2,001
Views
69
CrossRef citations to date
0
Altmetric
Review

Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present)

&
Pages 1-13 | Received 23 Oct 2019, Accepted 10 Dec 2019, Published online: 18 Dec 2019

References

  • Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97:177–183.
  • Dubois V, Eeckhoute J, Lefebvre P, et al. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest. 2017;127:1202–1214.
  • Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–650.
  • Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992;68:879–887.
  • Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A. 1994;91:7355–7359.
  • Takada I, Yu RT, Xu HE, et al. Alteration of a single amino acid in peroxisome proliferator-activated receptor-α (PPARα) generates a PPARδ phenotype. Mol Endocrinol. 2000;14:733–740.
  • Tontonoz P, Hu E, Graves RA, et al. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994;8:1224–1234.
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83:841–850.
  • Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006;20:1405–1428.
  • Brunmeir R, Xu F.Functional regulation of PPARs through post-translational modifications.Int J Mol Sci.2018;19.
  • Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77:289–312.
  • Xu HE, Lambert MH, Montana VG, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999;3:397–403.
  • Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutr J. 2014;13:17.
  • Chakravarthy MV, Lodhi IJ, Yin L, et al. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell. 2009;138:476–488.
  • Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43:527–550.
  • Berger J, Leibowitz MD, Doebber TW, et al. Novel peroxisome proliferator-activated receptor (PPAR) γ and PPARδ ligands produce distinct biological effects. J Biol Chem. 1999;274:6718–6725.
  • Sznaidman ML, Haffner CD, Maloney PR, et al. Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ) – synthesis and biological activity. Bioorg Med Chem Lett. 2003;13:1517–1521.
  • Oliver WR Jr., Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001;98:5306–5311.
  • Kliewer SA, Lenhard JM, Willson TM, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell. 1995;83:813–819.
  • Nagy L, Tontonoz P, Alvarez JGA, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 1998;93:229–240.
  • Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270:12953–12956.
  • Takada I, Makishima M. PPARγ ligands and their therapeutic applications: a patent review (2008 – 2014). Expert Opin Ther Pat. 2015;25:175–191.
  • Choi JH, Banks AS, Estall JL, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466:451–456.
  • Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present. Eur J Med Chem. 2017;126:879–893.
  • Maltarollo VG, Kronenberger T, Windshugel B, et al. Advances and challenges in drug design of PPARδ ligands. Curr Drug Targets. 2018;19:144–154.
  • Lamers C, Schubert-Zsilavecz M, Merk D. Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008-present). Expert Opin Ther Pat. 2012;22:803–841.
  • Marukome Co., Ltd. PPAR-alpha activator, pharmaceutical composition, food and drink, food additive, supplement and method of manufacturing the same. US20180015062A1. 2018. (applications).
  • Yoshizaki Y, Kawasaki C, Cheng KC, et al. Rice koji reduced body weight gain, fat accumulation, and blood glucose level in high-fat diet-induced obese mice. PeerJ. 2014;2:e540.
  • Takahashi H, Chi HY, Mohri S, et al. Rice koji extract enhances lipid metabolism through proliferator-activated receptor alpha (PPARα) activation in mouse liver. J Agric Food Chem. 2016;64:8848–8856.
  • Rush University Medical Center. Brain derived PPARa ligands. US20190060269A1. 2019. (applications).
  • Roy A, Kundu M, Jana M, et al. Identification and characterization of PPARα ligands in the hippocampus. Nat Chem Biol. 2016;12:1075–1083.
  • Roy A, Jana M, Corbett GT, et al. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep. 2013;4:724–737.
  • City of Hope. Peroxisome proliferator-activated receptor agonists. US20190077774A1. 2019. (applications).
  • Yasutake K, Kohjima M, Kotoh K, et al. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:1756–1767.
  • Ip E, Farrell GC, Robertson G, et al. Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38:123–132.
  • Barish GD, Narkar VA, Evans RM. PPARδ: a dagger in the heart of the metabolic syndrome. J Clin Invest. 2006;116:590–597.
  • Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003;100:15924–15929.
  • vTv Therapeutics LLC. Use of a PPAR-delta agonist for treating muscle atrophy. US 9487493B2. 2016. (granted patents).
  • The University of Tolendo. Analogs of peroxisome proliferator activated receptor (PPAR) agonists, and methods of using the same US9695137B2. 2017. (granted patents).
  • Kim DH, Liu J, Bhat S, et al. Peroxisome proliferator-activated receptor δ agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1. J Bone Miner Metab. 2013;31:44–52.
  • Chan BY, Gartland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone. 2007;40:149–159.
  • Mosti MP, Stunes AK, Ericsson M, et al. Effects of the peroxisome proliferator-activated receptor (PPAR)-δ agonist GW501516 on bone and muscle in ovariectomized rats. Endocrinology. 2014;155:2178–2189.
  • Mitobridge, Inc., Salk Institute for Biological Studies. PPAR agonists, compounds, pharmaceutical compositions, and methods of use thereof. US20170304255A1. 2017. (applications).
