527
Views
28
CrossRef citations to date
0
Altmetric
Review

CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV

, , , , &
Pages 1377-1392 | Received 29 Mar 2016, Accepted 26 Oct 2016, Published online: 18 Nov 2016

References

  • World Health Organization Statistics on HIV/AIDS. Global Health Observatory Data on HIV/AIDS - World Health Organization. [ cited 2016 Mar 1]; Available from: http://www.who.int/gho/hiv/en/
  • Kaufmann GR, Bloch M, Zaunders JJ, et al. Long-term immunological response in HIV-1-infected subjects receiving potent antiretroviral therapy. Aids. 2000 May 26;14(8):959–969.
  • Palella FJ Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998 Mar 26;338(13):853–860.
  • Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem. 2010 Jan 28;53(2):521–538.
  • Flexner C. HIV drug development: the next 25 years. Nat Rev Drug Discov. 2007 Dec;6(12):959–966.
  • Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: recent development and clinical use. Curr Opin Virol. 2013 Feb;3(1):51–57.
  • Blanpain C, Migeotte I, Lee B, et al. CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood. 1999 Sep 15;94(6):1899–1905.
  • Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998 Apr 9;392(6676):565–568.
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001 Feb;2(2):123–128.
  • Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.
  • Arberas H, Guardo AC, Bargalló ME, et al. In vitro effects of the CCR5 inhibitor maraviroc on human T cell function. J Antimicrob Chemother. 2013 Mar;68(3):577–586.
  • Rossi R, Lichtner M, De Rosa A, et al. In vitro effect of anti-human immunodeficiency virus CCR5 antagonist maraviroc on chemotactic activity of monocytes, macrophages and dendritic cells. Clin Exp Immunol. 2011 Nov;166(2):184–190.
  • Reshef R, Luger SM, Hexner EO, et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 2012 Jul 12;367(2):135–145.
  • Ni J, Zhu YN, Zhong XG, et al. The chemokine receptor antagonist, TAK-779, decreased experimental autoimmune encephalomyelitis by reducing inflammatory cell migration into the central nervous system, without affecting T cell function. Br J Pharmacol. 2009 Dec;158(8):2046–2056.
  • Mirabelli-Badenier M, Braunersreuther V, Viviani GL, et al. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost. 2011 Mar;105(3):409–420.
  • Kohlmeier JE, Miller SC, Smith J, et al. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity. 2008 Jul 18;29(1):101–113.
  • Kohlmeier JE, Reiley WW, Perona-Wright G, et al. Inflammatory chemokine receptors regulate CD8(+) T cell contraction and memory generation following infection. J Exp Med. 2011 Aug 1;208(8):1621–1634.
  • Castellino F, Huang AY, Altan-Bonnet G, et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature. 2006 Apr 13;440(7086):890–895.
  • Buckheit RW, Siliciano RF, Blankson JN. Primary CD8(+) T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4(+) T cells. Retrovirology. 2013 Jul 1;10.
  • Benito JM, López M, Soriano V. The role of CD8+T-cell response in HIV infection. AIDS Rev. 2004 Apr-Jun;6(2):79–88.
  • Lim JK, Murphy PM. Chemokine control of West Nile virus infection. Exp Cell Res. 2011 Mar 10;317(5):569–574.
  • Glass WG, McDermott DH, Lim JK, et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med. 2006 Jan 23;203(1):35–40.
  • Kindberg E, Mickiene A, Ax C, et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008 Jan 15;197(2):266–269.
  • Khan IA, Thomas SY, Moretto MM, et al. CCR5 is essential for NK cell trafficking and host survival following infection. PLoS Pathog. 2006;2(6):e49.
  • Larena M, Regner M, Lobigs M. The chemokine receptor CCR5, a therapeutic target for HIV/AIDS antagonists, is critical for recovery in a mouse model of Japanese encephalitis. PLoS One. 2012 Sep 21;7(9):e44834.
  • Martin-Blondel G, Brassat D, Bauer J, et al. CCR5 blockade for neuroinflammatory diseases – beyond control of HIV. Nat Rev Neurol. 2016 Feb;12(2):95–105.
  • Choe H, Farzan M, Sun Y, et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 28;85(7):1135–1148.
  • Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.
  • Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185(9):1681–1691.
  • Mosier DE. How HIV changes its tropism: evolution and adaptation? Curr Opin HIV AIDS. 2009 Mar;4(2):125–130.
