163
Views
2
CrossRef citations to date
0
Altmetric
Review

Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology’s stages

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 89-114 | Received 05 May 2021, Accepted 17 Aug 2021, Published online: 07 Sep 2021

References

  • Feasey N, Wansbrough-Jones M, Mabey DCW, et al. Neglected tropical diseases. Br Med Bull. 2010;93(1):179–200.
  • World Health Organization (WHO). WHO, Neglected tropical diseases: treating more than one billion people in 2017 [Internet]. Who. 2018 [cited 2001 Sep 20]. Available from: https://www.who.int/neglected_diseases/news/treating-more-than-one-billion-people-2017/en/
  • WHO/Department of control of neglected tropical diseases. Investing to overcome the global impact of neglected tropical diseases, Third WHO report on neglected tropical diseases [Internet]. 2015. Available from:https://www.who.int/neglected_diseases/9789241564861/en/
  • World Health Organization (WHO). Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases [Internet]. Geneva (Switzerland); 2017. Available from: https://apps.who.int/iris/handle/10665/255011
  • WHO. Neglected tropical diseases [Internet]. 2019. [2019 Nov 13]. Available from: https://www.who.int/neglected_diseases/diseases/en/
  • END Fund. End fund Nigeria [Internet]. [cited 2021 Apr 06]. Available from: http://www.end.org/ourimpact/wherewework/nigeria
  • Yamey G. The world’s most neglected diseases. Br Med J. 2002;325(7357):176–177.
  • Lee BY, Bartsch SM, Gorham KM. Economic and financial evaluation of neglected tropical diseases. In: Anderson RM, Basáñez MG, editors. Advances in Parasitology, Advances in Parasitology, Vol. 87. Cambridge, Massachusetts, EUA: Academic Press; 2015. 329–417.
  • The World Bank. Poverty [Internet]. [cited 2021 Mar 18]. Available from: https://data.worldbank.org/topic/11
  • Comissão Econômica para a América Latina e o Caribe (CEPAL). Panorama Social da América Latina, 2019. In: Resumo executivo (LC/PUB.2020/1-P). Santiago: Publicação das Nações Unidas; 2020: 1–16.
  • General Assembly. Transforming our world: the 2030 agenda for sustainable development, A/RES/70/1 [Internet]. A New Era in Global Health. 2015. [cited 2021 Apr 06]. Available from: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
  • United Nations. Sustainable Development Goals [Internet]. [cited 2021 Mar 18]. Available from: https://sdgs.un.org/goals
  • WHO/Department of control of neglected tropical diseases. Working to overcome the global impact of neglected tropical diseases, First WHO report on neglected tropical diseases [Internet]. 2010. [cited 2021 Apr 06]. Available from: https://www.who.int/neglected_diseases/resources/9789241564090/en/
  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–2128.
  • Hotez PJ, Alvarado M, Basáñez MG, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8(7):7.
  • Mathers CD, Ezzati M, Lopez AD. Measuring the burden of neglected tropical diseases: the global burden of disease framework. brooker S, editor. PLoS Negl Trop Dis. 2007;1(2):e114.
  • Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–2223.
  • Institute for Health Metrics and Evaluation. Global Health Data Exchange [Internet]. [cited 2021 Jul 13]. Available from: http://ghdx.healthdata.org/
  • Organización Panamericana de la Salud. Más de 100 millones de personas padecen alguna enfermedad infecciosa desatendida en las Américas [Internet]. 2015 [2001 Sep 20]. Available from: http://www.paho.org/hq/index.php?option=com_content&view=article&id=10440%3A2015-100-millones-padecen-alguna-enfermedad-infecciosa-desatendida-en-las-americas&catid=740%3Anews-press-releases&Itemid=1926&lang=es
  • World Health Organization (WHO). Schistosomiasis [Internet]. 2020 [2021 Jan 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
  • World Health Organization (WHO). Schistosomiasis (Bilharzia) [Internet]. [cited 2021 Jan 27]. Available from: https://www.who.int/health-topics/schistosomiasis#tab=tab_1
  • Da Silva LC, Chieffi PP, Carrilho FJ. Schistosomiasis mansoni – clinical features. Gastroenterol Hepatol. 2005;28(1):30–39.
  • Lambertucci JR. Revisiting the concept of hepatosplenic schistosomiasis and its challenges using traditional and new tools. Rev Soc Bras Med Trop. 2014;47(2):130–136.
  • Ferrari TCA, Moreira PRR. Neuroschistosomiasis: clinical symptoms and pathogenesis. Lancet Neurol. 2011;10(9):853–864.
  • WHO. WHO Model List of Essential Medicines, 20th List [Internet]. Geneva; 2019. [cited 2021 Apr 06]. Available from: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists
  • History of Praziquantel [Internet]. [cited 2021 Mar 18]. Available from: https://web.stanford.edu/group/parasites/ParaSites2006/Praziquantel/history.html
  • Xu J, Bergquist R, Qian Y-J, et al. China–Africa and China–Asia collaboration on schistosomiasis control. In 2016. p. 435–466.
  • Song L-G, Wu X-Y, Sacko M, et al. History of schistosomiasis epidemiology, current status, and challenges in China: on the road to schistosomiasis elimination. Parasitol Res. 2016;115(11):4071–4081.
  • Chen MG. Use of praziquantel for clinical treatment and morbidity control of schistosomiasis japonica in China: a review of 30 years’ experience. Acta Trop. 2005;96(2–3):168–176.
  • Secor WE. Early lessons from schistosomiasis mass drug administration programs. F1000Research 2015;4:1157.
  • L-a TT, Rollinson D, Stothard JR, et al. Moving from control to elimination of schistosomiasis in sub-Saharan Africa: time to change and adapt strategies. Infect Dis Poverty. 2017;6(1):42.
  • Ndeffo Mbah ML, Gilbert JA, Galvani AP. Evaluating the potential impact of mass praziquantel administration for HIV prevention in Schistosoma haematobium high-risk communities. Epidemics 2014;7:22–27.
  • Randjelovic A, Frønæs S, Munsami M, et al. A study of hurdles in mass treatment of schistosomiasis in KwaZulu-Natal, South Africa. South Afr Fam Pract. 2015;57(2):57–61.
  • Onkanga IO, Mwinzi PNM, Muchiri G, et al. Impact of two rounds of praziquantel mass drug administration on Schistosoma mansoni infection prevalence and intensity: a comparison between community wide treatment and school based treatment in western Kenya. Int J Parasitol. 2016;46(7):439–445.
  • Dias JP, Bastos C, Araújo E, et al. Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop. 2008;41(3):296–300.
  • CAC A, Waniek PJ, Jansen AM. An overview of chagas disease and the role of triatomines on its distribution in Brazil. Vector-Borne Zoonotic Dis. 2009;9(3):227–234.
  • Valente SADS, Valente VDC, Fraiha Neto H. Considerations on the epidemiology and transmission of Chagas disease in the Brazilian amazon. Mem Inst Oswaldo Cruz. 1999;94(suppl 1):395–398.
  • Souza-Lima RDCD, Barbosa MDGV, Coura JR, et al. Outbreak of acute Chagas disease associated with oral transmission in the Rio Negro region, Brazilian Amazon. Rev Soc Bras Med Trop. 2013;46(4):510–514.
  • World Health Organization (WHO). Chagas disease (American trypanosomiasis) [Internet]. [cited 2021 Jan 27]. Available from: https://www.who.int/chagas/epidemiology/en/
  • Bern C, Messenger LA, Whitman JD, et al. Chagas disease in the united states: a public health approach. Clin Microbiol Rev. 2019;33:1.
  • Conners EE, Vinetz JM, Weeks JR, et al. A global systematic review of Chagas disease prevalence among migrants. Acta Trop. 2016;156:68–78.
  • Manne-Goehler J, Umeh CA, Montgomery SP, et al. Estimating the Burden of Chagas Disease in the United States. Dumonteil E, editor. PLoS Negl Trop Dis. 2016;10(11):e0005033.
  • Requena-Méndez A, Aldasoro E, De Lazzari E, et al. Prevalence of chagas disease in latin-american migrants living in europe: a systematic review and meta-analysis. Rodrigues MM, editor. PLoS Negl Trop Dis. 2015;9(2):e0003540.
  • Antinori S, Galimberti L, Bianco R, et al. Chagas disease in Europe: a review for the internist in the globalized world. Eur J Intern Med. 2017;43:6–15.
  • World Health Organization. WHO. Chagas disease (American trypanosomiasis) [Internet]. 2020 [2021 Jan 27]. Available from: https://www.who.int/health-topics/chagas-disease#tab=tab_1
  • Martins-Melo FR, Carneiro M, Ribeiro ALP, et al. Burden of Chagas disease in Brazil, 1990–2016: findings from the Global Burden of Disease Study 2016. Int J Parasitol. 2019;49(3–4):301–310.
  • Coura JR. Chagas disease: what is known and what is needed - A background article. Mem Inst Oswaldo Cruz. 2007;102(suppl 1):113–122.
  • Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909;1(2):159–218.
  • Caldas IS, Talvani A, Caldas S, et al. Benznidazole therapy during acute phase of Chagas disease reduces parasite load but does not prevent chronic cardiac lesions. Parasitol Res. 2008;103(2):413–421.
  • Perez-Molina JA, Perez-Ayala A, Moreno S, et al. Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. J Antimicrob Chemother. 2009;64(6):1139–1147.
  • Cançado JR. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev Inst Med Trop Sao Paulo. 2002;44(1):29–37.
  • Simões MV, Romano MMD, Schmidt A, et al. Chagas Disease Cardiomyopathy. Int J Cardiovasc Sci. 2018;31:2.
  • Jr AR, Rassi A, Little WC. Chagas’ Heart Disease. Clin Cardiol. 2000;23(12):883–889.
