29
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent trends and challenges to overcome Pseudomonas aeruginosa infections

ORCID Icon, &
Received 10 Jan 2024, Accepted 24 Apr 2024, Published online: 03 May 2024

References

  • Tacconelli E, Carrara E, Savoldi A, et al. WHO pathogens priority list working group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.
  • WHO. 2019: a year of challenges and change. MEDICCRev. 2019;21(1):3. doi: 10.37757/MR2019.V21.N1.1
  • World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. Available from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  • WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Di Giulio M, Di Lodovico S, Fontana A, et al. Graphene oxide affects Staphylococcus aureus and Pseudomonas aeruginosa dual species biofilm in Lubbock chronic wound biofilm model. Sci Rep. 2020;10(1):18525–18534. doi: 10.1038/s41598-020-75086-6
  • Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117–2131. doi: 10.1007/s40265-021-01635-6
  • Vincent JL, Sakr Y, Singer M, et al. EPIC III investigators. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478–1487. doi: 10.1001/jama.2020.2717
  • Moore JE, Mastoridis P. Clinical implications of Pseudomonas aeruginosa location in the lungs of patients with cystic fibrosis. J Clin Pharm Ther. 2017;42(3):259–267. doi: 10.1111/jcpt.12521
  • Garcia-Clemente M, de la Rosa D, Máiz L, et al. Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. J Clin Med. 2020;9(12):3800–3832. doi: 10.3390/jcm9123800
  • Weiler CA, Drumm ML. Genetic influences on cystic fibrosis lung disease severity. Front Pharmacol. 2013;4:40–59. doi: 10.3389/fphar.2013.00040
  • Finch S, McDonnell MJ, Abo-Leyah H, et al. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc. 2015;12:1602–1611. doi: 10.1513/AnnalsATS.201506-333OC
  • Davies G, Wells AU, Doffman S, et al. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J. 2006;28(5):974–979. doi: 10.1183/09031936.06.00074605
  • National Institute for Health and Care Excellence. Bronchiectasis (non-cystic fibrosis), acute exacerbation: antimicrobial prescribing: nICE guideline [NG117]. NICE; 2018. https://www.nice.org.uk/guidance/ng117/informationforpublic
  • Wilson JW, Schurr MJ, LeBlanc CL, et al. Mechanisms of bacterial pathogenicity. Postgrad Med. 2002;78(918):216–224. doi: 10.1136/pmj.78.918.216
  • Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull. 2015;116(1):105–113. doi: 10.1093/bmb/ldv041
  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867
  • Merrill K, Hanson SF, Sumner S, et al. Antimicrobial stewardship: staff nurse knowledge and attitudes. Am J Infection Control. 2019;47(10):1219–1224. doi: 10.1016/j.ajic.2019.03.022
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. UK: Review Antimicrobial Resist; 2016. p. 1–84. https://wellcomecollection.org/works/thvwsuba
  • Ikuta KS, Swetschinski LR, Robles Aguilar G, et al. 2019 antimicrobial resistance collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2022;400(10369):2221–2248. doi: 10.1016/S0140-6736(22)02185-7
  • Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: recent advances in vaccine development. Vaccines (Basel). 2022;10(7):1100–1118. doi: 10.3390/vaccines10071100
  • Muteeb G, Rehman MT, Shahwan M, et al. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals. 2023;16(11):1615–1669.
  • Gauba A, Rahman KM. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics. 2023;12(11):1590–1620. doi: 10.3390/antibiotics12111590
  • Zakhour J, Sharara SL, Hindy JR, et al. Antimicrobial treatment of Pseudomonas aeruginosa severe sepsis. Antibiotics. 2022;11(10):1432–1451. doi: 10.3390/antibiotics11101432
  • Jangra V, Sharma N, Kumar Chhillar A. Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect. 2022;24(4):104950. doi: 10.1016/j.micinf.2022.104950
  • Vadakkan K, Ngangbam AK, Sathishkumar K, et al. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol. 2024;254:127861.