  • Daar ES, Kesler KL, Petropoulos CJ, et al. Baseline HIV type 1 coreceptor tropism predicts disease progression. Clin Infect Dis. 2007 Sep 1;45(5):643–649.
  • Martinson JJ, Chapman NH, Rees DC, et al. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997 May;16(1):100–103.
  • Novembre J, Galvani AP, Slatkin M. The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol. 2005 Nov;3(11):e339.
  • Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996 Sep 27;273(5283):1856–1862.
  • Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996 Aug 9;86(3):367–377.
  • Allers K, Hutter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011 Mar 10;117(10):2791–2799.
  • Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009 Feb 12;360(7):692–698.
  • Kordelas L, Verheyen J, Esser S. Shift of HIV tropism in stem-cell transplantation with CCR5 delta32 mutation. N Engl J Med. 2014;371(9):880–882.
  • Peniket AJ, Ruiz de Elvira MC, Taghipour G, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant. 2003;31(8):667–678.
  • Sabloff M, Sobecks RM, Ahn KW, et al. Does total body irradiation conditioning improve outcomes of myeloablative human leukocyte antigen-identical sibling transplantations for chronic lymphocytic leukemia? Biol Blood Marrow Transplant. 2014;20(3):421–424.
  • Fätkenheuer G, Pozniak AL, Johnson MA, et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med. 2005 Nov;11(11):1170–1172.
  • Dorr P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005 Nov;49(11):4721–4732.
  • Gulick RM, Lalezari J, Goodrich J, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med. 2008 Oct 2;359(14):1429–1441.
  • Van Lelyveld SF, Wensing AM, Hoepelman AI. The MOTIVATE trials: maraviroc therapy in antiretroviral treatment-experienced HIV-1-infected patients. Expert Rev Anti Infect Ther. 2012 Nov;10(11):1241–1247.
  • Sierra-Madero J, Di Perri G, Wood R, et al. Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin Trials. 2010 Jun 01;11(3):125–132.
  • Lieberman-Blum SS, Fung HB, Bandres JC. Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther. 2008 Jul;30(7):1228–1250.
  • Low AJ, McGovern RA, Harrigan PR. Trofile HIV co-receptor usage assay. Expert Opin Med Diagn. 2009 Mar;3(2):181–191.
  • Rossetti B, Bianco C, Bellazzi LI, et al. Virological and immunological response to antiretroviral regimens containing maraviroc in HIV type 1-infected patients in clinical practice: role of different tropism testing results and of concomitant treatments. AIDS Res Hum Retroviruses. 2014 Jan;30(1):17–24.
  • Simon B, Grabmeier-Pfistershammer K, Rieger A, et al. HIV coreceptor tropism in antiretroviral treatment-naive patients newly diagnosed at a late stage of HIV infection. Aids. 2010 Aug 24;24(13):2051–2058.
  • Weiser B, Philpott S, Klimkait T, et al. HIV-1 coreceptor usage and CXCR4-specific viral load predict clinical disease progression during combination antiretroviral therapy. AIDS. 2008 Feb 19;22(4):469–479.
  • Parra J, Portilla J, Pulido F. Clinical utility of maraviroc. Clin Drug Investig. 2011;31(8):527–542.
  • Puertas MC, Massanella M, Llibre JM, et al. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. Aids. 2014 Jan 28;28(3):325–334.
  • Kotler DP. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients. J Acquir Immune Defic Syndr. 2008 Sep 1;49(Suppl 2):S79–85.
  • MacInnes A, Lazzarin A, Di Perri G, et al. Maraviroc can improve lipid profiles in dyslipidemic patients with HIV: results from the MERIT trial. HIV Clin Trials. 2011 Jan-Feb;12(1):24–36.
  • Massud I, Aung W, Martin A, et al. Lack of prophylactic efficacy of oral Maraviroc in macaques despite high drug concentrations in rectal tissues. J Virol. 2013 Aug 15;87(16):8952–8961.
  • HTPN 069. A Phase II randomized, double-blind, study of the safety and tolerability of maraviroc (MVC), maraviroc + emtricitabine (MVC+FTC), maraviroc + tenofovir disoproxil fumarate (MVC+TDF), or Tenofovir disoproxil fumarate + Emtricitabine (TDF+FTC) for Pre-Exposure Prophylaxis (PrEP) to Prevent HIV Transmission in At-Risk Men Who Have Sex with Men and in At-Risk Women. HIV Prevention Trials Network 2014. [ cited 2016 Mar 25]; Available from: http://www.hptn.org/research_studies/hptn069.asp
  • McCombie SW, Tagat JR, Vice SF, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. III: synthesis, antiviral and pharmacokinetic profiles of symmetrical heteroaryl carboxamides. Bioorg Med Chem Lett. 2003 Feb 10;13(3):567–571.