  • Punukollu G, Gowda RM, Khan IA, et al. Clinical aspects of the Chagas’ heart disease. Int J Cardiol. 2007;115(3):279–283.
  • Coura JR, Borges-Pereira J. Chronic phase of Chagas disease: why should it be treated? A comprehensive review. Mem Inst Oswaldo Cruz. 2011;106(6):641–645.
  • Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis. 2001;1(2):92–100.
  • Gullo CE, Estofolete CF, Gil CD, et al. Formas digestivas da doença de Chagas e carcinogênese: um estudo de associação. Rev Col Bras Cir. 2012;39(2):146–150.
  • Matsuda NM, Miller SM, Evora PRB. The chronic gastrointestinal manifestations of Chagas disease. Clinics. 2009;64(12):1219–1224.
  • Rocha A, Henrique D, Borges E, et al. Complicacoes do megacolon e megaesofago chagasicos observadas em necropsia. Rev Goiana Med. 1981;27(1/2):53–62.
  • Rossi A, Rezende JMD, Doles J. Caso de Doença de Chagas observado desde o período inicial da infecção, com aparecimento precoce de magaesôfago e megacolo. Rev Soc Bras Med Trop. 1968;2(6):303–315.
  • Figueirêdo SDS, Carvalho TN, Nóbrega BBD, et al. Caracterização radiográfica das manifestações esofagogastrointestinais da doença de Chagas. Radiol Bras. 2002;35(5):293–297.
  • de Oliveira R. Gastrointestinal manifestations of chagas’ disease. Am J Gastroenterol. 1998;93(6):884–889.
  • Abuhab A, Trindade E, Aulicino GB, et al. Chagas’ cardiomyopathy: the economic burden of an expensive and neglected disease. Int J Cardiol. 2013;168(3):2375–2380.
  • World Health Organization. WHO. Chagas disease (also known as American trypanosomiasis) [Internet]. 2020 [2021 Feb 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  • LAFEPE. Guia de Compras do Benznidazol [Internet]. [cited 2021 Mar 17]. Available from: https://www.lafepe.pe.gov.br/
  • DNDi. Paediatric Benznidazole [Internet]. [cited 2021 Mar 17]. Available from: https://dndi.org/research-development/portfolio/paediatric-benznidazole/
  • World Health Organization (WHO). Leishmaniasis [Internet]. [cited 2021 Jan 27]. Available from: https://www.who.int/health-topics/leishmaniasis#tab=tab_1
  • World Health Organization (WHO). Leishmaniasis [Internet]. [cited 2021 Jan 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
  • Bezerra JMT, VEM DA, Barbosa DS, et al. Burden of leishmaniasis in brazil and federated units, 1990-2016: findings from global burden of disease study 2016. van Griensven J, editor. PLoS Negl Trop Dis. 2018;12(9):e0006697.
  • Olliaro P, Darley S, Laxminarayan R, et al. Cost-effectiveness projections of single and combination therapies for visceral leishmaniasis in Bihar, India. Trop Med Int Heal. 2009;14(8):918–925.
  • Reithinger R, Coleman PG. Treating cutaneous leishmaniasis patients in Kabul, Afghanistan: cost-effectiveness of an operational program in a complex emergency setting. BMC Infect Dis. 2007;7(1):3.
  • World Health Organization (WHO). Leishmaniasis - Recommended treatment regimens for visceral leishmaniasis, ranked by preference [Internet]. [cited 2021 Apr 06]. Available from: www.who.int%2Fleishmaniasis%2Fresearch%2F978924129496_pp67_71.pdf&usg=AOvVaw3DM0cdH6d2fDbRBVmpdbhs
  • World Health Organization. WHO. Schistosomiasis (Strategy) [Internet]. [cited 2021 Feb 1]. Available from: https://www.who.int/schistosomiasis/strategy/en/
  • World Health Organization (WHO). Leishmaniasis - Access to essential antileishmanial medicines and treatment [Internet]. [cited 2021 Feb 1]. Available from: https://www.who.int/leishmaniasis/research/en/
  • Rath S, Trivelin LA, Imbrunito TR, et al. Antimoniais empregados no tratamento da leishmaniose: estado da arte. Quim Nova. 2003;26(4):550–555.
  • Frézard F, Demicheli C, Ribeiro R. Pentavalent antimonials: new perspectives for old drugs. Molecules. 2009;14(7):2317–2336.
  • Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the world health organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–278.
  • Benet LZ, Broccatelli F. Oprea TI. BDDCS Applied to Over 900 Drugs. AAPS J. 2011;13(4):519–547.
  • Dinora G-E, Julio R, Nelly C, et al. In vitro characterization of some biopharmaceutical properties of praziquantel. Int J Pharm. 2005;295(1–2):93–99.
  • El-Arini SK, Giron D, Leuenberger H. Solubility properties of racemic praziquantel and its enantiomers. Pharm Dev Technol. 1998;3(4):557–564.
  • Maximiano FP, Costa GHY, Souza JD, et al. Caracterização físico-química do fármaco antichagásico benznidazol. Quim Nova. 2010;33(8):1714–1719.
  • Ranjita S. Nanosuspensions: a new approach for organ and cellular targeting in infectious diseases. J Pharm Investig. 2013;43(1):1–26.
  • Khandelwal A, Bahadduri PM, Chang C, et al. Computational models to assign biopharmaceutics drug disposition classification from molecular structure. Pharm Res. 2007;24(12):2249–2262.
  • Koto KS, Lescault P, Brard L, et al. Antitumor activity of nifurtimox is enhanced with tetrathiomolybdate in medulloblastoma. Int J Oncol. 2011;38(5):1329–1341.
  • Rodriques Coura J, De Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz. 2002;97(1):3–24.
  • Vicens Q, Westhof E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding a site. Structure. 2001;9(8):647–658.
  • Dorlo TPC, Balasegaram M, Beijnen JH, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–2597.
  • Barioni MB, Ramos AP, Zaniquelli MED, et al. Miltefosine and BODIPY-labeled alkylphosphocholine with leishmanicidal activity: aggregation properties and interaction with model membranes. Biophys Chem. 2015;196:92–99.
  • Kip AE, Schellens JHM, Beijnen JH, et al. Clinical pharmacokinetics of systemically administered antileishmanial drugs. Clin Pharmacokinet. 2018;57(2):151–176.
  • Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis. 2008;21(6):659–667.
  • Pax R, Bennett JL, Fetterer R. A benzodiazepine derivative and praziquantel: effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Naunyn Schmiedebergs Arch Pharmacol. 1978;304(3):309–315.
  • Dayan AD. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 2003;86(2–3):141–159.
  • Gönnert R, Andrews P. Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkd. 1977;52(2):129–150.
  • Harnett W. The anthelmintic action of praziquantel. Parasitol Today. 1988;4(5):144–146.
  • Díaz de Toranzo EG, Castro JA, Franke de Cazzulo BM, et al. Interaction of benznidazole reactive metabolites with nuclear and kinetoplastic DNA, proteins and lipids fromTrypanosoma cruzi. Experientia. 1988;44(10):880–881.
  • Maya JD, Rodríguez A, Pino L, et al. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi. Biol Res. 2004;37(1):61–69.
  • Romanha AJ, Alves RO, Murta SMF, et al. Experimental chemotherapy against trypanosoma cruzi infection: essential role of endogenous interferon‐γ in mediating parasitologic cure. J Infect Dis. 2002;186(6):823–828.
  • Cirqueira MDL. Estudos estruturais da enzima nitrorredutase de Trypanosoma cruzi: caracterização do mecanismo de ativação dos pró-fármacos benznidazol e nifurtimox. [Ribeirão Preto]: Universidade de São Paulo; 2020.
  • Stoppani AOM, Docampo R. Mode of action of nifurtimox and other nitro-derivatives on Trypanosoma cruzi. Med Argentina. 1980;40(1):10–16.
  • Hall BS, Wilkinson SR. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother. 2012;56(1):115–123.
  • Mookerjee Basu J, Mookerjee A, Sen P, et al. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother. 2006;50(5):1788–1797.
  • Sundar S, Jha TK, Thakur CP, et al. Injectable paromomycin for visceral leishmaniasis in India. N Engl J Med. 2007;356(25):2571–2581.
  • Sindermann H, Engel J. Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg. 2006;100:S17–20.
  • Coelho AC, Messier N, Ouellette M, et al. Role of the ABC Transporter PRP1 (ABCC7) in Pentamidine Resistance in Leishmania Amastigotes. Antimicrob Agents Chemother. 2007;51(8):3030–3032.
  • Tiuman TS, Santos AO, Ueda-Nakamura T, et al. Recent advances in leishmaniasis treatment. Int J Infect Dis. 2011;15(8):e525–32.
  • Kumar Saha A, Mukherjee T, Bhaduri A. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Mol Biochem Parasitol. 1986;19(3):195–200.
  • Wijnant G-J, Van Bocxlaer K, Yardley V, et al. Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and AmBisome® in murine cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018;8(2):223–228.
  • Živanović V, Semini G, Laue M, et al. Chemical mapping of leishmania infection in live cells by SERS microscopy. Anal Chem. 2018;90(13):8154–8161.
  • Yamamoto ES, De Jesus JA, Bezerra-Souza A, et al. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg Chem. 2020;102:104056.
  • ІL K, Romanina DM, Gladishev VV, et al. Study of the acute toxicity of the praziquantel using different routs of administration. Farm Zh. 2018;6:91–96.
  • Miller DA, Hernandez S, Rodriguez De Armas L, et al. Tolerance of benznidazole in a united states chagas disease clinic. Clin Infect Dis. 2015;60(8):1237–1240.
  • Davies C, Dey N, Negrette OS, et al. Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with Benznidazole. PLoS Negl Trop Dis. 2014;8(10):e3231.
  • Aldasoro E, Posada E, Requena-Méndez A, et al. What to expect and when: benznidazole toxicity in chronic Chagas’ disease treatment. J Antimicrob Chemother. 2018;73(4):1060–1067.