  • Do Rego H, Timsit J-F. Management strategies for severe Pseudomonas aeruginosa infections. Curr Opin Infect Dis. 2023;36(6):585–595. doi: 10.1097/QCO.0000000000000981
  • Alam M, Bano N, Ahmad T, et al. Synergistic role of plant extracts and essential oils against multidrug resistance and gram-negative bacterial strains producing extended-spectrum β-lactamases. Antibiotics. 2022;11(7):855–880. doi: 10.3390/antibiotics11070855
  • Pulingam T, Parumasivam T, Mohd Gazzali A, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022;170:106103. doi: 10.1016/j.ejps.2021.106103
  • Di Fermo P, Di Lodovico S, Amoroso R, et al. Searching for new tools to counteract the Helicobacter pylori resistance: the positive action of resveratrol derivatives. Antibiotics. 2020;9(12):891. doi: 10.3390/antibiotics9120891
  • Carradori S, Ammazzalorso A, Niccolai S, et al. Nature-inspired compounds: synthesis and antibacterial susceptibility testing of eugenol derivatives against H. pylori strains. Pharmaceuticals (Basel). 2023;16(9):1317. doi: 10.3390/ph16091317
  • Rodrigues CMC, Plotkin SA. Impact of vaccines; health, economic and social perspectives. Front Microbiol. 2020;14:1526. doi: 10.3389/fmicb.2020.01526
  • Jurcisek JA, Hofer LK, Goodman SD, et al. Monoclonal antibodies that target extracellular DNABII proteins or the type IV Pilus of nontypeable haemophilus infuenzae (NTHI) worked additively to disrupt 2-genera bioflms. Biofilm. 2022;4:100096. doi: 10.1016/j.bioflm.2022.100096
  • Kaur Sodhi K, Singh CK. Recent development in the sustainable remediation of antibiotics: a review. Total Environ Res Themes. 2022;3–4:100008. doi: 10.1016/j.totert.2022.100008
  • Halawa EM, Fadel M, Al-Rabia MW, et al. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024;14:1305294. doi: 10.3389/fphar.2023.1305294
  • Dehbanipour R, Ghalavand Z. Anti-virulence therapeutic strategies against bacterial infections: recent advances. Germs. 2022;12(2):262–275. doi: 10.18683/germs.2022.1328
  • Schindler BD, Kaatz GW. Multidrug efflux pumps of gram-positive bacteria. Drug Resist Updat. 2016;27:1–13. doi: 10.1016/j.drup.2016.04.003
  • Daury L, Orange F, Taveau JC, et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun. 2016;7(1):10731. doi: 10.1038/ncomms10731
  • Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007;39(3):162–176. doi: 10.1080/07853890701195262
  • Hernando-Amado S, Blanco P, Alcalde-Rico M, et al. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat. 2016;28:13–27. doi: 10.1016/j.drup.2016.06.007
  • National Center for Biotechnology Information. Chemosensitization of resistant Pseudomonas aeruginosa by synthetically related compounds. US 10,842,795 (2020)
  • Inst Nat Sante Rech Med, Pasteur Institut, Univ Lille, Centre Nat Rech Scient, Chru De Lille, Johann Wolfgang Goethe Univ Frankfurt Am Main. Gram-negative bacteria efflux pump inhibitors. WO 2023/002011 (2023)
  • Univ Colorado Regents, Crestone Inc. Bacterial efflux pump inhibitors and methods of use. WO 2023/014431(2023)
  • Zavascki AP, Bulitta JB, Landersdorfer CB. Combination therapy for carbapenem-resistant gram-negative bacteria. Expert Rev Anti Infect Ther. 2013;11(12):1333–1353. doi: 10.1586/14787210.2013.845523
  • Breidenstein EBM, de la Fuente-Nu´nez C, Hancock R. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–426. doi: 10.1016/j.tim.2011.04.005
  • Straatsma TP, Soares TA. Characterization of the outer membrane protein oprf of Pseudomonas Aeruginosa in a lipopolysaccharide membrane by computer simulation. Proteins. 2009;74(2):475–488. doi: 10.1002/prot.22165
  • Cai S, Chen Y, Song D, et al. Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. Exp Ther Med. 2016;12(5):2869–2872. doi: 10.3892/etm.2016.3690
  • Hancock RE. Aminoglycoside uptake and mode of action—with special reference to streptomycin and gentamicin. J Antimicrob Chemother. 1981;8(4):249–276. doi: 10.1093/jac/8.4.249