  • Tagat JR, McCombie SW, Nazareno D, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]- 4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem. 2004 May 6;47(10):2405–2408.
  • Alcorn K. Second company halts CCR5 inhibitor study in another blow to new drug class. 2005 [cited 2016 Mar 25]; Available from: http://www.aidsmap.com/Second-company-halts-CCR5-inhibitor-study-in-another-blow-to-new-drug-class/page/1422234/
  • Gulick RM, Su Z, Flexner C, et al. Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-infected, treatment-experienced patients: AIDS clinical trials group 5211. J Infect Dis. 2007 Jul 15;196(2):304–312.
  • Adkison KK, Shachoy-Clark A, Fang L, et al. Pharmacokinetics and short-term safety of 873140, a novel CCR5 antagonist, in healthy adult subjects. Antimicrob Agents Chemother. 2005 Jul;49(7):2802–2806.
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007 Nov;6(11):881–890.
  • Stupple PA, Batchelor DV, Corless M, et al. An imidazopiperidine series of CCR5 antagonists for the treatment of HIV: the discovery of N-{(1S)-1-(3-fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydr o-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]propyl}acetamide (PF-232798). J Med Chem. 2011 Jan 13;54(1):67–77.
  • Anti-HIV agents. Is PF-232798 a possible successor to maraviroc? TreatmentUpdate. 2008 Mar;20(2):8.
  • Kazmierski WM, Aquino C, Chauder BA, et al. Discovery of bioavailable 4,4-disubstituted piperidines as potent ligands of the chemokine receptor 5 and inhibitors of the human immunodeficiency virus-1. J Med Chem. 2008 Oct 23;51(20):6538–6546.
  • Kazmierski WM, Anderson DL, Aquino C, et al. Novel 4,4-disubstituted piperidine-based C–C chemokine receptor-5 inhibitors with high potency against human immunodeficiency virus-1 and an improved human ether-a-go-go related gene (hERG) profile. J Med Chem. 2011 Jun 09;54(11):3756–3767.
  • Duan M, Kazmierski WM, Chong PY, et al. Discovery of novel pyridyl carboxamides as potent CCR5 antagonists and optimization of their pharmacokinetic profile in rats. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6470–6475.
  • Duan M, Aquino C, Ferris R, et al. [2-(4-Phenyl-4-piperidinyl)ethyl]amine based CCR5 antagonists: derivatizations at the N-terminal of the piperidine ring. Bioorg Med Chem Lett. 2009 Mar 15;19(6):1610–1613.
  • Duan M, Aquino C, Dorsey GF Jr, et al. 4,4-Disubstituted cyclohexylamine based CCR5 chemokine receptor antagonists as anti-HIV-1 agents. Bioorg Med Chem Lett. 2009 Sep 1;19(17):4988–4992.
  • Tallant MD, Duan M, Freeman GA, et al. Synthesis and evaluation of 2-phenyl-1,4-butanediamine-based CCR5 antagonists for the treatment of HIV-1. Bioorg Med Chem Lett. 2011 Mar 1;21(5):1394–1398.
  • Zhang HS, Feng DZ, Chen L, et al. Discovery of novel (S)-alpha-phenyl-gamma-amino butanamide containing CCR5 antagonists via functionality inversion approach. Bioorg Med Chem Lett. 2010 Apr 1;20(7):2219–2223.
  • Fan X, Zhang H-S, Chen L, et al. Efficient synthesis and identification of novel propane-1,3-diamino bridged CCR5 antagonists with variation on the basic center carrier. Eur J Med Chem. 2010. 7. 45(7):2827–2840.
  • Imamura S, Ichikawa T, Nishikawa Y, et al. Discovery of a piperidine-4-carboxamide CCR5 antagonist (TAK-220) with highly potent anti-HIV-1 activity. J Med Chem. 2006 May 4;49(9):2784–2793.
  • Drugs in clinical development for HIV: summary and table. Springer International Publishing. Pharm Med. 2015;29:105.
  • Ma D, Yu S, Li B, et al. Synthesis and biological evaluation of 1,3,3,4-tetrasubstituted pyrrolidine CCR5 receptor antagonists. Discovery of a potent and orally bioavailable anti-HIV agent. ChemMedChem. 2007 Feb;2(2):187–193.