  • Castro JA, Diaz de Toranzo EG. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas’ disease). Biomed Environ Sci. 1988;1(1):19–33.
  • Molina I, Salvador F, Sánchez-Montalvá A, et al. Toxic profile of benznidazole in patients with chronic chagas disease: risk factors and comparison of the product from two different manufacturers. Antimicrob Agents Chemother. 2015;59(10):6125–6131.
  • Crespillo-Andújar C, Chamorro-Tojeiro S, Norman F, et al. Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: when available options fail. Clin Microbiol Infect. 2018;24(12):1344.e1–1344.e4.
  • Crespillo-Andújar C, López-Vélez R, Trigo E, et al. Comparison of the toxicity of two treatment schemes with benznidazole for chronic Chagas disease: a prospective cohort study in two Spanish referral centres. Clin Microbiol Infect. 2020;26(3):384.e1–384.e4.
  • Pavan TBS, Silva JWD, Martins LC, et al. Hepatic changes by benznidazole in a specific treatment for Chagas disease. PLoS One. 2018;13(7):e0200707.
  • Buschini A, Ferrarini L, Franzoni S, et al. Genotoxicity revaluation of three commercial nitroheterocyclic drugs: nifurtimox, benznidazole, and metronidazole. J Parasitol Res. 2009;136:463575.
  • De Castro CR, EGD DT, Bernacchi AS, et al. Ultrastructural alterations in ovaries from nifurtimox or benznidazole-treated rats: their relation to ovarian nitroreductive biotransformation of both drugs. Exp Mol Pathol. 1989;50(3):385–397.
  • De Toranzo EG, Herrera DM, Castro JA. Rat liver nuclear nifurtimox nitroreductase activity. Res Commun Mol Pathol Pharmacol. 1997;98(3):249–254.
  • González-Martin G, Thambo S, Paulos C, et al. The pharmacokinetics of nifurtimox in chronic renal failure. Eur J Clin Pharmacol. 1992;42(6):671–673.
  • Sundar S, Chakravarty J. Antimony Toxicity. Int J Environ Res Public Health. 2010;7(12):4267–4277.
  • Balaña-Fouce R, Reguera R, Cubrı́a J, et al. Pharmacology of Leishmaniasis. Gen Pharmacol Vasc Syst. 1998;30(4):435–443.
  • Oliveira LF, Schubach AO, Martins MM, et al. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011;118(2):87–96.
  • Aronson N, Herwaldt BL, Libman M, et al. Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the infectious diseases society of america (idsa) and the american society of tropical medicine and hygiene (ASTMH). Clin Infect Dis. 2016;63(12):1539–1557.
  • Fierer J, Hatlen L, Lin JP, et al. Successful treatment using gentamicin liposomes of Salmonella dublin infections in mice. Antimicrob Agents Chemother. 1990;34(2):343–348.
  • Musa AM, Younis B, Fadlalla A, et al. Paromomycin for the treatment of visceral leishmaniasis in Sudan: a randomized, open-label, dose-finding study. PLoS Negl Trop Dis. 2010;4(10):e855.
  • Sundar S, Jha TK, Thakur CP, et al. Injectable paromomycin for visceral leishmaniasis in India. N Engl J Med. 2007;356(25):2571–2581.
  • Clementi A, Battaglia G, Floris M, et al. Renal involvement in leishmaniasis: a review of the literature. Clin Kidney J. 2011;4(3):147–152.
  • Diseases B (MD): NI of D and D and K. livertox: clinical and research information on drug-induced liver injury [internet]. 2012 [2021 Jan 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548946/
  • Mladěnka P, Applová L, Patočka J, et al. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018;38(4):1332–1403.
  • Vaamonde CA, Contreras GN, Diego JM. Sulfonamides, sulfadiazine, trimethoprim-sulfamethoxazole, pentamidine, pyrimethamine, dapsone, quinolones. In: Marc E. De Broe; George A. Porter; William M. Bennett; Gilbert Deray editors. Clinical Nephrotoxins. Dordrecht: Springer Netherlands; 2003. p. 223–470.
  • Marcus Wharton J, Demopulos PA, Goldschlager N. Torsade de pointes during administration of pentamidine isethionate. Am J Med. 1987;83(3):571–576.
  • Eisenhauer MD, Eliasson AH, Taylor AJ, et al. Incidence of cardiac arrhythmias during intravenous pentamidine therapy in HIV-infected patients. Chest. 1994;105(2):389–395.
  • Douglas JB, Healy JK. Nephrotoxic effects of amphotericin B, including renal tubular acidosis. Am J Med. 1969;46(1):154–162.
  • Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis. 2001;32(5):686–693.
  • Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–227.
  • Danaher PJ. Reversible dilated cardiomyopathy related to amphotericin B therapy. J Antimicrob Chemother. 2003;53(1):115–117.
  • Bandeira AC, Filho JM, de Almeida Ramos K. Reversible cardiomyopathy secondary to Amphotericin-B. Med Mycol Case Rep. 2016;13:19–21.
  • Vbr DS, Campos BRKL, de Oliveira JF, et al. Medicinal chemistry of antischistosomal drugs: praziquantel and oxamniquine. Bioorg Med Chem. 2017;25(13):3259–3277.
  • Workman P, White RA, Walton MI, et al. Preclinical pharmacokinetics of benznidazole. Br J Cancer. 1984;50(3):291–303.
  • Raether W, Hänel H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res. 2003;90(Supp 1):S19–39.
  • Perin L, Moreira da Silva R, Fonseca KDS, et al. Pharmacokinetics and Tissue Distribution of Benznidazole after Oral Administration in Mice. Antimicrob Agents Chemother. 2017;61(4):4.
  • Pérez Montilla C, Moroni S, González N, et al. P38 Identification of Nifurtimox metabolites in urine of pediatric Chagas disease patients by UHPLC-MS/MS. Arch Dis Child. 2019;104(6):e32.3–e33.
  • FDA Approved Products: lampit (nifurtimox) oral tablets [Internet]. [cited 2021 Feb 20]. Available from: https://www.accessdata.fda.gov
  • Borborema SET, Osso Junior JA, Tempone AG, et al. Pharmacokinetic of meglumine antimoniate encapsulated in phosphatidylserine-liposomes in mice model: a candidate formulation for visceral leishmaniasis. Biomed Pharmacother. 1609–16;2018:103.
  • Kanyok TP, Killian AD, Rodvold KA, et al. Pharmacokinetics of intramuscularly administered aminosidine in healthy subjects. Antimicrob Agents Chemother. 1997;41(5):982–986.
  • Bianciardi P, Brovida C, Valente M, et al. Administration of miltefosine and meglumine antimoniate in healthy dogs: clinicopathological evaluation of the impact on the kidneys. Toxicol Pathol. 2009;37(6):770–775.
  • Conte JE. Pharmacokinetics of intravenous pentamidine in patients with normal renal function or receiving hemodialysis. J Infect Dis. 1991;163(1):169–175.
  • Waalkes TP, Denham C, DeVita VT. Pentamidine: clinical pharmacologic correlations in man and mice. Clin Pharmacol Ther. 1970;11(4):505–512.
  • Vöhringer HF, Arasteh K, Link H, et al. [Determinants of serum pentamidine concentration in the human]. Med Klin. 1992;87(Suppl 1):24–29.
  • Gershkovich P, Wasan EK, Sivak O, et al. Visceral leishmaniasis affects liver and spleen concentrations of amphotericin B following administration to mice. J Antimicrob Chemother. 2010;65(3):535–537.
  • Vale N, Gouveia MJ, Rinaldi G, et al. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother. 2017;61(5):5.
  • Castro JA, deMecca MM, Bartel LC. Toxic side effects of drugs used to treat chagas’ disease (american trypanosomiasis). Hum Exp Toxicol. 2006;25(8):471–479.
  • Cerisola JA, Neves da Silva N, Prata A, et al. [Evaluation of the efficacy of nifurtimox in chronic human chagasic infection by using xenodiagnosis (author’s transl)]. Bol Chil Parasitol. 1977;32(3–4):51–62.
  • Jackson Y, Alirol E, Getaz L, et al. Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clin Infect Dis. 2010;51(10):e69–75.
  • Maarouf M, Adeline MT, Solignac M, et al. Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite. 1998;5(2):167–173.
  • Kotthaus J, Kotthaus J, Schade D, et al. New prodrugs of the antiprotozoal drug pentamidine. ChemMedChem. 2011;6(12):2233–2242.
  • Thakur CP, Roy A, Sinha AK, et al. Improving outcome of treatment of kala-azar by supplementation of amphotericin b with physiologic saline and potassium chloride. Am J Trop Med Hyg. 2010;83(5):1040–1043.
  • MSF. Milhões aguardam inovações médicas para doenças negligenciadas [Internet]. 2012 [2019 Oct 22]. Available from: https://www.msf.org.br/noticias/milhoes-aguardam-inovacoes-medicas-para-doencas-negligenciadas
  • DNDi. Desenvolvimento de novos medicamentos para doenças negligenciadas ainda enfrenta falhas fatais [Internet]. 2013 [2019 Dec 10]. Available from: http://www.dndi.org/2013/media-centre/langues-press-releases/fatal-imbalance-2-po/
  • Ferreira LLG, Andricopulo AD. Drugs and vaccines in the 21st century for neglected diseases. Lancet Infect Dis. 2019;19(2):125–127.
  • Jain KK, editor. Drug Delivery Systems. (Methods in Molecular Biology<sup>TM{{/ sup}}; vol. 437). Totowa, NJ: Humana Press; 2008.
  • Mehta VL, Chatterjee N. Drug delivery systems: past, present and future. J Int Med Sci Acad. 1995;8(3):78–86.