  • The Salk Institute for Biological Studies. PPAR agonists and methods of use thereof. US20180305403A1. 2018. (applications).
  • Mitobridge, Inc. PPAR agonists, compounds, pharmaceutical compositions, and methods of use thereof. WO2017180818A1. 2017.
  • Wu -C-C, Baiga TJ, Downes M, et al. Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proc Natl Acad Sci U S A. 2017;114:E2563–E70.
  • Sohda T, Mizuno K, Tawada H, et al. Studies on antidiabetic agents. I. Synthesis of 5-[4-(2-methyl-2-phenylpropoxy)-benzyl]thiazolidine-2,4-dione (AL-321) and related compounds. Chem Pharm Bull. 1982;30:3563–3573.
  • Cariou B, Charbonnel B, Staels B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol Metab. 2012;23:205–215.
  • Metabolic Solutions Development Company, LLC. PPAR-sparing thiazolidinedione salts for the treatment of metabolic diseases. US9126959B2. 2015. (granted patents).
  • Kojun Japan Co., Ltd. PPAR-gamma activator. US9943501B2. 2018. (granted patents).
  • Tsujino Y. A new agonist for peroxisome proliferation-activated receptor γ (PPARγ), fraglide-1 from zhenjiang fragrant vinegar: screening and characterization based on cell culture experiments. J Oleo Sci. 2017;66:615–622.
  • Theriac Biomedicale Inc. PPAR-gamma activators and their therapeutical usages. US20190000790A1. 2019. (applications)
  • Vasheghani F, Zhang Y, Li YH, et al. PPARgamma deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis. 2015;74:569–578.
  • University of Toronto, União Brasiliense de Educação e Cultura, Fundação Universidade de Brasília. PPAR modulators US20170121268A1. 2017. (applications).
  • Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung e. V. Competitive PPAR-gamma antagonists. US20170210711A1. 2017. (applications).
  • Knape T, Flesch D, Kuchler L, et al. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Eur J Pharmacol. 2015;755:16–26.
  • Ahren B. DPP-4 inhibition and the path to clinical proof. Front Endocrinol. 2019;10:376.
  • Sanovel Ilac Sanayi VE Ticaret A.S. Pharmaceutical combinations of sitagliptin and PPAR agonists. WO2016066666A1. 2016.
  • Sanovel Ilac Sanayi VE Ticaret A.S. Pharmaceutical combinations of vildagliptin and PPAR agonists WO2016066668A1. 2016.
  • Wang B, Sun Y, Sang Y, et al. Comparison of dipeptidyl peptidase-4 inhibitors and pioglitazone combination therapy versus pioglitazone monotherapy in type 2 diabetes: a system review and meta-analysis. Medicine (Baltimore). 2018;97:e12633.
  • Janssen Pharmaceutica NV. Drug combinations comprising a DGAT inhibitor and a PPAR-agonist. US20180028660A1. 2018. (applications).
  • Smith SJ, Cases S, Jensen DR, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet. 2000;25:87–90.
  • Sakurai R, Lee C, Shen H, et al. A combination of the aerosolized PPAR-γ agonist pioglitazone and a synthetic surfactant protein B peptide mimic prevents hyperoxia-induced neonatal lung injury in rats. Neonatology. 2018;113:296–304.
  • Los Angeles Biomedical Research Institute at Harbor - UCLA Medical Center. Compositions and methods for administering PPARγ agonists, surfactant peptides and phospholipids. WO2017155857A1. 2017.
  • Loomba R, Kayali Z, Noureddin M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology. 2018;155:1463–73 e6.
  • Genfit. Combination comprising a PPAR agonist such as elafibranor and an acetyl-CoA carboxylase (ACC) inhibitor. WO2018193007A1. 2018.
  • Genfit. Combination of a PPAR agonist with a FXR agonist. WO2018153933A1. 2018.
  • Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365.
  • Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66:948–983.
  • Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965.
  • Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631–643.
  • Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116:607–614.
  • Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13:433–444.
  • A-Gonzalez N, Bensinger SJ, Hong C, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31:245–258.
  • Washington University, St. Jude Children’s Research Hospital. PPAR agonist or LXR agonist for use in the treatment of systemic lupus erythematosus by modulation of LAP activity. US20190145961A1. 2017. (applications).
  • Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23:915–926.
  • Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513.
  • Support-Venture GmbH. Pharmaceutical combinations for treating cancer US20190160072A1. 2019. (applications).
  • Mitobridge, Inc. PPAR-alpha agonists for treating mitochondrial diseases. WO2017044551A1. 2017.
  • University of Illinois. PPAR-alpha agonist treatment of neuropsychiatric disorders. US20180369171A1. 2018. (applications).
  • Locci A, Pinna G. Stimulation of peroxisome proliferator-activated receptor-alpha by N-palmitoylethanolamine engages allopregnanolone biosynthesis to modulate emotional behavior. Biol Psychiatry. 2019;85:1036–1045.
