144
Views
5
CrossRef citations to date
0
Altmetric
Review

What can independent research for mesothelioma achieve to treat this orphan disease?

, , , , , & show all
Pages 719-732 | Received 08 Mar 2019, Accepted 27 Jun 2019, Published online: 01 Jul 2019

References

  • Mott FE. Mesothelioma: a review. Ochsner J. 2012 Spring;12(1):70–79. PubMed PMID: 22438785.
  • Guazzelli A, Bakker E, Tian K, et al. Promising investigational drug candidates in phase I and phase II clinical trials for mesothelioma. Expert Opin Investig Drugs. 2017 Aug;26(8):933–944. PubMed PMID: 28679291.
  • Pinton G, Manente AG, Tavian D, et al. Therapies currently in phase II trials for malignant pleural mesothelioma. Expert Opin Investig Drugs. 2013 Oct;22(10):1255–1263. PubMed PMID: 23815672; eng.
  • Testa JR, Giordano A. SV40 and cell cycle perturbations in malignant mesothelioma. Semin Cancer Biol. 2001 Feb 01;11(1):31–38.
  • Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011 Aug 28;43(10):1022–1025. PubMed PMID: PMC3184199.
  • Nasu M, Emi M, Pastorino S, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10(4):565–576. PubMed PMID: PMC4408084.
  • Opitz I. Management of malignant pleural mesothelioma—the European experience. J Thorac Dis. 2014 May 07;6(Suppl 2):S238–S252. PubMed PMID: PMC4032963.
  • The Lancet O. Immunotherapy: hype and hope. Lancet Oncol. 2018 Jul;19(7):845. PubMed PMID: 30084367; eng.
  • Hida T, Hamasaki M, Matsumoto S, et al. BAP1 immunohistochemistry and p16 FISH results in combination provide higher confidence in malignant pleural mesothelioma diagnosis: ROC analysis of the two tests. Pathol Int. 2016 Oct;66(10):563–570. PubMed PMID: 27614970; eng.
  • Park EK, Takahashi K, Hoshuyama T, et al. Global magnitude of reported and unreported mesothelioma. Environ Health Perspect. 2011 Apr;119(4):514–518. PubMed PMID: 21463977; PubMed Central PMCID: PMCPmc3080934. eng.
  • Robinson BM. Malignant pleural mesothelioma: an epidemiological perspective. Ann Cardiothorac Surg. 2012 Oct 10;1(4):491–496. PubMed PMID: PMC3741803.
  • Bibby AC, Tsim S, Kanellakis N, et al. Malignant pleural mesothelioma: an update on investigation, diagnosis and treatment. Eur Respir Rev. 2016;25(142):472–486.
  • Baas P, on behalf of the EGC, Fennell D, et al. Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2015;26(suppl_5):v31–v39.
  • Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003 Jul 15;21(14):2636–2644. PubMed PMID: 12860938; eng.
  • van Meerbeeck JP, Gaafar R, Manegold C, et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J Clin Oncol. 2005 Oct 1;23(28):6881–6889. PubMed PMID: 16192580; eng.
  • Castagneto B, Zai S, Dongiovanni D, et al. Cisplatin and gemcitabine in malignant pleural mesothelioma: a phase II study. Am J Clin Oncol. 2005 Jun;28(3):223–226. PubMed PMID: 15923792.
  • Kovac V, Zwitter M, Rajer M, et al. A phase II trial of low-dose gemcitabine in a prolonged infusion and cisplatin for malignant pleural mesothelioma. Anticancer Drugs. 2012 Feb;23(2):230–238. PubMed PMID: 22027538; eng.
  • Castagneto B, Botta M, Aitini E, et al. Phase II study of pemetrexed in combination with carboplatin in patients with malignant pleural mesothelioma (MPM). Ann Oncol. 2008 Feb;19(2):370–373. PubMed PMID: 18156144; eng.
  • Ceresoli GL, Zucali PA, Favaretto AG, et al. Phase II study of pemetrexed plus carboplatin in malignant pleural mesothelioma. J Clin Oncol. 2006 Mar 20;24(9):1443–1448. PubMed PMID: 16549838; eng.
  • O’Brien ME, Gaafar RM, Popat S, et al. Phase II study of first-line bortezomib and cisplatin in malignant pleural mesothelioma and prospective validation of progression free survival rate as a primary end-point for mesothelioma clinical trials (European Organisation for Research and Treatment of Cancer 08052). Eur J Cancer. 2013 Sep;49(13):2815–2822. PubMed PMID: 23791541; eng.