  • Domalaon R, Idowu T, Zhanel GG, et al. Antibiotic hybrids: the next generation of agents and adjuvants against gram-negative pathogens? Clin Microbiol Rev. 2018;31(2):e00077–17. doi: 10.1128/CMR.00077-17
  • Dhiman S, Ramirez D, Li Y, et al. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis. 2023;9(4):864–885. doi: 10.1021/acsinfecdis.2c00549
  • Idowu T, Ammeter D, Brizuela M, et al. Overcoming β-Lactam resistance in Pseudomonas aeruginosa using non-canonical tobramycin-based antibiotic adjuvants. Bioorg Med Chem Lett. 2020;30(21):127575. doi: 10.1016/j.bmcl.2020.127575
  • Ammeter D, Idowu T, Zhanel GG, et al. Development of a nebramine-cyclam conjugate as an antibacterial adjuvant to potentiate β-lactam antibiotics against multidrug-resistant P. aeruginosa. J Antibiot (Tokyo). 2019;72(11):816–826. doi: 10.1038/s41429-019-0221-9
  • Idowu T, Ammeter D, Arthur G, et al. Potentiation of β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations against MDR and XDR Pseudomonas aeruginosa using non-ribosomal tobramycin-cyclam conjugates. J Antimicrob Chemother. 2019;74(9):2640–2648. doi: 10.1093/jac/dkz228
  • Univ Manitoba. Potentiation of b-Lactam Antibiotics and b-Lactam/b-lactamase inhibitor combinations against multidrug and Extensively Drug-Resistant Pseudomonas Aeruginosa Using Non-Ribosomal Tobramycin-Cyclam Conjugates. WO 2020/102910(2020)
  • Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: mode of action, resistance emergence, and potential solutions. J Biosci. 2021;46(3):85. doi: 10.1007/s12038-021-00209-8
  • Bartling CM, Raetz CRH. Steady-state kinetics and mechanism of LpxD, the N-Acyltransferase of Lipid a Biosynthesis. Biochemistr. 2008;47(19):5290–5302. doi: 10.1021/bi800240r
  • Ma X, Prathapam R, Wartchow C, et al. Structural and biological basis of small molecule inhibition of Escherichia Coli LpxD acyltransferase essential for lipopolysaccharide biosynthesis. ACS Infect Dis. 2020;6(6):1480–1489. doi: 10.1021/acsinfecdis.9b00127
  • X Biotix Therapeutics Inc. Arylthioether acetamide and related compounds and their use in treating medical conditions. WO2022/178228 (2022)
  • Zhang J, Chan A, Lippa B, et al. Structure-based discovery of LpxC inhibitors. Bioorg Med Chem Lett. 2017;27(8):1670–1680. doi: 10.1016/j.bmcl.2017.03.006
  • Mdluli KE, Witte PR, Kline T, et al. Molecular validation of LpxC as an antibacterial drug target in Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 2006;50(6):2178–2184. doi: 10.1128/AAC.00140-06
  • Niu Z, Lei P, Wang Y, et al. Small molecule lpxc inhibitors against gram-negative bacteria: advances and future perspectives. Eur J Med Chem. 2023;253:115326. doi: 10.1016/j.ejmech.2023.115326
  • Erwin AL. Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb Perspect Med. 2016;6(7):a025304. doi: 10.1101/cshperspect.a025304
  • https://clinicaltrials.gov/
  • X-Biotix Therapeutics, Inc. Preparation of aza-heterocyclyl carboxamide and related compounds, especially amino acid amide derivatives, and their use as LpxC deacetylase inhibitor and antibacterial agents. US 2023/0139502(2023)
  • Univ New York State Res Found. Composition and method for treatment of gram negative bacterial infection. WO2023/015236 (2023)
  • King Faisal University, Al-Ahsa, aminocarbazole compounds as antibacterial agents. US 11,807,607 (2023)
  • Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: occurrence, mode of action, resistance, Environmental Detection, and remediation - a comprehensive review. Environ Pollut. 2022;315:120440. doi: 10.1016/j.envpol.2022.120440
  • Dighe SN, Collet TA. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem. 2020;199:112326. doi: 10.1016/j.ejmech.2020.112326
  • Ageitos JM, Sanchez-Perez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2016;133:117–138. doi: 10.1016/j.bcp.2016.09.018
  • Mansour SC, Pena OM, Hancock RE. Host defense peptides: Front-Line immunomodulators. Trends Immunol. 2014;35(9):443–450. doi: 10.1016/j.it.2014.07.004
  • Kraus D, Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr Top Microbiol Immunol. 2006;306:231–250.
