2,357
Views
54
CrossRef citations to date
0
Altmetric
Review

Selective Tyk2 inhibitors as potential therapeutic agents: a patent review (2015–2018)

, , , ORCID Icon & ORCID Icon
Pages 137-149 | Received 19 Nov 2018, Accepted 03 Jan 2019, Published online: 22 Jan 2019

References

  • Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol. 1998;16:293.
  • Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285:1–24.
  • Clark JD, Flanagan ME, Telliez J-B. Discovery and development of Janus Kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57:5023.
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Disc. 2017;16:843–862.
  • Musumeci F, Greco C, Giacchello I, et al. An update on JAK inhibitors. Curr Med Chem. 2018;25:1.
  • Bortoluzzi A, Furini F, Generali E, et al. One year in review 2018: novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2018;36(3):347–361.
  • Currò D, Daniela Pugliese D, Armuzzi A. Frontiers in drug research and development for inflammatory bowel disease. Front Pharmacol. 2017;8:1–19.
  • Elalouf O, Chandran V. Novel therapeutics in psoriatic arthritis. What is in the pipeline? Curr Rheumatol Rep. 2018;20(7):36.
  • Chiricozzi A, Saraceno R, Novelli L, et al. Small molecules and antibodies for the treatment of psoriasis: a patent review (2010–2015). Expert Opin Ther Pat. 2016;26(7):757–766.
  • Mesa RA, Yasothan U, Kirkpatrick P. Ruxolitinib. Nat Rev Drug Disc. 2012;11:103–104.
  • Garber K. Pfizer’s first-in-class JAK inhibitor pricey for rheumatoid arthritis market. Nat Biotech. 2013;31:3–4.
  • Gonzales AJ, Bowman JW, Fici GJ, et al. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther. 2014;37:317–324.
  • Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697–704.
  • Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 1. Expert Opin Ther Pat. 2017;27:127–143.
  • Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 2. Expert Opin Ther Pat. 2017;27:145–161.
  • Sohn SJ, Barrett K, Van Abbema A, et al. A restricted role for TYK2 catalytic activity in human cytokine responses revealed by novel TYK2-selective inhibitors. J Immunol. 2013;191:2205–2216.
  • Leitner NR, Witalisz-Siepracka A, Strobl B, et al. Tyrosine kinase 2 – surveillant of tumours and bona fide oncogene. Cytokine. 2017;89:209–218.
  • Prchal-Murphy M, Witalisz-Siepracka A, Bednarik KT, et al. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. OncoImmunology. 2015;4(11):e1047579/1-e1047579/11.
  • Ishizaki M, Muromoto R, Akimoto T, et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int Immunol. 2014;26(5):257–267.
  • Berg J, Zscheppang K, Fatykhova D, et al. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia. Eur Respir J. 2017;50(1):1601953.
  • Enerbäck C, Sandin C, Lambert S, et al. The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Sci Rep. 2018;8:7043.
  • Won -H-H, Park I, Lee E, et al. Comparative analysis of the JAK/STAT signaling through erythropoietin receptor and thrombopoietin receptor using a systems approach. BMC Bioinformatics. 2009;10(Suppl 1):S53.
  • Ishizaki M, Muromoto R, Akimoto T, et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int Immunol. 2014;26:257.
  • Xu X, Zhang H-Y. The immunogenetics of psoriasis and implications for drug repositioning. Int J Mol Sci. 2017;18:2650.
  • Elalouf O, Chandran V. Novel therapeutics in psoriatic arthritis. What is in the pipeline? Curr Rheumatol Rep. 2018;20:36.
  • Lee YH, Choi SJ, Ji JD, et al. Associations between PXK and TYK2 polymorphisms and systemic lupus erythematosus: a meta-analysis. Inflamm Res. 2012;61:949–954.
  • Miao W, Masse C, Greenwood J, et al. Potent and selective Tyk2 inhibitor highly efficacious in rodent models of inflammatory bowel disease and psoriasis. ACR/ARHP Annual Meeting; Washington DC, USA, 2016. Poster Session B, Abstract Number 1911.
  • Diogo D, Bastarache L, Liao KP, et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One. 2015;10(4):e0122271.
  • Marroqui L, Dos Santos RS, Fløyel T, et al. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes. 2015;64(11):3808–3817.
  • Übel C, Mousset S, Trufa D, et al. Establishing the role of tyrosine kinase 2 in cancer. OncoImmunology. 2013;2:e22840.