  • Li B, Jones ED, Zhou E, et al. Studies on the structure-activity relationship of 1,3,3,4-tetra-substituted pyrrolidine embodied CCR5 receptor antagonists. Part 2: discovery of highly potent anti-HIV agents. Bioorg Med Chem Lett. 2010 Sep 1;20(17):5334–5336.
  • Pryde DC, Corless M, Fenwick DR, et al. The design and discovery of novel amide CCR5 antagonists. Bioorg Med Chem Lett. 2009 Feb 15;19(4):1084–1088.
  • Barber CG, Blakemore DC, Chiva JY, et al. 1-Amido-1-phenyl-3-piperidinylbutanes – CCR5 antagonists for the treatment of HIV. Part 1. Bioorg Med Chem Lett. 2009 Feb 15;19(4):1075–1079.
  • Barber CG, Blakemore DC, Chiva JY, et al. 1-Amido-1-phenyl-3-piperidinylbutanes – CCR5 antagonists for the treatment of HIV: part 2. Bioorg Med Chem Lett. 2009 Mar 1;19(5):1499–1503.
  • Skerlj R, Bridger G, Zhou Y, et al. Design and synthesis of pyridin-2-yloxymethylpiperidin-1-ylbutyl amide CCR5 antagonists that are potent inhibitors of M-tropic (R5) HIV-1 replication. Bioorg Med Chem Lett. 2011 Apr 15;21(8):2450–2455.
  • Skerlj R, Bridger G, Zhou Y, et al. Design and synthesis of pyridin-2-ylmethylaminopiperidin-1-ylbutyl amide CCR5 antagonists that are potent inhibitors of M-tropic (R5) HIV-1 replication. Bioorg Med Chem Lett. 2011 Dec 1;21(23):6950–6954.
  • Liu T, Weng Z, Dong X, et al. Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists. PLoS One. 2013;8(1):e53636.
  • Hu S, Gu Q, Wang Z, et al. Design, synthesis, and biological evaluation of novel piperidine-4-carboxamide derivatives as potent CCR5 inhibitors. Eur J Med Chem. 2014;71:259–266.
  • Thoma G, Nuninger F, Schaefer M, et al. Orally bioavailable competitive CCR5 antagonists. J Med Chem. 2004 Apr 8;47(8):1939–1955.
  • Thoma G, Beerli C, Bigaud M, et al. Reduced cardiac side-effect potential by introduction of polar groups: discovery of NIBR-1282, an orally bioavailable CCR5 antagonist which is active in vivo. Bioorg Med Chem Lett. 2008 Mar 15;18(6):2000–2005.
  • Yang H, Lin XF, Padilla F, et al. Discovery of a potent, selective and orally bioavailable 3,9-diazaspiro[5.5]undeca-2-one CCR5 antagonist. Bioorg Med Chem Lett. 2009 Jan 1;19(1):209–213.
  • Gabriel S, Rotstein D, Inventors; Heterocyclic antiviral compounds patent. US20050176703 A1. 2005.
  • Ernst J, Dahl R, Lum C, et al. Anti-HIV-1 entry optimization of novel imidazopiperidine-tropane CCR5 antagonists. Bioorg Med Chem Lett. 2008 Feb 15;18(4):1498–1501.
  • Wei RG, Arnaiz DO, Chou YL, et al. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives. Bioorg Med Chem Lett. 2007 Jan 1;17(1):231–234.
  • Lu SF, Chen B, Davey D, et al. CCR5 receptor antagonists: discovery and SAR of novel 4-hydroxypiperidine derivatives. Bioorg Med Chem Lett. 2007 Apr 1;17(7):1883–1887.
  • Duan M, Peckham J, Edelstein M, et al. Discovery of N-benzyl-N′-(4-pipyridinyl)urea CCR5 antagonists as anti-HIV-1 agents (I): optimization of the amine portion. Bioorg Med Chem Lett. 2010 Dec 15;20(24):7397–7400.
  • Duan M, Peckham J, Edelstein M, et al. Discovery of N-benzyl-N′-(4-pipyridinyl)urea CCR5 antagonists as anti-HIV-1 agents (II): modification of the acyl portion. Bioorg Med Chem Lett. 2010 Dec 15;20(24):7401–7404.
  • Duan M, Kazmierski WM, Tallant M, et al. Discovery of a novel series of cyclic urea as potent CCR5 antagonists. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6381–6385.