  • Abu-Thabit NY, Makhlouf ASH. Historical development of drug delivery systems: from conventional macroscale to controlled, targeted, and responsive nanoscale systems. Makhlouf ASH, Abu-Thabit NY. editors. (Woodhead Publishing Series in Biomaterials). Stimuli responsive polymeric nanocarriers for drug delivery applications: volume 1: types and triggers [internet]. Sawston (UK): Woodhead Publishing; 3–41.2018.
  • Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.
  • Bruschi M. Strategies to modify the drug release from pharmaceutical systems. 1st Editio ed. Elsevier; 2015.
  • Mukhekar S, Sumant O. Pharmaceutical drug delivery market by route of administration and application: global opportunity analysis and industry forecast, 2019-2026. Maharashtra (India): Allied Market Research; 2020.
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–717.
  • Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):505–521.
  • Mehrizi TZ, Ardestani MS, Khamesipour A, et al. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J Mater Sci Mater Med. 2018;29(8):8.
  • Yang C, Xue B, Song W, et al. Reducing the toxicity of amphotericin B by encapsulation using methoxy poly(ethylene glycol)-: b -poly(l-glutamic acid- co -l-phenylalanine). Biomater Sci. 2018;6(8):2189–2196.
  • Hoffart V, Lamprecht A, Maincent P, et al. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J Control Release. 2006;113(1):38–42.
  • Fedorak RN, Bistritz L. Targeted delivery, safety, and efficacy of oral enteric-coated formulations of budesonide. Adv Drug Deliv Rev. 2005;57(2):303–316.
  • Damgé C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 2008;5(1):45–68.
  • Mansoor S, Kondiah PPD, Choonara YE, et al. Strategies for Insulin Delivery. Polymers (Basel). 2019;11(9):1380.
  • Sharma G, Sharma AR, Nam J-S, et al. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology. 2015;13(1):74.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275.
  • Petkantchin V. The advantages of incremental pharmaceutical innovation. Bruxelles: Institut Économique Molinari Economic Note; 2012.
  • Globerman S, Kristina M. Lybecker. In: Globerman S, Kristina M. Lybecker, editors.The Benefits of Incremental Innovation, focus on the pharmaceutical industry. Montreal, Toronto, Canada: Fraser institute.2014. 3–22.
  • For B, Patients I, Business I. The value of incremental pharmaceutical innovation : innovation. 2009.
  • GSK - GlaxoSmithKline Communications and Government Affairs. Incremental Innovation. GSK Public policy positions; 2014.
  • Islan GA, Durán M, Cacicedo ML, et al. Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop. 2017;170:16–42.
  • Research GV. Controlled release drug delivery market size, share & trends analysis report by technology (micro encapsulation, targeted delivery), by release mechanism, by application, by region, and segment forecasts, 2020–2027 [Internet]. 2020. Available from: https://www.grandviewresearch.com/press-release/global-controlled-release-drug-delivery-market
  • Van Norman GA, Eisenkot R. Technology Transfer: from the Research Bench to Commercialization. JACC Basic to Transl Sci. 2017;2(1):85–97.
  • Patents MP. Innovation: evidence from Economic History. J Econ Perspect. 2013 Feb;27(1):23–44.
  • How patents encourage innovation in technological development and deployment. [Internet]. [cited 2020 Jan 18]. Available from: https://www.irena.org/inspire/Intellectual-Property-Rights/Innovation
  • Bhattacharya S, Saha C. Intellectual property rights: an overview and implications in pharmaceutical industry. J Adv Pharm Technol Res. 2011;2(2):88.
  • Henderson R, Jaffe AB, Trajtenberg M. Universities as a source of commercial technology: a detailed analysis of university Patenting, 1965-1988. Rev Econ Stat. 1998;80(1):119–127.
  • D’Este P, Perkmann M. Why do academics engage with industry? The entrepreneurial university and individual motivations. J Technol Transf. 2011;36(3):316–339.
  • Chang S-H. The technology networks and development trends of university-industry collaborative patents. Technol Forecast Soc Change. 2017;118:107–113.
  • Meyer M. Academic patents as an indicator of useful research? A new approach to measure academic inventiveness. Res Eval. 2003;12(1):17–27.
  • Verbeek A, Debackere K, Luwel M, et al. Linking science to technology: using bibliographic references in patents to build linkage schemes. Scientometrics. 2002;54(3):399–420.
  • Cohen WM, Nelson RR, Walsh JP. Links and impacts: the influence of public research on industrial R&D. Manage Sci. 2002;48(1):1–23.
  • Rohrbeck R, Gemünden HG. Corporate foresight: its three roles in enhancing the innovation capacity of a firm. Technol Forecast Soc Change. 2011;78(2):231–243.
  • Ernst H. The use of patent data for technological forecasting: the diffusion of cnc-technology in the machine tool industry. Small Bus Econ. 1997;9(4):361–381.
  • Vrande VVD, Jong JPJD, Vanhaverbeke W. WIPO guide to using patent information [internet]. Vol. 29, Technovation. Geneva (Sswitzerland); 2009.  [cited 2021 Apr 06]. Available from: https://www.wipo.int/edocs/pubdocs/en/wipo_pub_l434_3.pdf
  • Singh V, Chakraborty K, Vincent L. Patent database: their importance in prior art documentation and patent search. J Intellect Prop Rights. 2016;21(1):42–56.
  • Archibugi D, Pianta M. Measuring technological change through patents and innovation surveys. Technovation. 1996;16(9):451–468.
  • Érdi P, Makovi K, Somogyvári Z, et al. Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics. 2013;95(1):225–242.
  • Cho T-S, Shih H-Y. Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008. Scientometrics. 2011;89(3):795–811.
  • Song K, Kim KS, Lee S. Discovering new technology opportunities based on patents: text-mining and F-term analysis. Technovation 2017;60–61:1–14.
  • Jun S, Sung Park S, Sik Jang D. Technology forecasting using matrix map and patent clustering. Ind Manag Data Syst. 2012;112(5):786–807.
  • Ernst H. Patent information for strategic technology management. World Pat Inf. 2003;25(3):233–242.
  • Yoon J, Seo W, Coh B-Y, et al. Identifying product opportunities using collaborative filtering-based patent analysis. Comput Ind Eng. 2017;107:376–387.
  • Basberg BL. Patents and the measurement of technological change: a survey of the literature. Res Policy. 1987;16(2–4):131–141.
  • Clark K, Cavicchi J, Jensen K, et al. Patent data mining: a tool for accelerating HIV vaccine innovation. Vaccine. 2011;29(24):4086–4093.
  • Kim YG, Suh JH, Park SC. Visualization of patent analysis for emerging technology. Expert Syst Appl. 2008;34(3):1804–1812.
  • Choi C, Park Y. Monitoring the organic structure of technology based on the patent development paths. Technol Forecast Soc Change. 2009;76(6):754–768.
  • Elvers D, Song CH, Steinbüchel A, et al. Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev. 2016;56(4):584–606.
  • Joung J, Kim K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technol Forecast Soc Change. 2017;114:281–292.
  • Gupta VK, Pangannaya NB. Carbon nanotubes: bibliometric analysis of patents. World Pat Inf. 2000;22(3):185–189.
  • J-c D, Dutheuil C, Miquel J-F. Multidimensional analysis of trends in patent activity. Scientometrics. 2000;47(3):475–492.
  • Tseng Y-H, Lin C-J, Lin Y-I. Text mining techniques for patent analysis. Inf Process Manag. 2007;43(5):1216–1247.
  • Yoon B, Park Y. A text-mining-based patent network: analytical tool for high-technology trend. J High Technol Manag Res. 2004;15(1):37–50.
  • Kim H, Song J. Social network analysis of patent infringement lawsuits. Technol Forecast Soc Change. 2013;80(5):944–955.
  • Kim G, Lee J, Jang D, et al. Technology clusters exploration for patent portfolio through patent abstract analysis. Sustain. 2016;8(12):1252.
  • Sarica S, Luo J, Wood KL. TechNet: technology semantic network based on patent data. Expert Syst Appl. 2020 Mar;142:112995.
  • Lee S, Yoon B, Park Y. An approach to discovering new technology opportunities: keyword-based patent map approach. Technovation. 2009;29(6–7):481–497.
  • Courtial JP, Callon M, Sigogneau A. The use of patent titles for identifying the topics of invention and forecasting trends. Scientometrics. 1993;26(2):231–242.
  • Daim TU, Rueda G, Martin H, et al. Forecasting emerging technologies: use of bibliometrics and patent analysis BT - tech mining: exploiting science and technology information resources. Technol Forecast Soc Change. 2006;73(8):981–1012.
  • Breitzman A, Thomas P. Using patent citation analysis to target/value M&A candidates. Res Manag. 2002;45(5):28–36.
  • Mogee ME, Kolar RG. Patent co-citation analysis of Eli Lilly & Co. patents. Expert Opin Ther Pat. 1999;9(3):291–305.
  • Sjögren R, Stridh K, Skotare T, et al. Multivariate patent analysis—Using chemometrics to analyze collections of chemical and pharmaceutical patents. J Chemom. 2020:e3041.
  • Barth A. A deep analysis of chemical structure-based patent searching in the Derwent index space. World Pat Inf. 2018;53:49–57.
  • Downs GM, Barnard JM. Chemical patent information systems. Wiley Interdiscip Rev Comput Mol Sci. 2011;1(5):727–741.
  • Horne GA, Kinstrie R, Copland M. Novel drug therapies in myeloid leukemia: a patent review. Pharm Pat Anal. 2015;4(3):187–205.
  • Ö A, Peterson ML, The ZM. A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents. Pharm Pat Anal. 2012;1(3):313–327.
  • Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat. 2016;26(2):213–228.
  • Martins P, Rosa D, Fernandes AR, et al. Nanoparticle drug delivery systems: recent patents and applications in nanomedicine. Recent Patents Nanomed. 2013;3(2):105–118.