  • Ceinge Biotecnologie Avanzate S.C. A R.L. Fensin-Derived Peptide with antibacterial activity also against multi-antibiotic-resistant bacteria. WO 2023/073577; 2023
  • Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by Plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–596. doi: 10.1128/CMR.00064-16
  • Wilkens M, Alarcón C, Urzúa A, et al. Characterization of the bactericidal activity of the natural diterpene kaurenoic acid. Planta Med. 2002;68(5):452–454. doi: 10.1055/s-2002-32086
  • Univ degli Studi Roma La Sapienza; Fondazione St Italiano Tecnologia. Inhibitors of Antibiotic Resistance Mediated by Arn T. WO2021/014422 (2021)
  • Losito AR, Raffaelli F, Del Giacomo P, et al. New drugs for the Treatment of Pseudomonas aeruginosa Infections with limited Treatment options: a narrative review. Antibiotics. 2022;11(5):579. doi: 10.3390/antibiotics11050579
  • Board of Supervisors of Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA (US); University of Kansas, Lawrence, KS (US); Oklahoma State University. Use of small molecule inhibitors of the Bacterioferritin (BfrB):Ferredoxin (Bfd) interaction in biofilms. U.S. 2022/0117937. 2022
  • Univ Kansas. Univ Oklahoma State. Small molecule inhibitors of the BfrB: Bfd interaction. WO 2020/117832; 2020
  • Rivera M. Bacterioferritin: structure, Dynamics, and protein-protein interactions at play in iron storage and mobilization. Acc Chem Res. 2017;50(2):331–340. doi: 10.1021/acs.accounts.6b00514
  • Soldano A, Yao H, Achala ND, et al. Small molecule inhibitors of the bacterioferritin (BfrB)–Ferredoxin (Bfd) Complex Kill Biofilm-Embedded Pseudomonas aeruginosa Cells. ACS Infect Dis. 2021;7(1):123–140. doi: 10.1021/acsinfecdis.0c00669
  • Arora DP, Hossain S, Xu Y, et al. Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry. 2015;54(24):3717–3728. doi: 10.1021/bi501476n
  • Kalia VC, Patel SKS, Lee J-K. Bacterial biofilm inhibitors: an overview. Ecotoxicol Environ Saf. 2023;264:115389. doi: 10.1016/j.ecoenv.2023.115389
  • The univ of Wollongong, univ Nanyang Tech, Nat univ Singapore. Antimicrobial compounds. WO2021159176 (2021)
  • Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol. 2013;358:91–118.
  • Sklar JG, Wu T, Kahne D, et al. Defining the roles of the periplasmic chaperones sura, skp, and Degp in Escherichia Coli. Genes Dev. 2007;21(19):2473–2484. doi: 10.1101/gad.1581007
  • Klein K, Sonnabend MS, Frank L, et al. Deprivation of the periplasmic chaperone SurA reduces virulence and restores antibiotic susceptibility of multidrug-resistant Pseudomonas aeruginosa. Front Microbiol. 2019;10:100. doi: 10.3389/fmicb.2019.00100
  • Figaj D, Ambroziak P, Rzepka I, et al. SurA-like and skp-like proteins as important virulence determinants of the GramNegative bacterial pathogens. Int J Mol Sci. 2023;24:295–326. doi: 10.3390/ijms24010295
  • Univ Tuebingen Medizinische Fakultaet. Benzimidazole derivatives for the treatment and prophylaxis of infectious diseases. WO2023/110765 (2023)
  • Helmholtz Zentrum Infektionsforschung Gmbh, Pqsr Inverse Agonists. WO2020/007938 (2020)
  • Cao H, Krishnan G, Goumnerov B, et al. A quorum sensing-associated virulence gene of Pseudomonas Aeruginosa encodes a lysr-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA. 2001;98(25):14613–14618. doi: 10.1073/pnas.251465298
  • Schütz C, Empting M. Targeting the Pseudomonas Quinolone Signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem. 2018;14:2627–2645. doi: 10.3762/bjoc.14.241
  • Helmholtz Zentrum Infektionsforschung Gmbh, Centre National De La Recherche Scient Direction De La Politique Industrielle. Bivalent LecA Inhibitors Targeting Biofilm Formation Of Pseudomonas aeruginosa. WO 2021/089729. 2021.