  • Metz M, Bourque E, Labrecque J, et al. Prospective CCR5 small molecule antagonist compound design using a combined mutagenesis/modeling approach. J Am Chem Soc. 2011 Oct 19;133(41):16477–16485.
  • Liu Y, Zhou E, Yu K, et al. Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules. 2008;13(10):2426–2441.
  • Lee EK, Melville CR, Rotstein DM, Inventors; Octahydro-pyrrolo[3,4-c] derivatives and their use as antiviral compounds patent. WO2005121145 A3. 2006.
  • Dong MX, Lu L, Li H, et al. Design, synthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine derivatives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorg Med Chem Lett. 2012 May 1;22(9):3284–3286.
  • Hu S, Wang Z, Hou T, et al. Design, synthesis, and biological evaluation of novel 2-methylpiperazine derivatives as potent CCR5 antagonists. Bioorg Med Chem. 2015 Mar 1;23(5):1157–1168.
  • Xue CB, Chen L, Cao G, et al. Discovery of INCB9471, a potent, selective, and orally bioavailable CCR5 antagonist with potent anti-HIV-1 activity. ACS Med Chem Lett. 2010;1:483–487.
  • Rotstein DM, Melville CR, Padilla F, et al. Novel hexahydropyrrolo[3,4-c]pyrrole CCR5 antagonists. Bioorg Med Chem Lett. 2010 May 15;20(10):3116–3119.
  • Lemoine RC, Petersen AC, Setti L, et al. Exploration of a new series of CCR5 antagonists: multi-dimensional optimization of a sub-series containing N-substituted pyrazoles. Bioorg Med Chem Lett. 2010 Aug 15;20(16):4753–4756.
  • Lemoine RC, Petersen AC, Setti L, et al. Evaluation of secondary amide replacements in a series of CCR5 antagonists as a means to increase intrinsic membrane permeability. Part 1: optimization of gem-disubstituted azacycles. Bioorg Med Chem Lett. 2010 Jan 15;20(2):704–708.
  • Wanner J, Chen L, Lemoine RC, et al. Evaluation of amide replacements in CCR5 antagonists as a means to increase intrinsic permeability. Part 2: SAR optimization and pharmacokinetic profile of a homologous azacyle series. Bioorg Med Chem Lett. 2010 Nov 15;20(22):6802–6807.
  • Lemoine RC, Petersen AC, Setti L, et al. Evaluation of a 3-amino-8-azabicyclo[3.2.1]octane replacement in the CCR5 antagonist maraviroc. Bioorg Med Chem Lett. 2010 Mar 1;20(5):1674–1676.
  • Lemoine RC, Petersen AC, Setti L, et al. Evaluation of a 4-aminopiperidine replacement in several series of CCR5 antagonists. Bioorg Med Chem Lett. 2010 Mar 15;20(6):1830–1833.
  • Yang SW, Mierzwa R, Terracciano J, et al. Chemokine receptor CCR-5 inhibitors produced by Chaetomium globosum. J Nat Prod. 2006 Jul;69(7):1025–1028.
  • Yang SW, Mierzwa R, Terracciano J, et al. Sch 213766, a novel chemokine receptor CCR-5 inhibitor from Chaetomium globosum. J Antibiot (Tokyo). 2007 Aug;60(8):524–528.
  • Asano S, Gavrilyuk J, Burton DR, et al. Preparation and activities of macromolecule conjugates of the CCR5 antagonist maraviroc. ACS Med Chem Lett. 2014 Feb 13;5(2):133–137.
  • Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–550.
  • Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698–5703.
  • Shiraishi M, Aramaki Y, Seto M, et al. Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J Med Chem. 2000 May 18;43(10):2049–2063.
  • Seto M, Aikawa K, Miyamoto N, et al. Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J Med Chem. 2006 Mar 23;49(6):2037–2048.
  • Hersperger RJP, Pfenninger E, Wuethrich HJ, et al. Inventor chemokine receptor antagonists patent. US20070155721A1. 2007.
  • Pease J, Horuk R. Chemokine receptor antagonists. J Med Chem. 2012 Nov 26;55(22):9363–9392.
  • Miltz W. 2008. A new approach for the treatment of autoimmune diseases. 235th National Meeting of the American Chemical Society; cited Apr 6–10; New Orleans (LA).
  • Cole PVS, Vasiliou S. Highlights from the 50th interscience conference on anti-microbial agents and chemotherapy (ICAAC). Drugs Future. 2010;35:1045–1067.