  • Samad A, Ullah Z, Alam M, et al. Transdermal drug delivery system: patent reviews. Recent Pat Drug Deliv Formul. 2009;3(2):143–152.
  • Akinsolu FT, de Paiva VN, Souza SS, et al. Patent landscape of neglected tropical diseases: an analysis of worldwide patent families. Global Health. 2017;13(1):82.
  • Patent Analysis MH. Anti-infectives: antituberculosis drugs: patent analysis 1990–1995. Expert Opin Ther Pat. Washington, D.C., USA: White Paper, NASA; 1996;6(2):187–190.
  • Mankins. JC. Technology Readiness Levels. 1995.
  • Tomaschek K, Olechowski A, Eppinger S, et al. Survey of technology readiness level users. INCOSE Int Symp. 2016;26(1):2101–2117.
  • Bakke K, Haskins C. Use of TRL in the systems engineering toolbox. INCOSE Int Symp. 2018;28(1):587–601.
  • Velho SRK, Simonetti ML, Souza CRPD, et al. Nível de Maturidade Tecnológica: uma sistemática para ordenar tecnologias. Parc Estrat. 2017;22(n. 45):119–140.
  • Mankins JC. Technology readiness assessments: a retrospective. Acta Astronaut. 2009;65(9–10):1216–1223.
  • Olechowski A, Eppinger SD, Joglekar N. Technology readiness levels at 40: a study of state-of-the-art use, challenges, and opportunities. In: PICMET/IEEE, editor. 2015 portland international conference on management of engineering and technology (PICMET). IEEE; 2015. 2084–2094.
  • EARTO (European Association of Research and Technology Organizations). The TRL Scale as a Research & Innovation Policy Tool. EARTO Recommendations,  Brussels (Belgium); 2014.
  • European Commission. Drawing funding and financing scenarios for effective implementation of Smart Specialisation Strategies. JRC Technical reports. Seville (Spain); 2018.
  • EMBRAPA. Sistema EMBRAPA de Gestão, Manual sobre o Uso da Escala TRL/MRL. 2018.
  • ISO. ISO 16290:2013 Space systems- Definition of the Technology Readiness Levels and their criteria of assessment. Iso 16290:2013. Geneva (Switzerland); 2013.
  • European Union Horizons 2020 Framework Programme for Research and Innovation - European Commission Decision C (2014)4995 of 22 July 2014, “Horizon 2020 work programme 2014–2015” [Internet]. 2014. [cited 2021 Apr 06]. Available from: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en.pdf
  • Zimmermann AW, Schomäcker R. Assessing early-stage CO2 utilization technologies—comparing apples and oranges? Energy Technol. 2017 Jun 1;5(6):850–860.
  • Medical Countermeasure Products. DOD Medical TRLs and May 2008 HHS PHEMCE TRLs [Internet]. [cited 2019 Nov 5]. Available from: https://www.medicalcountermeasures.gov/trl/integrated-trls/
  • Jovic Cantab TM MRCS, Jessop Cantab ZM MRCS, Firmin F, et al. Professor Iain Whitaker MA Cantab FRCS Plast DS. 3D bioprinting for surgical reconstruction & organ transplantation. London (UK): Future Medicine Ltd London; 2018.
  • Eaton MAW, Levy L, Fontaine OMA. Delivering nanomedicines to patients: a practical guide. Nanomedicine Nanotechnology, Biol Med. 2015;11(4):983–992.
  • NATO. Development of an assessment methodology for demonstrating usability, technical maturity, and operational benefits of advanced medical technology. Vol. TR-HFM-130. Brussels (Belgium): RTO/NATO; 2010.
  • Engel D, Dalton A, Dale C, et al. Development of a risk-based comparison methodology of carbon capture technologies. Greenh Gases Sci Technol. 2014;4(3):316–330.
  • Gabriela M. From lab to large-scale development of clinically compliant nanopharmaceutics from lab to large-scale development of clinically compliant nanopharmaceutics. Coimbra (Portugal): Universidade de Coimbra; 2017.
  • Ofício EMBRAPII n°098/2019. Manual de orientação operacional n° 02/2019 [Internet]. [cited 2021 Apr 06]. Available from: https://embrapii.org.br/wp-content/images/2019/05/0705_Orientacao_Operacional_02-19.pdf
  • Debois S, Hildebrandt T, Marquard M, et al. Bridging the valley of death: a success story on danish funding schemes paving a path from technology readiness level 1 to 9. In: 2015 IEEE/ACM 2nd International Workshop on Software Engineering Research and Industrial Practice. NW Washington, DC United States: IEEE; 2015. 54–57.
  • Malone P, Smoker R, Apgar H, et al. The application of TRL metrics to existing cost prediction models. In: 2011 Aerospace Conference. Big Sky, MT, USA : IEEE; 2011. p. 1–12.
  • Tierney R, Hermina W, Walsh S. The pharmaceutical technology landscape: a new form of technology roadmapping. Technol Forecast Soc Change. 2013;80(2):194–211.
  • Vella PC, Dimov SS, Minev R, et al. Technology maturity assessment of micro and nano manufacturing processes and process chains. Proc Inst Mech Eng Part B J Eng Manuf. 2018;232(8):1362–1383.
  • Contreras L, Lely A, Ávila L, et al., (Colombia): “‘Análisis de Datos en Cuerpo Estático Basado en IMUS.’” Memorias de la Séptima Conferencia Iberoamericana de Complejidad, Informática y Cibernética: CICIC 2017. In: Modelos para Analisar Níveis de Prontidão de Inovação [Internet]. 2017. p. 82–86. Available from: http://www.iiis.org/CDs2017/CD2017Spring/bookC1.htm
  • Sauser B, Gove R, Forbes E, et al. Integration maturity metrics: development of an integration readiness level. Inf Knowl Syst Manag. 2010;9(1):17–46.
  • Weber J, Costello R, Ringwood J. WEC technology performance levels (TPLs) - metric for successful development of economic WEC Technology. Aalborg, Denmark: EWTEC2013; 2013.
  • Lemos JC, Chagas MF. Application of maturity assessment tools in the innovation process: converting system’s emergent properties into technological knowledge. RAI Rev Adm E Inovação. 2016;13(2):145–153.
  • Stromgren C, Lara G, Hendrickson J, et al. Investment Portfolio Prioritization for Emerging Homeland Security Threats. In: 18 Winter Simulation Conference, editor. Proceedings of the 2018 Winter Simulation Conference [Internet]. Gothenburg Sweden : IEEE Press; 2018. 2769–2780. (WSC ’18). Available from: http://dl.acm.org/citation.cfm?id=3320516.3320846
  • Tan RR, Aviso KB, Ng DKS. Optimization models for financing innovations in green energy technologies. Renewable Sustainable Energy Rev. 2019;113:109258.
  • Ye J, D`Angelo L, Viteri M, et al. Comparison of Technology Qualification Approaches. In: Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference; 2017.
  • Engel DW, Dalton AC, Anderson KK, et al. Development of Technology Readiness Level (TRL) Metrics and Risk Measures [Internet]. Richland, WA (United States); 2012 Oct. [cited 2021 Apr 06]. Available from:http://www.osti.gov/servlets/purl/1067968/
  • Dahlin JL, Inglese J, Walters MA. Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov. 2015;14(4):279–294.
  • DNDi. Pharmaceutical Development Manager. Geneva, Switzerland: DNDi; 2019.
  • Pécoul B. New drugs for neglected diseases: from pipeline to patients. PLoS Med. 2004;1(1):e6.
  • Cerize NNP, De Oliveira AM, Ré MI, et al. Colloidal nanoscale carriers for active hydrophilic substances and method for producing same. BR: WO2011156880A1; 2013.
  • Processo para obtenção de dispersões sólidas utilizando alginato de sódio como biopolímero e produto obtido. BR: BR102016030992; 2016.
  • Injection used for treating blood-sucking insect diseases. preferably schistosomiasis infection, contains poloxamer, soybean lecithin, sodium stearate, phosphatidyl ethanolamine, polyethylene glycol, praziquantel and glyceryl behenate. CN: CN103381141-A; 2012.
  • Leonardo Fernandes Fraceto, Luciana de Matos Alves Pinto, Eneida de Paula, Antonio Carlos Senges Lino, Marcelo Bispo de Jesus, Yuji Takahata, inventor. Composto de inclusão entre b-ciclodextrina e praziquantel para tratamento de esquistossomose. BR: PI0401621–1; 2004.
  • VANESSA CARLA FURTADO MOSQUEIRA, LILIAN TEIXEIRA OLIVEIRA, RAQUEL GOMES CASTANHEIRA, inventor. Pharmaceutical composition used in human and veterinary medicine for treating Chagas disease. In: leishmaniasis, African sleeping sickness and tumors, comprises benznidazole drug associated with nanoestructures. BR: BR102013023902; 2013. 21.
  • PEDRO JOSÉ ROLIM NETO, LESLIE RAPHAEL DE MOURA FERRAZ, SALVANA PRISCYLLA MANSO COSTA, LARISSA ARAÚJO ROLIM, CYBELLY MARQUES DE MELO, ROSALI MARIA FERREIRA DA SILVA, SEVERINO ALVES JÚNIOR, ALINNE ÉLIDA GONÇALVES ALVES, DÉBORA DOLORES SOUZA DA SILVA NASCINEMTO, ISABELA ARAÚJO E AMARIZ, inventor. Formulações farmacêuticas contendo associação de benznidazol e MOF’s para obtenção tecnológica de sistemas drug delivery. BR: BR1020160034086; 2016. 7.
  • Arnóbio Antônio da Silva Junior, Letícia Streck, Anselmo Gomes de Oliveira, inventor. Composições e processo de produção da forma líquida de administração a base de sistemas lipídicos emulsionados. In: do tipo emulsão, microemulsão e/ou nanoemulsão contendo benznidazol para o tratamento da doença de Chagas. BR: BR1020120194287; 2012. 9.
