436
Views
17
CrossRef citations to date
0
Altmetric
Review

Exendins and exendin analogs for diabetic therapy: a patent review (2012-2015)

, , &
Pages 833-842 | Received 03 Mar 2016, Accepted 17 May 2016, Published online: 09 Jun 2016

References

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pr. 2010;87:4–14.
  • Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–165.
  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–1439.
  • Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes –systematic review and meta-analysis. Jama-J Am Med Assoc. 2007;298:194–206.
  • Madsbad S, Krarup T, Deacon CF, et al. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials. Curr Opin Clin Nutr. 2008;11:491–499.
  • Orskov C. Glucagon-like peptide-1, a new hormone of the enteroinsular axis. Diabetologia. 1992;35:701–711.
  • Drucker DJ. Glucagon-like peptides. Diabetes. 1998;47:159–169.
  • Deacon CF, Knudsen LB, Madsen K, et al. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia. 1998;41:271–278.
  • Nakane A, Gotoh Y, Ichihara J, et al. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide. Anal Biochem. 2015;491:23–30.
  • Goke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268:19650–19655.
  • Eng J. Exendin peptides. Mt Sinai J Med. 1992;59:147–148.
  • Raufman JP. Bioactive peptides from lizard venoms. Regul Pept. 1996;61:1–18.
  • Amylin Pharmaceuticals, Inc.Methods for regulating gastrointestinal motility. WO005351. 1998.
  • Amylin Pharmaceuticals, Inc.Use of exendins and agonists thereof for the reduction of food intake. WO030231. 1998.
  • Furman BL. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon. 2012;59:464–471.
  • Madsbad S, Kielgast U, Asmar M, et al. An overview of once-weekly glucagon-like peptide-1 receptor agonists-available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011;13:394–407.
  • Lorenz M, Evers A, Wagner M. Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med Chem Lett. 2013;23:4011–4018.
  • Gilroy CA, Luginbuhl KM, Chilkoti A. Controlled release of biologics for the treatment of type 2 diabetes. J Control Release. 2015;doi:10.1016/j.jconrel.2015.12.002.
  • Kolterman OG, Kim DD, Shen L, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health-Syst Ph. 2005;62:173–181.
  • Kim D, MacConell L, Zhuang DL, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care. 2007;30:1487–1493.
  • Malone J, Trautmann M, Wilhelm K, et al. Exenatide once weekly for the treatment of type 2 diabetes. Expert Opin Inv Drug. 2009;18:359–367.
  • Petersen AB, Knop FK, Christensen M. Lixisenatide for the treatment of type 2 diabetes. Drug Today. 2013;49:537–553.
  • Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195–202.
  • Bush MA, Matthews JE, De Boever EH, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab. 2009;11:498–505.
  • Jimenez-Solem E, Rasmussen MH, Christensen M, et al. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther. 2010;12:790–797.
  • Dungan KM, Raz I, Skrivanek Z, et al. Achieving the composite endpoint of glycated haemoglobin < 7.0%, no weight gain and no hypoglycaemia in the once-weekly dulaglutide AWARD programme. Diabetes Obes Metab. 2016;18:49–55.
  • Davidson MB, Bate G, Kirkpatrick P. Exenatide. Nat Rev Drug Discov. 2005;4:713–714.
  • Ritzel U, Leonhardt U, Ottleben M, et al. A synthetic glucagon-like peptide-1 analog with improved plasma stability. J Endocrinol. 1998;159:93–102.
  • Lim SM, Eom HN, Jiang HH, et al. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy. J Pharm Sci-Us. 2015;104:72–80.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.
  • Klose D, Siepmann F, Elkhamz K, et al. PLGA-based drug delivery systems: importance of the type of drug and device geometry. Int J Pharm. 2008;354:95–103.
  • Amatya S, Park EJ, Park JH, et al. Drug release testing methods of polymeric particulate drug formulations. J Pharm Invest. 2013;43:259–266.
  • Drucker DJ, Buse JB, Taylor K, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–1250.