  • Forbes IT, Cooper DG, Dodds EK, et al. CCR2B receptor antagonists: conversion of a weak HTS hit to a potent lead compound. Bioorg Med Chem Lett. 2000 Aug 21;10(16):1803–1806.
  • Pasternak A, Marino D, Vicario PP, et al. Novel, orally bioavailable gamma-aminoamide CC chemokine receptor 2 (CCR2) antagonists. J Med Chem. 2006 Aug 10;49(16):4801–4804.
  • Zheng C, Cao G, Xia M, et al. Discovery of INCB10820/PF-4178903, a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist. Bioorg Med Chem Lett. 2011 Mar 1;21(5):1442–1446.
  • Gouwy M, Struyf S, Berghmans N, et al. CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol. 2011 Apr;41(4):963–973.
  • Princen K, Hatse S, Vermeire K, et al. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J Virol. 2004 Dec;78(23):12996–13006.
  • Cox BD, Prosser AR, Sun Y, et al. Pyrazolo-piperidines exhibit dual inhibition of CCR5/CXCR4 HIV entry and reverse transcriptase. ACS Med Chem Lett. 2015 Jul 9;6(7):753–757.
  • Pugach P, Marozsan AJ, Ketas TJ, et al. HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology. 2007 Apr 25;361(1):212–228.
  • Ogert RA, Hou Y, Ba L, et al. Clinical resistance to vicriviroc through adaptive V3 loop mutations in HIV-1 subtype D gp120 that alter interactions with the N-terminus and ECL2 of CCR5. Virology. 2010 Apr 25;400(1):145–155.
  • Tsibris AM, Sagar M, Gulick RM, et al. In vivo emergence of vicriviroc resistance in a human immunodeficiency virus type 1 subtype C-infected subject. J Virol. 2008 Aug;82(16):8210–8214.
  • Ogert RA, Wojcik L, Buontempo C, et al. Mapping resistance to the CCR5 co-receptor antagonist vicriviroc using heterologous chimeric HIV-1 envelope genes reveals key determinants in the C2-V5 domain of gp120. Virology. 2008 Apr 10;373(2):387–399.
  • Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007 Mar;81(5):2359–2371.
  • Roche M, Jakobsen MR, Ellett A, et al. HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry. Retrovirology. 2011;8:89.
  • Tilton JC, Amrine-Madsen H, Miamidian JL, et al. HIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry. AIDS Res Hum Retroviruses. 2010 Jan;26(1):13–24.
  • Trkola A, Kuhmann SE, Strizki JM, et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):395–400.
  • Tilton JC, Wilen CB, Didigu CA, et al. A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol. 2010 Oct;84(20):10863–10876.
  • Pfaff JM, Wilen CB, Harrison JE, et al. HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J Virol. 2010 Jul;84(13):6505–6514.
  • Kuhmann SE, Pugach P, Kunstman KJ, et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol. 2004;78(6):2790–2807.
  • Ratcliff AN, Shi W, Arts EJ. HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol. 2013 Jan;87(2):923–934.
  • Anastassopoulou CG, Ketas TJ, Klasse PJ, et al. Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. Proc Natl Acad Sci USA. 2009 Mar 31;106(13):5318–5323.
  • Anastassopoulou CG, Ketas TJ, Sanders RW, et al. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance. Virology. 2012 Jul 5;428(2):86–97.
  • Roche M, Salimi H, Duncan R, et al. A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology. 2013;10:43.
  • Baba M, Miyake H, Wang X, et al. Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother. 2007 Feb;51(2):707–715.
  • Kang Y, Wu Z, Lau TCK. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem. 2012;287:16499–16509.
  • Biswas P, Tambussi G, Lazzarin A. Access denied? The status of co-receptor inhibition to counter HIV entry. Expert Opin Pharmacother. 2007 May;8(7):923–933.
  • Reshef R, Mangan JK, Luger SM, et al. Extended CCR5 blockade in graft-versus-host disease prophylaxis – a phase II study. Blood. 2014 2014-12-06 00:00:00;124(21):2491–91.
  • CENTAUR: efficacy and safety study of cenicriviroc for the treatment of NASH in adult subjects with liver fibrosis – trial NCT02217475; and PERSEUS: preliminary efficacy and safety of cenicriviroc in adult subjects with primary sclerosing cholangitis – trial NCT02653625. [cited 8 Jan 2016]. Available from: www.clinicaltrials.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.