  • University of South Florida. Combination therapy for traumatic brain injury US20180338996A1. 2018. (applications).
  • Das M, Leonardo CC, Rangooni S, et al. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation. 2011;8:148.
  • Sauerbeck A, Gao J, Readnower R, et al. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol. 2011;227:128–135.
  • Neuro Via, Inc. Methods and compositions for treating demyelinating diseases using sobetirome or a sobetirome prodrug and a PPAR activator. US20180353450A1. 2018. (applications).
  • The University of North Carolina at Chapel Hill. Methods of treating methicillin-resistant Staphylococcus aureus (MRSA) using PPAR-gamma agonists US20150328198A1. 2015. (applications).
  • Thurlow LR, Joshi GS, Clark JR, et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe. 2013;13:100–107.
  • Thurlow LR, Joshi GS, Richardson AR. Peroxisome proliferator-activated receptor γ is essential for the resolution of Staphylococcus aureus skin infections. Cell Host Microbe. 2018;24:261–70.e4.
  • Cadila Healthcae Ltd. Dual PPAR modulators for the treatment of diabetic retinopathy and diabetic eye diseases WO2017089980A1. 2017.
  • Cadila Healthcare Ltd. Dual PPAR modulators for the treatment of diabetic nephropathy and related diseases WO2017089979A1. 2017.
  • Ciudin A, Hernandez C, Simo R. Molecular implications of the PPARs in the diabetic eye. PPAR Res. 2013;2013:686525.
  • Kouroumichakis I, Papanas N, Zarogoulidis P, et al. Fibrates: therapeutic potential for diabetic nephropathy? Eur J Intern Med. 2012;23:309–316.
  • Jia Z, Sun Y, Yang G, et al. New insights into the PPARγ agonists for the treatment of diabetic nephropathy. PPAR Res. 2014;2014:818530.
  • Inventiva. PPAR compounds for use in the treatment of fibrotic diseases. US20180333396A1. 2018. (applications).
  • Boubia B, Poupardin O, Barth M, et al. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) α/γ/δ triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J Med Chem. 2018;61:2246–2265.
  • Ruzehaji N, Frantz C, Ponsoye M, et al. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann Rheum Dis. 2016;75:2175–2183.
  • Avouac J, Konstantinova I, Guignabert C, et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann Rheum Dis. 2017;76:1931–1940.
  • InteKrin Therapeutics, Inc. PPAR-gamma agonist for treatment of bone disorders. US20190167660A1. 2019. (applications).
  • Higgins LS, Mantzoros CS. The development of INT131 as a selective PPARγ modulator: approach to a safer insulin sensitizer. PPAR Res. 2008;2008:936906.
  • Motani A, Wang Z, Weiszmann J, et al. INT131: a selective modulator of PPARγ. J Mol Biol. 2009;386:1301–1311.
  • DePaoli AM, Higgins LS, Henry RR, et al. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care. 2014;37:1918.
  • Lee DH, Huang H, Choi K, et al. Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2012;302:E552–60.
  • Support-Venture GmbH. Method of preventing or treating hearing loss. US20180021320A1. 2018. (applications)
  • Sekulic-Jablanovic M, Petkovic V, Wright MB, et al. Effects of peroxisome proliferator activated receptors (PPAR)- γ and -α agonists on cochlear protection from oxidative stress. PLoS One. 2017;12:e0188596.
  • Indiana University Research and Technology Corporation. Lysosomal acid lipase and PPAR gamma ligands as immune therapies for cancer treatment. US20190076508A1. 2019. (applications).
  • Yan C, Zhao T, Du H. Lysosomal acid lipase in cancer. Oncoscience. 2015;2:727–728.
  • Peraza MA, Burdick AD, Marin HE, et al. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci. 2006;90:269–295.
  • Hedrington MS, Davis SN. Peroxisome proliferator-activated receptor refalpha-mediated drug toxicity in the liver. Expert Opin Drug Metab Toxicol. 2018;14:671–677.
  • Preiss D, Tikkanen MJ, Welsh P, et al. Lipid-modifying therapies and risk of pancreatitis: a meta-analysis. JAMA. 2012;308:804–811.
  • Mackenzie LS, Lione L. Harnessing the benefits of PPARβ/δ agonists. Life Sci. 2013;93:963–967.
  • Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med. 1998;338:916–917.
  • Tentolouris A, Vlachakis P, Tzeravini E, et al. SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16.
  • Alawad AS, Levy C. FXR agonists: from bench to bedside, a guide for clinicians. Dig Dis Sci. 2016;61:3395–3404.
  • Han CY. Update on FXR biology: promising therapeutic target? Int J Mol Sci. 2018;19.
  • Steffensen KR, Jakobsson T, Gustafsson JA. Targeting liver X receptors in inflammation. Expert Opin Ther Targets. 2013;17:977–990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.