  • Na DH, Lee JE, Jang SW, et al. Formation of acylated growth hormone-releasing peptide-6 by poly(lactide-co-glycolide) and its biological activity. AAPS PharmSciTech. 2007;8:E105–E109.
  • Kwak HH, Shim WS, Hwang S, et al. Pharmacokinetics and efficacy of a biweekly dosage formulation of exenatide in Zucker diabetic fatty (ZDF) rats. Pharm Res. 2009;26:2504–2512.
  • Wajcberg E, Tavaria A. Exenatide: clinical aspects of the first incretin-mimetic for the treatment of type 2 diabetes mellitus. Expert Opin Pharmacother. 2009;10:135–142.
  • Bolli GB, Owens DR. Lixisenatide, a novel GLP-1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16:588–601.
  • Henry RR, Rosenstock J, Logan D, et al. Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complicat. 2014;28:393–398.
  • Henry RR, Logan D, Alessi T, et al. A randomized, open-label, multicenter, 4-week study to evaluate the tolerability and pharmacokinetics of ITCA 650 in patients with type 2 diabetes. Clin Ther. 2013;35:634–645.
  • Sanofi.Exendin-4 derivatives as selective glucagon receptor agonists. WO193381. 2015.
  • Vilsboll T. Liraglutide: a once-daily GLP-1 analogue for the treatment of type 2 diabetes mellitus. Expert Opin Inv Drug. 2007;16:231–37.
  • Flint A, Kapitza C, Hindsberger C, et al. The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. Adv Ther. 2011;28:213–226.
  • Lau J, Bloch P, Schaffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58:7370–7380.
  • Nauck MA, Petrie JR, Sesti G, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care. 2016;39:231–241.
  • Baggio LL, Huang QL, Cao XM, et al. An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology. 2008;134:1137–1147.
  • Swierczewska M, Lee KC, Lee S. What is the future of PEGylated therapies? Expert Opin Emerg Dr. 2015;20:531–536.
  • Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161:461–472.
  • Kang JS, DeLuca PP, Lee KC. Emerging PEGylated drugs. Expert Opin Emerg Dr. 2009;14:363–380.
  • Turecek PL, Bossard MJ, Schoetens F, et al. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci-Us. 2016;105:460–475.
  • Copley K, McCowen K, Hiles R, et al. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7:367–374.
  • Kim TH, Jiang HH, Lee S, et al. Mono-PEGylated dimeric exendin-4 as high receptor binding and long-acting conjugates for type 2 anti-diabetes therapeutics. Bioconjug Chem. 2011;22:625–632.
  • Kim TH, Jiang HH, Lim SM, et al. Site-specific PEGylated exendin-4 modified with a high molecular weight trimeric PEG reduces steric hindrance and increases type 2 antidiabetic therapeutic effects. Bioconjug Chem. 2012;23:2214–2220.
  • Kim MS, Park EJ, Na DH. Synthesis and characterization of monodisperse poly(ethylene glycol)-conjugated collagen pentapeptides with collagen biosynthesis-stimulating activity. Bioorg Med Chem Lett. 2015;25:38–42.
  • Nischan N, Hackenberger CPR. Site-specific PEGylation of proteins: recent developments. J Org Chem. 2014;79:10727–10733.
  • Mann R, Nasr N, Hadden D, et al. Peptide binding at the GLP-1 receptor. Biochem Soc T. 2007;35:713–716.
  • Gong NA, Ma AN, Zhang LJ, et al. Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. Brit J Pharmacol. 2011;163:399–412.
  • Theraly Pharmaceuticals.Mono modified exendin with polyethylene glycol or its derivatives and uses thereof. US8420598. 2013.
  • Theraly Pharmaceuticals.Exendin-4 analogue pegylated with polyethylene glycol or derivative thereof, preparation method thereof, and pharmaceutical composition for preventing or treating diabetes, containing same as active ingredient. WO002580. 2013.
  • PEGBIO Co., Ltd.Novel exendin variant and conjugate thereof. US0196795. 2012.
  • Chengdu Yiping Medical Science & Technology Co., Ltd.Institute of Pharmacology and Toxicology Academy of Military Medical Sciences P.L.A. Site-directed peg-modified exendin-4 analogs and uses thereof. US0310310. 2013.