  • Prutsch N, Gurnhofer E, Suske T, et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell Lymphoma. Leukemia. 2018. DOI:10.1038/s41375-018-0239-1. ahead of print.
  • Norman P. Selective JAK1 inhibitor and selective Tyk2 inhibitor patents. Expert Opin Ther Pat. 2012;22(10):1233.
  • Menet CJ. Toward selective TYK2 inhibitors as therapeutic agents for the treatment of inflammatory diseases. Pharm Pat Anal. 2014;3(4):449.
  • Norman P. Evaluation of WO2013125543, WO2013146963 and EP2634185: the first Tyk2 inhibitors from Takeda and Sareum. Expert Opin Ther Pat. 2014;24(3):361.
  • Catlett I, Aras U, Liu Y, et al. SAT0226 A first-in-human, study of BMS-986165, a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2. Ann Rheum Dis. 2017;76:859.
  • Gerstenberger B, Arnold E, Banker ME et al. Discovery of the TYK2 selective inhibitor PF-6826647 for the treatment of Crohn’s disease, and other autoimmune conditions. 256th ACS National Meeting & Exposition; 2018 Aug 19–23; Boston, MA. MEDI-319.
  • Sareum Ltd. Pharmaceutical compounds. WO2015032423; 2015.
  • Sareum Ltd. Oxazole Tyrosine Kinase Inhibitors. WO2008139161; 2008.
  • Sareum Ltd. Pharmaceutical Compounds. WO2010055304; 2010.
  • Sareum Ltd. Pharmaceutical Compounds. JP 6239118; 2017.
  • Sareum Ltd. Pharmaceutical Compounds. CN 105793245B; 2018.
  • Sareum Ltd. Pharmaceutical Compounds. RU 2652795; 2018.
  • Cellzome Ltd. Heterocyclyl pyrimidine analogs as Tyk2 inhibitors. US 9296725B2; 2016.
  • Cellzome Ltd. Heterocyclyl pyrimidine analogs as Tyk2 inhibitors. CN 104507929B; 2018.
  • Cellzome Ltd. Heterocyclyl pyrimidine analogs as Tyk2 inhibitors. EP 2855451B1; 2017.
  • Cellzome Ltd. Heterocyclyl pyrimidine analogs as Tyk2 inhibitors. JP 6197031; 2017.
  • Cellzome Ltd.Heterocyclyl pyrimidine analogs as Tyk2 inhibitors. RU 2641895; 2018.
  • Genentech, Inc. Roche AG Thiazolopyridine compounds, compositions and their use as Tyk2 kinase inhibitors. WO2015091584; 2015.
  • Pfizer Inc. Aminopyrimidinyl compounds as Jak inhibitors. WO2016027195; 2016.
  • Fensome A, Ambler CM, Arnold E, et al. Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of ((S)-2,2-difluorocyclopropyl)((1R,5S)-3-(2-((1-methyl-1H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J Med Chem. 2018;61(19):8597–8612.
  • Menet CJ. A dual inhibition a better solution: development of a JAK1/TYK2 inhibitor. J Med Chem. 2018;61(19):8594–8596.
  • Pfizer Inc. Pyrazolo[1,5-a]pyrazine-4-yl derivatives. US20170240552; 2017.
  • Takeda Pharmaceutical Company Ltd. Heterocyclic compound. WO2015016206; 2015.
  • Takeda Pharmaceutical Company Ltd. Heterocyclic compound. WO2013146963; 2013.
  • Takeda Pharmaceutical Company Ltd. Heterocyclic compound. JP 2016–65023; 2016.
  • Takeda Pharmaceutical Company Ltd. Heterocyclic compound. WO2016047678; 2016.
  • Nimbus Lakshimi, Inc. Tyk2 inhibitors and uses thereof. WO2015131080; 2015.
  • Nimbus Lakshimi, Inc. Tyk2 inhibitors and uses thereof. WO2016138352; 2016.
  • Nimbus Lakshimi, Inc. Tyk2 inhibitors and uses thereof. WO2017040757; 2017.
  • Nimbus Lakshimi, Inc. Tyk2 inhibitors and uses thereof. WO2018071794; 2018.
  • Nimbus Lakshimi, Inc. Tyk2 inhibitors and uses thereof. WO2018075937; 2018.
  • Gillooly K, Zhang Y, Yang X, et al. BMS-986165 is a highly potent and selective allosteric inhibitor of Tyk2, blocks IL-12, IL-23 and type I interferon signaling and provides for robust efficacy in preclinical models of systemic lupus erythematosus and inflammatory bowel disease. 2016 ACR/ARHP Annual Meeting. Washington, DC, USA. 2016 Nov 11-16. Abstract number 11L.