  • Processo para obtenção de complexos de inclusão de benznidazol com derivados de ciclodextrinas. BR: PI0903451–0; 2009. 16.
  • Jose Lamartine Soares Sobrinho, Pedro José Rolim Neto, Marcílio Sergio Soares da Cunha, Juan Torres Labandeira, inventor. Composição e método de produção de sistemas nanoparticulados para liberação modificada de benznidazol. BR1020170244482; 2017.
  • Composições farmacêuticas de posaconazol e benznidazol com incremento da dissolução. BR1020160238005; 2016.
  • PEDRO JOSÉ ROLIM NETO, CAMILA BEZERRA MELO FIGUEIRÊDO, PING I. LEE, ANA CARLA QUINTAS DE MEDEIROS VIEIRA, GIOVANNA CHRISTINNE ROCHA DE MEDEIROS SCHVER, JOSÉ LAMARTINE SOARES SOBRINHO, Monica Felts de La Roca Soares, inventor. Formulation useful for controlled release of nifurtimox and treating chagas disease comprises nifurtimox, water-swellable hydrophilic polymer and binder e.g. microcrystalline cellulose. US: WO2013169925-A1; 2012.
  • BEJARANO ROSEMARY OCHOA, DEMELO ALAN LANE, DEMICHELE CYNTHIA PERES, FERREIRA LUCAS ANTONIO MIRANDA, FREZARD FREDERIC JEAN GEORGES, MILLAN RUBEN DARIO SINISTERRA, inventor. Preparation of compounds used for preparing composition for treating e.g. leishmaniasis, comprises mixing antimony derivatives with cyclodextrins in aqueous solution or in solid state. BR: WO2006000069; 2006.
  • Cynthia Peres Demichele, Frederic Jean Georges Frezard, Alan Lane de Melo, Lucas Antonio Miranda Ferreira, Ruben Dario Sinisterra Millan; Rosemary Ochoa Bejarano, inventors. Processo de preparação de compostos entre as ciclodextrinas ou seus derivados e o antimÈnio ou seus derivados, de formulações farmaceuticas contendo esses compostos e produtos associados, para o tratamento das leishmanioses e da esquistossomose. BR: C10304952–3 (PI0304952-3); 2004. 29.
  • Domenico BRITTI, Donato Cosco, Massimo Fresta, Donatella Paolino, Elena TRAPASSO, inventors. Nanoparticles used for preventing and treating pathologies due to infection with Leishmania in animal and humans comprise polylactic acid shell and aqueous core including antimonial compound. WO2015177820; 2014.
  • ALVING CARL R, STECK EDGAR A, inventors. Liposome encapsulated anti-leishmaniasis antimonial drug|formed by wetting lipid film with drug soln., mixing and removing excess drug soln. US: US4186183; 1980.
  • APARECIDA REZENDE SIMONE, GUILHERME AZEVEDO ERLY, JEAN GEORGES FREZARD FREDERIC, MAGNO DA SILVA SYDNEI, PERES DEMICHELI CYNTHIA, RIO RIBEIRO RAUL, inventors. Pharmaceutical composition used for producing medicament for treatment of visceral leishmaniasis in mammals, comprises combination of conventional liposomes and prolonged circulating liposomes incorporating antileishmanial drugs. BR: WO2013131164; 2012.
  • NATÁLIA NETO PEREIRA CERIZE; THAIS ARAGÃO HOROIWA, Adriano Marim de Oliveira, inventors. Nanocarreadores coloidais para veiculação tópica do antimoniato de meglumina. BR: BR1020160034434; 2016.
  • RAO LEBURU S, inventor. Stable liposome(s) of antimony contg. drug|for treatment of Leishmania infection. GB: US4594241-A; 1983.
  • ALI NAHID, BHOWMICK SWATI P, GHOSE JAYEETA, inventor. Liposomal formulation useful as leishmanicidal agent, comprises single dose of antileishmanial antimonial drug encapsulated in cationic liposome consisting of neutral lipid and cationic lipid in specific molar ratio. IN: US2012207821; 2005.
  • MARIA NORMA MELO; JOSÉ DIAS CORREA JÚNIOR; FRÉDÉRIC JEAN GEORGES FRÉZARD; BETÂNIA MARA ALVARENGA; KELLY CRISTINA KATO, inventors. Reports JC, Indicators ES. Liposomal formulation useful as leishmanicidal agent for treatment of kala azar, comprises amount of antileishmanial antimonial drugs encapsulated in sub optimal dose of cationic liposome, where ratio of lipid to drug is specified. IN: US2007026061; 2005.
  • Processo de preparação de nanocompósitos fosfatados biocompatíveis, produtos e usos. BR: BR102013032731; 2013.
  • ALVES BANDEIRA FALCAO CAMILA, PACIENZA LIMA WALLACE, ROSSI BERGMANN BARTIRA, inventors. Pharmaceutical composition for preparing medicine for treating parasitosis and infectious skin diseases in dermis regions e.g. leishmaniasis, comprises antiparasitic medicine that is encapsulated in poly(lactic-co-glycolic acid) particles. BR: WO</Collab>2013010238; 2011.
  • BILBAO RAMOS PABLO ESTANISLAO; BOLAS FERNANDEZ FRANCISCO, DEA AYUELA MARIA AUXILIADORA, MOLERO MARTIN-PORTUGUES GLORIA, NOMBELA CANO CESAR; RUIZ SALDANA HELGA KARINA, SERRANO LOPEZ REMEDIOS, TORRADO DURAN JUAN JOSE, VEGAS SANCHEZ MARIA DEL CARMEN, inventors.Topical pharmaceutical formulation used for treating fungal infection (cutaneous and mucocutaneous mycoses) and parasitic infections (cutaneous leishmaniasis) in humans, comprises complex of monomeric amphotericin B and gamma-cyclodextrin. ES: WO2012042072; 2010.
  • Maria Mainardes, Najeh Maissar Kahalil, Diani Mesa Casa, Luciana Facco Dalmolin, Talita Cristina Moreira Moraes Carraro, Calorine Antunes Danziato, inventors.Processo de obtenção de nanopartículas poliméricas contendo o fármaco anfotericina B. BR: PI1107205–9; 2011.
  • OSÉ MARIO BARICHELLO, RENATA ALVES DE OLIVEIRA E CASTRO, LUCAS ANDRADE FERREIRA, ELIETE MARIA COSTA, ANA PAULA DE BATTISTI RIBEIRO, SIMONE APARECIDA REZENDE, inventors. Sistema micelar termo reversível contendo anfotericina b para administração subcutânea e tópica no tratamento da leishmaniose visceral e tegumentar. BR1020140307729; 2014.
  • ANDRÉ AUGUSTO GOMES FARACO, JUÇARA RIBEIRO FRANCA, TATIANA GOMES RIBEIRO, RACHEL OLIVEIRA CASTILHO, EDUARDO ANTONIO FERRAZ COELHO, MIGUEL ANGEL CHÁVEZ FUMAGALLI , inventors. Uso de nanopartículas de quitosana e condroitina para o tratamento de leishmaniose. BR1020130178810; 2013.
  • Shoukath M Ali, Moghis U Ahmad, Ateeq Ahmad; Saifuddin Sheikh, Imran Ahmad, inventors. Aqueous systems for the preparation of lipid-based pharmaceutical compounds; compositions, methods, and uses thereof. WO2008127358; 2006.
  • Jitendra Nath Verma, Lily Verma, Krishan Kumar Tripathi, inventors. Composition, useful for the treatment of infections, comprises sterol enriched mixed lamellarity amphotericin intercalating liposomes in aqueous suspension. WO2005120460; 2004.
  • HU JING, WEI PENG, YIN JIAN, inventors. Targeted pharmaceutical composition loaded with amphotericin B and adriamycin together and application thereof. CN: CN110801433; 2019.
  • VANESSA CRISTINA RESCIA, CLAUDETE JUSTINA VALDUGA, SUSANA NOGUEIRA DINIZ, inventors. Formulação de nanoemulsões contendo miltefosina em associação com betaglucana extraída de saccharomyces cerevisiae por micro-ondas e seu uso. BR: BR102019007133; 2019.
  • SYDNEI MAGNO DA SILVA, KAREN FERRAZ FARIA, FREDERIC JEAN GEORGES FREZARD, JULIANE SOUSA LANZA, RENATA CRISTINA DE PAULA, inventors. Formulação lipossomal para o tratamento das leishmanioses. BR: BR1020170025829; 2017. 5.
  • Wouters OJ, McKee M, Luyten J. estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020;323(9):844.
  • Stegemann S, Leveiller F, Franchi D, et al. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci. 2007;31(5):249–261.
  • Leonardi D, Bombardiere ME, Salomon CJ. Effects of benznidazole:cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol. 2013;62:543–548.
  • de Moura Ferraz LR, Aéga T, Dds DSN, et al. ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Sci Rep. 2020;10(1):16815.
  • Mazzeti AL, Oliveira LT, Gonçalves KR, et al. Benznidazole self-emulsifying delivery system: a novel alternative dosage form for Chagas disease treatment. Eur J Pharm Sci. 2020;145:105234.
  • Molina I. Final report summary - BERENICE (benznidazol and triazol research group for nanomedicine and innovation on chagas disease) [Internet]. EUROPEAN COMMISSION. [cited 2021 Mar 4]. Available from: https://cordis.europa.eu/project/id/305937/reporting
  • Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005;290(1–2):137–144.
  • Maragos S, Archontaki H, Macheras P, et al. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel. AAPS PharmSciTech. 2009;10(4):1444–1451.
  • Dametto PR, Dametto AC, Polese L, et al. Development and physicochemical characterization of solid dispersions containing praziquantel for the treatment of schistosomiasis. J Therm Anal Calorim. 2017;127(2):1693–1706.