  • Eli Lilly and Co.Glp-1 fusion proteins. WO046227. 2002.
  • Human Genome Sciences, Inc. Albumin fusion proteins. WO059934. 2003.
  • Human Genome Sciences, Inc. Albumin fusion proteins. WO060071. 2003.
  • Human Genome Sciences, Inc.Albumin fusion proteins. WO003296. 2005.
  • Trujillo JM, Nuffer W. Albiglutide: a new GLP-I receptor agonist for the treatment of type 2 diabetes. Ann Pharmacother. 2014;48:1494–1501.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–183.
  • Elsadek B, Kratz F. Impact of albumin on drug delivery – new applications on the horizon. J Control Release. 2012;157:4–28.
  • St Onge EL, Miller SA. Albiglutide: a new GLP-1 analog for the treatment of type 2 diabetes. Expert Opin Biol. 2010;10:801–806.
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci-Us. 2004;93:2645–2668.
  • Beijing Dongfang Biotech Co., Ltd.Fusion protein of exendin-4 and its analog, preparation method and use thereof. US0142795. 2013.
  • Glaxo Group Ltd.Drug fusions and conjugates. US0193407. 2014.
  • Novartis AG, Llc IRM.Dual function proteins for treating metabolic disorders. WO049234. 2013.
  • Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab. 2014;3:221–229.
  • Eli Lilly and Co.Muteins of fibroblast growth factor 21. WO028595. 2006.
  • Chongqing Fagen Biomedical Inc.Fusion protein of human fibroblast growth factor-21 and exendin-4. US8809499. 2014.
  • Amunix Operating Inc.Glucose-regulating polypeptides and methods of making and using same. US0274800. 2015.
  • Schellenberger V, Wang CW, Geething NC, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27:1186–U155.
  • Podust VN, Balan S, Sim BC, et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release. 2015; doi:10.1016/j.jconrel.2015.10.038.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.
  • Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58:2258–2266.
  • Skarbaliene J, Secher T, Jelsing J, et al. The anti-diabetic effects of GLP-1-gastrin dual agonist ZP3022 in ZDF rats. Peptides. 2015;69:47–55.
  • Pocai A. Action and therapeutic potential of oxyntomodulin. Mol Metab. 2014;3:241–251.
  • Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749–757.
  • Druce MR, Minnion JS, Field BC, et al. Investigation of structure-activity relationships of oxyntomodulin (Oxm) using Oxm analogs. Endocrinology. 2009;150:1712–1722.
  • Imperial Innovations Ltd.Oxyntomodulin analogues and their effects on feeding behaviour. WO134340. 2006.
  • Sanofi.Dual glp-1/glucagon receptor agonists. WO086733. 2015.
  • Sanofi.Exendin-4 peptide analogues. WO086732. 2015.
  • Hargrove DM, Kendall ES, Reynolds JM, et al. Biological activity of AC3174, a peptide analog of exendin-4. Regul Pept. 2007;141:113–119.
  • Sanofi.Dual glp-1/glucagon receptor agonists derived from exendin-4. WO155140. 2015.
  • Sanofi.Exendin-4 derivatives as peptidic dual glp-1/glucagon receptor agonists. WO155139. 2015.
  • Sanofi.Non-acylated exendin-4 peptide analogues. WO086730. 2015.
  • Sanofi.Dual glp-1/gip receptor agonists. WO086729. 2015.
  • Sanofi.Exendin-4 peptide analogues as dual glp-1/gip receptor agonists. WO086728. 2015.
  • Eldor R, Kidron M, Greenberg-Shushlav Y, et al. Novel glucagon-like peptide-1 analog delivered orally reduces postprandial glucose excursions in porcine and canine models. J Diabetes Sci Technol. 2010;4:1516–1523.
  • Theraly Pharmaceuticals.Exendin polypeptide linked to biotin, method for the preparation thereof and pharmaceutical composition comprising the same. US8466103. 2013.
  • Jin CH, Chae SY, Son S, et al. A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. J Control Release. 2009;133:172–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.