319: 618
  • Orgel L E, Crick F H. Anticipating an RNA world. Some past speculations on the origin of life: where are they today?. Faseb J 1993; 7: 238–239
  • Gesteland R, Atkins J F. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2006
  • Orgel L E. RNA catalysis and the origins of life. J Theor Biol 1986; 123: 127–149
  • Orgel L E. Some consequences of the RNA world hypothesis. Orig Life Evol Biosph 2003; 33: 211–218
  • Orgel L E. Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 2004; 39: 99–123
  • Nandi P K, Nicole J C. Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J Mol Biol 2004; 344: 827–837
  • Nandi P K, Leclerc E, Nicole J C, Takahashi M. DNA-induced partial unfolding of prion protein leads to its polymerization to amyloid. J Mol Biol 2002; 322: 153–161
  • Dale T. Protein and nucleic acid together: a mechanism for the emergence of biological selection. J Theor Biol 2006; 240: 337–342
  • Lu K, Jacob J, Thiyagarajan P, Conticello V P, Lynn D G. Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 2003; 125: 6391–6393
  • Chillaron J, Haas I G. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol Biol Cell 2000; 11: 217–226
  • Foguel D, Suarez M C, Ferrao-Gonzales A D, Porto T C, Palmieri L, Einsiedler C M, Andrade L R, Lashuel H A, Lansbury P T, Kelly J W, Silva J L. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 2003; 100: 9831–9836
  • Ferrao-Gonzales A D, Palmieri L, Valory M, Silva J L, Lashuel H, Kelly J W, Foguel D. Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease. J Mol Biol 2003; 328: 963–974
  • Kim Y S, Randolph T W, Seefeldt M B, Carpenter J F. High-pressure studies on protein aggregates and amyloid fibrils. Methods Enzymol 2006; 413: 237–253
  • Kim Y-S, Wall J S, Meyer J, Murphy C, Randolph T W, Manning M C, Solomon A, Carpenter J F. Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem 2000; 275: 1570–1574
  • Lee U H, Pack H J, Do J W, Bang J D, Cho H R, Ko B K, Nam C W, Choi D H, Yu H K, Jeong C S, Han I S, Park J W. Flounder (Paralichthys olivaceus) cDNA encoding a secreted immunoglobulin M heavy chain. Fish Shellfish Immunol 2001; 11: 537–540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.