  • Nimbus press release on June 5, 2018. [cited 2018 Oct 18]. Available from: http://lillyventures.com/wp-content/uploads/2017/02/2018.06.05-Nimbus-Therapeutics-Announces-65-Million-in-New-Financing-to-Accelerate-Pipeline-Progress-and-Expand-Discovery-Efforts.pdf; 2018
  • Akahane K, Li Z, Etchin J, et al. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia. Br J Haematol. 2017;117(2):271–282.
  • Shaw MH, Boyartchuk V, Wong S, et al. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Nat Acad Sci. 2003;100(20):11594–11599.
  • Lupardus PJ, Ultsch M, Wallweber H, et al. Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci USA. 2014;111(22):8025–8030.
  • Byrne DP, Foulkes DM, Eyers PA. Pseudokinases: update on their functions and evaluation as new drug targets. Future Med Chem. 2017;9(2):245–265.
  • Tokarski JS, Zupa-Fernandez A, Tredup JA, et al. Tyrosine kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J Biol Chem. 2015;290(17):11061–11074.
  • Min X, Ungureanu D, Maxwell S, et al. Structural and functional characterization of the JH2 pseudokinase domain of JAK family tyrosine kinase 2 (TYK2). J Biol Chem. 2015;290(45):27261–27270.
  • Bristol-Myers Squibb Company. Alkyl amide-substituted pyrimidine compounds useful in the modulation of IL-12, IL-23 and/or IFNα. US20150299139A1; 2015.
  • Bristol-Myers Squibb Company. Alkyl amide-substituted pyridine compounds useful in the modulation of IL-12, IL-23 and/or IFNα responses. WO2015069310; 2015.
  • Bristol-Myers Squibb Company. Amide-substituted heterocyclic compounds useful as modulators of IL-12, IL-23 and/or IFNα responses. US9505748B2; 2016.
  • Bristol-Myers Squibb Company. Phosphine oxide alkyl amide substituted heteroaryl compounds as modulators of IL-12, IL-23 and/or IFNα responses. WO20180162889; 2018.
  • Roche Inc. Pyridazine amide compounds. US20130178478; 2013.
  • Portola Pharmaceuticals, Inc. Pyridazine compounds as Jak inhibitors. WO2015123453; 2015.
  • Bristol-Myers Squibb Company. Imidazopyridazine compounds useful as modulators of IL-12, IL-23 and/or IFNα responses. WO2015089143; 2015.
  • Bristol-Myers Squibb Company. Imidazopyridazine compounds useful as modulators of IL-12, IL-23 and/or IFNα responses. WO2017087590; 2017.
  • Bristol-Myers Squibb Company. Imidazopyridazine compounds useful as modulators of IL-12, IL-23 and/or IFNα responses. WO2018067432; 2018.
  • Bristol-Myers Squibb Company. Imidazopyridazine modulators of IL-12, IL-23 and/or IFNα responses. WO2018093968; 2018.
  • Moslin R, Gardner D, Santella J, et al. Identification of imidazo[1,2-b]pyridazine TYK2 pseudokinase ligands as potent and selective allosteric inhibitors of TYK2 signalling. MedChemComm. 2017;8(4):700–712.
  • Bristol-Myers Squibb Company. Heterocyclic compounds useful as modulators of IL-12, IL-23 and/or IFNα responses. WO2018081488; 2018.
  • Papp K, Gordon K, Thaçi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–1321.
  • [cited 2018 Oct 28]. Available from: http://www.sareum.com/files/1414/4585/4291/Sareum_SKIL_TYK2_Oct15.pdf. October 2015.
  • Masse CE, Miao W, Greenwood J, et al. Identification of highly potent and selective Tyk2 inhibitors for the treatment of autoimmune diseases through structure-based drug design. [cited 2018 Oct 28]. Available from: http://www.nimbustx.com/wp-content/themes/nimbustx/pdf/identification-of-highly-potent-and-selective-tyk2-inhibitors-for-the-treatment-of-autoimmune-diseases-through-structure-based-drug-design.pdf.
  • White JR, Phillips F, Monaghan T, et al. Review article: novel oral-targeted therapies in inflammatory bowel disease. Aliment Pharmacol Ther. 2018;47(12):1610–1622.
  • Hosking AM, Juhasz M, Mesinkovska NA. Topical Janus kinase inhibitors: A review of applications in dermatology. J Am Acad Dermatol. 2018;79(3):535–544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.