  • Dowell JE, Dunphy FR, Taub RN, et al. A multicenter phase II study of cisplatin, pemetrexed, and bevacizumab in patients with advanced malignant mesothelioma. Lung Cancer. 2012 Sep;77(3):567–571. PubMed PMID: 22770372; eng.
  • Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016 Apr 2;387(10026):1405–1414. PubMed PMID: 26719230; eng.
  • Tsao AS, Harun N, Lee JJ, et al. Phase I trial of cisplatin, pemetrexed, and imatinib mesylate in chemonaive patients with unresectable malignant pleural mesothelioma. Clin Lung Cancer. 2014 May;15(3):197–201. PubMed PMID: 24492162; PubMed Central PMCID: PMCPmc5080907. eng.
  • Hassan R, Kindler HL, Jahan T, et al. Phase II clinical trial of amatuximab, a chimeric anti-mesothelin antibody with pemetrexed and cisplatin in advanced unresectable pleural mesothelioma. Clin Cancer Res. 2014 Sep 17;20(23):5927–5936. PubMed PMID: PMC4252585.
  • Zwierzyna M, Davies M, Hingorani AD, et al. Clinical trial design and dissemination: comprehensive analysis of clinicaltrials.gov and PubMed data since 2005. BMJ. 2018;361. DOI:10.1136/bmj.k2130.
  • Oehl K, Vrugt B, Opitz I, et al. Heterogeneity in malignant pleural mesothelioma. Int J Mol Sci. 2018 May 30;19(6):1603. PubMed PMID: 29848954; PubMed Central PMCID: PMCPMC6032160. eng.
  • Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–1247. PubMed PMID: 26967289.
  • Bakker E, Guazzelli A, Ashtiani F, et al. Immunotherapy advances for mesothelioma treatment. Expert Rev Anticancer Ther. 2017 Sep;17(9):799–814. PubMed PMID: 28724330; eng.
  • Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21(5):643–650. PubMed PMID: 27026676.
  • Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014 Sep 20;384(9948):1109–1117. PubMed PMID: 25034862; eng.
  • Xu JX, Maher VE, Zhang L, et al. FDA approval summary: nivolumab in advanced renal cell carcinoma after anti-angiogenic therapy and exploratory predictive biomarker analysis. Oncologist. 2017;22(3):311–317. PubMed PMID: 28232599.
  • Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014;74(11):2907–2912. PubMed PMID: 24824231.
  • Sterman DH, Recio A, Haas AR, et al. A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther. 2010 Apr;18(4):852–860. PubMed PMID: 20068553; PubMed Central PMCID: PMC2862532.
  • Dine J, Gordon R, Shames Y, et al. Immune checkpoint inhibitors: an innovation in immunotherapy for the treatment and management of patients with Cancer. Asia Pac J Oncol Nurs. 2017 Apr-Jun;4(2):127–135. PubMed PMID: 28503645.
  • Tang F, Zheng P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci. 2018 May 02;8(1):34.
  • Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106. PubMed PMID: 26558876.
  • Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017 May;66(5):551–564. PubMed PMID: 28213726; eng.
  • Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer. 2018;9(10):1773–1781. PubMed PMID: 29805703; PubMed Central PMCID: PMCPmc5968765. eng.
  • Scherpereel A, Mazieres J, Greillier L, et al. Second- or third-line nivolumab (Nivo) versus nivo plus ipilimumab (Ipi) in malignant pleural mesothelioma (MPM) patients: results of the IFCT-1501 MAPS2 randomized phase II trial. J Clin Oncol. 2017;35(18_suppl):LBA8507–LBA8507.
  • Forde PM, Scherpereel A, Tsao AS. Use of immune checkpoint inhibitors in mesothelioma. Curr Treat Options Oncol. 2019;20. DOI:10.1007/s11864-019-0613-x.
  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy [Review]. Cell Res. 2016 Dec 27;27:74.
  • Constantino J, Gomes C, Falcao A, et al. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res. 2016 Feb;168:74–95. PubMed PMID: 26297944; eng.
  • Hegmans JP, Veltman JD, Lambers ME, et al. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med. 2010 Jun 15;181(12):1383–1390. PubMed PMID: 20167848; eng.
  • Chene AL, d’Almeida S, Blondy T, et al. Pleural effusions from patients with mesothelioma induce recruitment of monocytes and their differentiation into M2 macrophages. J Thorac Oncol. 2016 Oct;11(10):1765–1773. PubMed PMID: 27418105; eng.