  • Amara RO, Ramadan AA, El-Moslemany RM, et al. Praziquantel–lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int J Nanomedicine. 2018;13:4493–4505.
  • Borrego-Sánchez A, Sánchez-Espejo R, García-Villén F, et al. Praziquantel–clays as accelerated release systems to enhance the low solubility of the drug. Pharmaceutics. 2020;12(10):914.
  • Andrade LN, Marques C, Barbosa T, et al. Praziquantel-loaded solid lipid nanoparticles: production, physicochemical characterization, release profile, cytotoxicity and in vitro activity against Schistosoma mansoni. J Drug Deliv Sci Technol. 2020;58:101784.
  • Parikh R, Patel L, Dalwadi S. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Drug Deliv. 2014;21(6):406–411.
  • Zheng X-S, Duan C-Z, Xiao Z-D, et al. Transdermal delivery of praziquantel: effects of solvents on permeation across rabbit skin. Biol Pharm Bull. 2008;31(5):1045–1048.
  • Wang L, Zheng X, Fang Y, et al. Transdermal evaporation delivery system of praziquantelfor schistosomiasis japonicum chemotherapy. J Pharm Sci. 2011;100(7):2769–2777.
  • Gelperina S, Kisich K, Iseman MD, et al. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–1490.
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149.
  • Poovi G, Damodharan N. Lipid nanoparticles: a challenging approach for oral delivery of BCS Class-II drugs. Futur J Pharm Sci. 2018;4(2):191–205.
  • Silva P, Bonifácio B, Ramos M, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2013;9:1–15.
  • A. A, A. M, F. P. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Recent Advances in Novel Drug Carrier Systems [Internet]. InTech; 2012. [cited 2021 Apr 6].  Available from: http://www.intechopen.com/books/recent-advances-in-novel-drug-carrier-systems/lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development
  • Severino P, Andreani T, Macedo AS, et al. Current state-of-art and new trends on lipid nanoparticles (sln and nlc) for oral drug delivery. J Drug Deliv. 2012;2012:1–10.
  • Esfandiari F, Motazedian MH, Asgari G, et al. Paromomycin-loaded mannosylated chitosan nanoparticles: synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop. 2019;197.
  • Kumar R, Pandey K, Sahoo GC, et al. Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis. Mater Sci Eng C. 2017;75:1465–1471.
  • Sánchez G, Cuellar D, Zulantay I, et al. Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethylcyanoacrylate nanoparticles. Biol Res. 2002;35(1):1.
  • Durand R, Paul M, Rivollet D, et al. Activity of pentamidine-loaded poly (D,L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite. 1997;4(4):331–336.
  • Hua S, MBC DM, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • JOSÉ DIAS CORREA JÚNIOR, FRÉDÉRIC JEAN GEORGES FRÉZARD, BETÂNIA MARA ALVARENGA, MARIA NORMA MELO, KELLY CRISTINA KATO, inventors. Nanocompósitos fosfatados biocompatíveis contendo antimônio, processo de preparação e usos. BR: BR132015031111; 2015.
  • Matot I, Pizov R. Pulmonary extraction and accumulation of lipid formulations of amphotericin B. Crit Care Med. 2000;28(7):2528–2532.
  • Vogelsinger H. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–1160.
  • Mistro S, Gomes B, Rosa L, et al. Cost-effectiveness of liposomal amphotericin B in hospitalised patients with mucocutaneous leishmaniasis. Trop Med Int Heal. 2017;22(12):1569–1578.
  • Meyerhoff AUS. Food and drug administration approval of ambisome (liposomal amphotericin b) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–48.
  • Teixeira MC, Carbone C, Souto EB. Beyond liposomes: recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res. 2017;68:1–11.
  • Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28.
  • Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95–99.
  • Karim K, Mandal A, Biswas N, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374–380.
  • Ge X, Wei M, He S, et al. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.
  • Yeo PL, Lim CL, Chye SM, et al. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 2017;11(4):301–313.
  • Chen S, Hanning S, Falconer J, et al. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.
  • Yardley V, Croft SL. Activity of liposomal amphotericin B against experimental cutaneous leishmaniasis. Antimicrob Agents Chemother. 1997;41(4):752–756.
  • Mostafavi M, Sharifi I, Farajzadeh S, et al. Niosomal formulation of amphotericin B alone and in combination with glucantime: in vitro and in vivo leishmanicidal effects. Biomed Pharmacother. 2019;116:108942.
  • Loftsson T, Jarho P, Másson M, et al., **(Loftsson T. is a leading cyclodextrin researcher with decades of research and contributions in this field). Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–351.
  • Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm. 2005;302(1–2):18–28.
  • Li H, Xu X, Liu M, et al. Microcalorimetric and spectrographic studies on host-guest interactions of α-, β-, γ- And Mβ-cyclodextrin with resveratrol. Thermochim Acta. 2010;510(1–2):168–172.
  • Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–284.
  • Duchêne D, Bochot A. Thirty years with cyclodextrins. Int J Pharm. 2016;514(1):58–72.
  • Saokham P, Muankaew C, Jansook P, et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23(5):1161.
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025.
  • Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.
  • Salústio PJ, Pontes P, Conduto C, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech. 2011;12(4):1276–1292.
  • Hirlekar RS, Sonawane SN, Kadam VJ. Studies on the effect of water-soluble polymers on drug-cyclodextrin complex solubility. AAPS PharmSciTech. 2009;10(3):858–863.
  • Li J, Xiao H, Li J, et al. Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int J Pharm. 2004;278(2):329–342.
  • Loftsson T, Másson M. The effects of water-soluble polymers on cyclodextrins and cyclodextrin solubilization of drugs. J Drug Deliv Sci Technol. 2004;14(1):35–43.
  • Lyra MAM, Soares-Sobrinho JL, Figueiredo RCBQ, et al. Study of benznidazole-cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. J Incl Phenom Macrocyclic Chem. 2012;73(1–4):397–404.
  • Wilson LS, Strosberg AM, Barrio K. Cost-effectiveness of Chagas disease interventions in latin america and the Caribbean: markov models. Am J Trop Med Hyg. 2005;73(5):901–910.
  • CNPq. Edital MCT/CNPq/CTSaúde n° 11/2006 Estudo da Dengue. Brasilia(Brasil); 2006.
  • CNPq. Edital MCT/CNPq/MS-SCTIE-DECIT n° 25/2006 Estudo de Doenças Negligenciadas. Brasilia(Brasil); 2006.
  • CNPq. Edital MCT/CNPq/CT-Saúde/MS/SCTIE/DECIT n° 34/2008 Doenças Negligenciadas. Brasilia(Brasil); 2008.
  • CNPq. Edital MCT/CNPq N° 073 2009 PRONEX Rede Dengue. Brasilia(Brasil); 2009.
  • CNPq. Edital n° 41/2012 Convênio CNPq/GSK (GlaxoSmithKline). Brasilia(Brasil); 2012.
  • CNPq. Edital MCTI-CNPq-MS-SCTIE-Decit n° 40–2012 Pesquisa em Doenças Negligenciadas. Brasilia(Brasil); 2012.
  • CNPq. Edital CNPq/MS/SCTIE/DECIT n° 37/2014 Pesquisas sobre Helmintíases. Brasilia(Brasil); 2014.
  • CNPq. Edital CNPq-MS-SCTIE-DECIT n° 31/2014 Pesquisas sobre Doença de Chagas. Brasilia(Brasil); 2014.
  • CNP. Edital CNPq/MS/SCTIE/DECIT/SVS/DST n° 30/2014. Brasilia(Brasil); 2014.
  • CNPq. Edital CNPq/MS/SCTIE/DECIT n° 32/2014 Pesquisas sobre Leishmanioses. Brasilia(Brasil); 2014.
  • BRASIL. Lei [Internet]. BRASIL; 2004. Available from: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.973.htm
  • BRASIL - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA IEC. Política de propriedade intelectual das instituições científicas, tecnológicas e de inovação do brasil relatório formict 2016 política de propriedade intelectual das instituições científicas e tecnológicas e de inovação do brasil [internet]. 2017. [cited 2021 Apr 6]. Available from: https://www.mctic.gov.br/mctic/export/sites/institucional/tecnologia/propriedade_intelectual/arquivos/Relatorio-Formict-Ano-Base-2016.pdf
  • Wang G, Guan J. The role of patenting activity for scientific research: a study of academic inventors from China’s nanotechnology. J Informetr. 2010;4(3):338–350.
  • Mowery DC, Nelson RR, Sampat BN, et al. The growth of patenting and licensing by U.S. universities: an assessment of the effects of the Bayh–Dole act of 1980. Res Policy. 2001;30(1):99–119.
  • Wong C-Y, Goh K-L. Growth behavior of publications and patents: a comparative study on selected Asian economies. J Informetr. 2010;4(4):460–474.
  • Sampat BN. Patenting and US academic research in the 20th century: the world before and after Bayh-Dole. Res Policy. 2006;35(6):772–789.
  • Geuna A, Nesta LJJ. University patenting and its effects on academic research: the emerging European evidence. Res Policy. 2006;35(6):790–807.
  • Póvoa LMC. Patentes de universidades e institutos públicos de pesquisa e a transferência de tecnologia para empresas no Brasil. Universidade Federal de Minas Gerais; 2008.
  • Silva K. Patentes acadêmicas no Brasil: um novo panorama de contribuição das universidades na via PCT. Lisboa, Portugal: Lisboa School of Economics & Management; 2014.
  • World Health Organization (WHO). WHO, Lymphatic filariasis, Partnership [Internet]. [cited 2020 Sep 2]. Available from: https://www.who.int/lymphatic_filariasis/partnership/en/
  • Ridley RG. Product R&D for neglected diseases. Twenty-seven years of WHO/TDR experience with public-private partnerships. EMBO Rep. 2003 Jun 9;4( SPEC. ISS.). DOI:https://doi.org/10.1038/sj.embor.embor858.