  • Chemani C, Imberty A, de Bentzmann S, et al. Role of LecA and LecB Lectins in Pseudomonas Aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun. 2009;77(5):2065–2075. doi: 10.1128/IAI.01204-08
  • Flockton TR, Schnorbus L, Araujo A, et al. Inhibition of Pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens. 2019;8(2):55–68. doi: 10.3390/pathogens8020055
  • Wang Y, Gao L, Rao X, et al. Characterization of LasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8(1):13344. doi: 10.1038/s41598-018-30813-y
  • Everett MJ, Davies DT. Pseudomonas aeruginosa elastase (lasb) as a therapeutic target. Drug Discov Today. 2021;26(9):2108–2123. doi: 10.1016/j.drudis.2021.02.026
  • Camberlein V, Jézéquel G, Haupenthal J, et al. The structures and binding modes of small-molecule inhibitors of Pseudomonas aeruginosa elastase LasB. Antibiotics. 2022;11(8):1060. doi: 10.3390/antibiotics11081060
  • Helmholtz Zentrum Infektionsforschung Gmbh. Inhibitors of Pseudomonas Aeruginosa virulence factor lasßp. WO2023/1660039 (2023)
  • Azimi S, Salouti M. Protective effect of two new nanovaccines against Pseudomonas aeruginosa based on LPS and OPS: a comparison study. Immunobiology. 2022;227(6):152278. doi: 10.1016/j.imbio.2022.152278
  • Khalid K, Poh CL. The promising potential of reverse vaccinology-based next-generation vaccine development over conventional vaccines against antibiotic-resistant bacteria. Vaccines. 2023;11(7):1264. doi: 10.3390/vaccines11071264
  • Hart RJ, Morici LA. Vaccination to prevent Pseudomonas aeruginosa bloodstream infections. Front Microbiol. 2022 28;13:870104. doi: 10.3389/fmicb.2022.870104
  • El-Kafrawy SA, Abbas AT, Oelkrug C, et al. IgY antibodies: the promising potential to overcome antibiotic resistance. Front Immunol. 2023;14:1065353. doi: 10.3389/fimmu.2023.1065353
  • Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance. Hum Vaccines Immunother. 2018;14(9):2142–2149. doi: 10.1080/21645515.2018.1476814
  • Merakou C, Schaefers MM, Priebe GP. Progress toward the elusive Pseudomonas Aeruginosa vaccine. Surg Infect. 2018;19(8):757–768. doi: 10.1089/sur.2018.233
  • Nat Res Council Canada. Preventing/Treating Pseudomonas Aeruginosa infection WO2023/168520 (2023)
  • Lee S, Inzerillo S, Lee GY, et al. Glycan-mediated molecular interactions in bacterial pathogenesis. Trends Microbiol. 2022;30(3):254–267. doi: 10.1016/j.tim.2021.06.011
  • Cairns CM, Michael FS, Jamshidi M, et al. Structural characterization and evaluation of an Epitope at the tip of the A-Band rhamnan polysaccharide of Pseudomonas aeruginosa. ACS Infect Dis. 2022;8(7):1336–1346. doi: 10.1021/acsinfecdis.2c00183
  • Selim H, Radwan TEE, Reyad AM. Regulation of T3SS synthesis, assembly and secretion in Pseudomonas aeruginosa. Arch Microbiol. 2022;204(8):468–478. doi: 10.1007/s00203-022-03068-5
  • Sawa T, Ito E, Nguyen VH, et al. Anti-PcrV antibody strategies against virulent Pseudomonas Aeruginosa. Hum Vaccin Immunother. 2014;10(10):2843–2852. doi: 10.4161/21645515.2014.971641
  • Stoner SN, Baty JJ, Scoffield JA. Pseudomonas aeruginosa polysaccharide psl supports airway microbial community development. Isme J. 2022;16(7):1730–1739. doi: 10.1038/s41396-022-01221-y
  • Morris AJ, Jackson L, Ya Y, et al. The role of Psl in the Failure to Eradicate Pseudomonas Aeruginosa Biofilms in children with Cystic fibrosis. NPJ Biofilms Microbiomes. 2021;7:63–71. doi: 10.1038/s41522-021-00234-3
  • Staidson (Beijing) Biopharmaeuticalcs Co. ltd. Combinations of antibodies and bispecific antibodies comprising antigen-binding specifically recognizing pseudomonas PCRV and PSL. Wo 2022/105818 (2022)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.