  • Cornelissen R, Lievense LA, Maat AP, et al. Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma. Plos One. 2014;9(9):e106742. PubMed PMID: 25192022; PubMed Central PMCID: PMCPmc4156398. eng.
  • Valle MT, Porta C, Megiovanni AM, et al. Transforming growth factor-beta released by PPD-presenting malignant mesothelioma cells inhibits interferon-gamma synthesis by an anti-PPD CD4+ T-cell clone. Int J Mol Med. 2003 Feb;11(2):161–167. PubMed PMID: 12525871; eng.
  • Garland LL, Rankin C, Gandara DR, et al. Phase II study of erlotinib in patients with malignant pleural mesothelioma: a Southwest Oncology Group Study. J Clin Oncol. 2007 Jun 10;25(17):2406–2413. PubMed PMID: 17557954; eng.
  • Jackman DM, Kindler HL, Yeap BY, et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer. 2008 Aug 15;113(4):808–814. PubMed PMID: 18543326; eng.
  • Govindan R, Kratzke RA, Herndon JE, et al. Gefitinib in patients with malignant mesothelioma: a phase II study by the cancer and leukemia group B. Clin Cancer Res. 2005 Mar 15;11(6):2300–2304. PubMed PMID: WOS:000227770000027; English.
  • Campbell NP, Kunnavakkam R, Leighl N, et al. Cediranib in patients with malignant mesothelioma: a phase II trial of the University of Chicago Phase II Consortium. Lung Cancer. 2012;78(1):76–80.
  • Nowak AK, Millward MJ, Creaney J, et al. A phase II study of intermittent sunitinib malate as second-line therapy in progressive malignant pleural mesothelioma. J Thorac Oncol. 2012 Sep;7(9):1449–1456. PubMed PMID: 22895142; eng.
  • Jahan T, Gu L, Kratzke R, et al. Vatalanib in malignant mesothelioma: a phase II trial by the Cancer and Leukemia Group B (CALGB 30107). Lung Cancer. 2012;76(3):393–396. PubMed PMID: 22197613.
  • Cacciotti P, Barbone D, Porta C, et al. SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res. 2005 Jun 15;65(12):5256–5262. PubMed PMID: WOS:000229734300038; English.
  • Summers J, Cohen MH, Keegan P, et al. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist. 2010;15(1):104–111. PubMed PMID: 20061402; PubMed Central PMCID: PMCPMC3227879. eng.
  • Cohen MH, Gootenberg J, Keegan P, et al. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist. 2007 Mar;12(3):356–361. PubMed PMID: 17405901; eng.
  • Lauro S, Onesti CE, Righini R, et al. The use of bevacizumab in non-small cell lung cancer: an update. Anticancer Res. 2014 Apr;34(4):1537–1545. PubMed PMID: 24692680; eng.
  • Kindler HL, Karrison TG, Gandara DR, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma. J Clin Oncol. 2012;30(20):2509–2515. PubMed PMID: 22665541.
  • Mossman BT, Shukla A, Heintz NH, et al. New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. Am J Pathol. 2013 Apr;182(4):1065–1077. PubMed PMID: 23395095; PubMed Central PMCID: PMCPMC3657618. eng.
  • Ramalingam SS, Belani CP, Ruel C, et al. Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J Thorac Oncol. 2009 Jan;4(1):97–101. PubMed PMID: 19096314; PubMed Central PMCID: PMCPMC3263397. eng.
  • Fennell DA, McDowell C, Busacca S, et al. Phase II clinical trial of first or second-line treatment with bortezomib in patients with malignant pleural mesothelioma. J Thorac Oncol. 2012 Sep;7(9):1466–1470. PubMed PMID: 22895144; eng.
  • Stevenson JP, Kindler HL, Papasavvas E, et al. Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncoimmunology. 2013;2(8):e26218–e26218. PubMed PMID: 24179709.
  • Strizzi L, Catalano A, Vianale G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol. 2001 Apr;193(4):468–475. PubMed PMID: 11276005; eng.
  • Yella JK, Yaddanapudi S, Wang Y, et al. Changing trends in computational drug repositioning. Pharmaceuticals (Basel). 2018 Jun 5;11(2). PubMed PMID: 29874824. DOI:10.3390/ph11020057.
  • Boyer A, Pasquier E, Tomasini P, et al. Drug repurposing in malignant pleural mesothelioma: a breath of fresh air? Eur Respir Rev. 2018 Mar 31;27(147):170098. PubMed PMID: 29540495; eng.
  • Amelio I, Gostev M, Knight RA, et al. DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death Dis. 2014 Feb 6;5:e1051. PubMed PMID: 24503543; PubMed Central PMCID: PMCPMC3944280. eng.