  • Bush S, Hopkins AD. Public-private partnerships in neglected tropical disease control: the role of nongovernmental organisations. Acta Trop. 2011;120(Suppl. 1):S169–72.
  • Erratum MM. A breakthrough in R&D for neglected diseases: new ways to get the drugs we need (PLoS Medicine (2005) 2:9. PLoS Med. 2005;2(10):1047.
  • Moran M, Guzman J, Ropars AL, et al. The role of product development partnerships in research and development for neglected diseases. Int Health. 2010;2(2):114–122.
  • Stevens AJ, Jensen JJ, Wyller K, et al. The role of public-sector research in the discovery of drugs and vaccines. N Engl J Med. 2011;364(6):535–541.
  • Wessner CW. Driving innovations across the valley of death. Res Manag. 2005 Jan 22;48(1):9–12.
  • Evans DL. The advanced technology program: reform with a purpose. 2002.
  • Butler D. Translational research: crossing the valley of death. Nature. 2008;453(7197):840–842.
  • Markham SK, Ward SJ, Aiman-Smith L, et al. The valley of death as context for role theory in product innovation. J Prod Innov Manag. 2010;27(3):402–417.
  • Germann PG, Schuhmacher A, Harrison J, et al. How to create innovation by building the translation bridge from basic research into medicinal drugs: an industrial perspective. Hum Genomics. 2013;7(1):5.
  • Boyle LMMJBC. Transitioning to Private-Sector Financing: characteristics of Success,  Colorado USA: NREL/MP-720-31192. 2002.
  • Hudson J, Khazragui HF. Into the valley of death: research to innovation. Drug Discov Today. 2013;18(13–14):610–613.
  • Murphy LM, Edwards PL. Bridging the valley of death: transitioning from public to private sector financing. NREL/MP-720-34036 [Internet]. Colorado (USA); 2003. [cited 2021 Apr 06]. Available from: https://www.nrel.gov/docs/gen/fy03/34036.pdf
  • Coller BS, Califf RM. Traversing the valley of death: a guide to assessing prospects for translational success. Sci Transl Med. 2009;1(10):10cm9–10cm9.
  • Translational science and the “valley of death” [internet]. 2015 [2019 Dec 10]. Available from: https://www.openphilanthropy.org/blog/translational-science-and-valley-death
  • Daniels N. How can the uk close the valley of death gap? [internet]. The Institute of Materials, Minerals and Mining. 2016 [2019 Dec 10]. Available from: https://www.iom3.org/materials-world-magazine/feature/2016/jan/05/how-can-uk-close-valley-death-gap
  • López L, Vélez I, Asela C, et al. A phase II study to evaluate the safety and efficacy of topical 3% amphotericin B cream (Anfoleish) for the treatment of uncomplicated cutaneous leishmaniasis in Colombia. PLoS Negl Trop Dis. 2018;12:7.
  • Omollo R, Alexander N, Edwards T, et al. Safety and Efficacy of miltefosine alone and in combination with sodium stibogluconate and liposomal amphotericin B for the treatment of primary visceral leishmaniasis in East Africa: study protocol for a randomized controlled trial. Trials. 2011 Jun;12(66):1–10.
  • Eskandari SE, Firooz A, Nassiri-Kashani M, et al. Safety evaluation of topical application of nano-liposomal form of amphotericin B (Sinaampholeish) on healthy volunteers: phase I clinical trial. Iran J Parasitol. 2019;14(2):197–203.
  • Edwards T, Omollo R, Khalil EAG, et al. Single-dose liposomal amphotericin B (AmBisome®) for the treatment of Visceral Leishmaniasis in East Africa: study protocol for a randomized controlled trial. Trials. 2011;12(66):1–7.
  • Camandaroba ELP, Reis EAG, Gonçalves MS, et al. Trypanosoma cruzi: susceptibility to chemotherapy with benznidazole of clones isolated from the highly resistant Colombian strain. Rev Soc Bras Med Trop. 2003;36(2):201–209.
  • Veloso V, Carneiro C, Toledo M, et al. Variation in susceptibility to benznidazole in isolates derived from Trypanosoma cruzi parental strains. Mem Inst Oswaldo Cruz. 2001;96(7):1005–1011.
  • Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81(5):755–759.
  • Alcântara LM, Ferreira TCS, Gadelha FR, et al. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018;8(3):430–439.
  • Chatelain E, Konar N. Translational challenges of animal models in chagas disease drug development: a review. Drug Des Devel Ther. 2015;9:4807–4823.
  • Romanha AJ, De Castro SL, Soeiro M de NC, et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(2):233–238.
  • Gulin JEN. in vivo drug testing for experimental trypanosoma cruzi infection. in: Altcheh J., Freilij H, editors. birkhauser advances in infectious diseases. Cham, Switzerland: Springer, Cham; 2019. p. 313–321.
  • Fonseca-Berzal C, Arán VJ, Escario JA, et al. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi. Parasitol Res. 2018;117(11):3367–3380.
  • Moraes CB, Franco CH. Novel drug discovery for Chagas disease. Expert Opin Drug Discov. 2016;11(5):447–455.
  • Bustamante JM, Tarleton RL. Potential new clinical therapies for Chagas disease. Expert Rev Clin Pharmacol. 2014;7(3):317–325.
  • Scarim CB, Ribeiro AR, Rosa JAD, et al. Response to different benznidazole doses in animal models of chronic phase Chagas disease: a critical review. Rev Soc Bras Med Trop. 2018;51(2):133–140.
  • Mateus J, Guerrero P, Lasso P, et al. An animal model of acute and chronic chagas disease with the reticulotropic y strain of trypanosoma cruzi that depicts the multifunctionality and dysfunctionality of t cells. Front Immunol. 2019;10:918.
  • De Lana M. Experimental studies of Chagas disease in animal models. In: Jenny Telleria and Michel Tibayrenc, editors. American Trypanosomiasis Chagas Disease. Elsevier; 2017. 299–320.
  • Costa SCGD. Mouse as a model for Chagas disease: does mouse represent a good model for Chagas disease? Mem Inst Oswaldo Cruz. 1999;94(suppl 1):269–272.
  • León CM, Montilla M, Vanegas R, et al. Murine models susceptibility to distinct Trypanosoma cruzi I genotypes infection. Parasitology. 2017;144(4):512–519.
  • Loría-Cervera EN, Andrade-Narváez FJ. Review: animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. 2014;56(1):1–11.
  • Gupta S Nishi. Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res. 2011;133(1):27–39.
  • Mears ER, Modabber F, Don R, et al. A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. maes L, editor. PLoS Negl Trop Dis. 2015 Sep 3;9(9):e0003889.
  • Olobo JO, Gicheru MM, Anjili CO. The african green monkey model for cutaneous and visceral leishmaniasis. Trends Parasitol. 2001;17(12):588–592.
  • Frédéric Jean Georges Frézard, Erly Guilherme Azevedo, Raul Rio Ribeiro, Cynthia Peres Demicheli, Sydnei Magno da Silva, Simone Aparecida Rezende, inventors. Composição farmacêutica contendo lipossomas convencionais e lipossomas de circulação prolongada para o tratamento da leishmaniose visceral. BR: BR1020120052652; 2012.
  • Ferdowsian HR, Beck N. Ethical and scientific considerations regarding animal testing and research. PLoS One. 2011;6(9):e24059.
  • Russell WMS, Burch RL. The principles of humane experimental technique [internet]. London (UK): Methuen; 1959. [cited 2021 Apr 6]. Available from: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique
  • O’Keeffe A. Development of novel predictive 2D and 3D in vitro models for anti-leishmanial drug testing [internet]. 2018. [cited 2021 Apr 6].  Available from: http://researchonline.lshtm.ac.uk/id/eprint/4646919/
  • O’Keeffe A, Hale C, Cotton JA, et al. Novel 2D and 3D assays to determine the activity of anti-leishmanial drugs. Microorganisms. 2020;8(6):831.
  • Haycock JW. 3D cell culture: a review of current approaches and techniques. In: John W. Haycock editor. Methods in molecular biology (Clifton, NJ). New Jersey, USA: Humana Press; 2011. p. 1–15.
  • Segeritz C-P, Vallier L. Cell Culture. In: Morteza Jalali; Francesca Saldanha; Mehdi Jalali, editors. Basic Science Methods for Clinical Researchers. Cambridge, Massachusetts, USA: Elsevier; 2017. 151–172.
  • Messias Sandes J, Nascimento Moura DM, Divina da Silva Santiago M, et al. The effects of endoplasmic reticulum stressors, tunicamycin and dithiothreitol on Trypanosoma cruzi. Exp Cell Res. 2019;383(2):111560.
  • De Souza W. Electron microscopy of trypanosomes - A historical view. Mem Inst Oswaldo Cruz. 2008;103(4):313–325.
  • Gadelha CAG, Temporão JG. Desenvolvimento, Inovação e Saúde: a perspectiva teórica e política do Complexo Econômico-Industrial da Saúde. Cien Saude Colet. 2018;23(6):1891–1902.
  • Zago MF. Poder de compra estatal como instrumento de políticas públicas? In: Enap Escola (Nacional de Administração Pública), editor. Brasilia, DF, Brazil; Enap (Nacional de Administração Pública); 2018:1–466.
  • Squeff FDHS. O poder de compras governamental como instrumento de desenvolvimento tecnológico: análise do caso brasileiro. Brasília (DF): Texto para; 2014.
  • Fernandes DRA, Lima SML, Chagnon RP. Contribuições do modelo fatores críticos de sucesso para análise da gestão de parcerias para o desenvolvimento produtivo de um laboratório oficial. Cad Saude Publica. 2020;36(2):2.
  • Lee BY, Bacon KM, Wateska AR, et al. Modeling the economic value of a Chagas’ disease therapeutic vaccine. Hum Vaccin Immunother. 2012;8(9):1293–1301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.