  • Tian K, Bakker E, Hussain M, et al. p53 modeling as a route to mesothelioma patients stratification and novel therapeutic identification. J Transl Med. 2018 Oct 13;16(1):282. PubMed PMID: 30316293; PubMed Central PMCID: PMCPMC6186085. eng.
  • Meng XY, Zhang HX, Mezei M, et al. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun 1;7(2):146–157. PubMed PMID: 21534921; PubMed Central PMCID: PMCPMC3151162. eng.
  • Utomo DH, Widodo N, Rifa’i M. Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening. Bioinformation. 2012;8(9):426–429. PubMed PMID: 22715313; PubMed Central PMCID: PMCPMC3374373. eng.
  • Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012 Jul 23;52(7):1757–1768. PubMed PMID: 22587354; PubMed Central PMCID: PMCPMC3402020. eng.
  • Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci. 2011 May;68(9):1569–1579. PubMed PMID: 21207098; eng.
  • Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999 Nov 18;341(21):1565–1571. PubMed PMID: 10564685; eng.
  • Baas P, Boogerd W, Dalesio O, et al. Thalidomide in patients with malignant pleural mesothelioma. Lung Cancer. 2005 May 01;48(2):291–296.
  • Buikhuisen WA, Burgers JA, Vincent AD, et al. Thalidomide versus active supportive care for maintenance in patients with malignant mesothelioma after first-line chemotherapy (NVALT 5): an open-label, multicentre, randomised phase 3 study. Lancet Oncol. 2013 May;14(6):543–551. PubMed PMID: 23583604; eng.
  • Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J. 2001 Dec 17;20(24):6969–6978. PubMed PMID: 11742974; PubMed Central PMCID: PMCPmc125788. eng.
  • Činčárová L, Zdráhal Z, Fajkus J. New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs. 2013 Dec 01;22(12):1535–1547.
  • Krauze AV, Myrehaug SD, Chang MG, et al. A phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma. Int J Radiat Oncol Biol Phys. 2015 Aug 1;92(5):986–992. PubMed PMID: 26194676; PubMed Central PMCID: PMCPmc4510472. eng.
  • Coronel J, Cetina L, Pacheco I, et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol. 2011 Dec;28(Suppl 1):S540–6. PubMed PMID: 20931299; eng.
  • Vandermeers F, Hubert P, Delvenne P, et al. Valproate, in combination with pemetrexed and cisplatin, provides additional efficacy to the treatment of malignant mesothelioma. Clin Cancer Res. 2009 Apr 15;15(8):2818–2828. PubMed PMID: 19351772; eng.
  • Scherpereel A, Berghmans T, Lafitte JJ, et al. Valproate-doxorubicin: promising therapy for progressing mesothelioma. A phase II study. Eur Respir J. 2011 Jan;37(1):129–135. PubMed PMID: 20530048; eng.
  • Hindler K, Cleeland CS, Rivera E, et al. The role of statins in cancer therapy. Oncologist. 2006 Mar;11(3):306–315. PubMed PMID: WOS:000240626900010; English.
  • Rubins JB, Greatens T, Kratzke RA, et al. Lovastatin induces apoptosis in malignant mesothelioma cells. Am J Respir Crit Care Med. 1998 May;157(5):1616–1622. PubMed PMID: WOS:000073570700038; English.
  • Yamauchi Y, Izumi Y, Asakura K, et al. Lovastatin and valproic acid additively attenuate cell invasion in ACC-MESO-1 cells. Biochem Biophys Res Commun. 2011 Jul 1;410(2):328–332. PubMed PMID: WOS:000292623800030; English.
  • Hwang KE, Kim YS, Hwang YR, et al. Enhanced apoptosis by pemetrexed and simvastatin in malignant mesothelioma and lung cancer cells by reactive oxygen species-dependent mitochondrial dysfunction and Bim induction. Int J Oncol. 2014 Oct;45(4):1769–1777. PubMed PMID: WOS:000342528000048; English.
  • Tuerdi G, Ichinomiya S, Sato H, et al. Synergistic effect of combined treatment with gamma-tocotrienol and statin on human malignant mesothelioma cells. Cancer Lett. 2013 Oct 1;339(1):116–127. PubMed PMID: WOS:000324666800014; English.
  • Asakura K, Izumi Y, Yamamoto M, et al. The Cytostatic Effects of Lovastatin on ACC-MESO-1 Cells. J Surg Res. 2011 Oct;170(2):E197–E209. PubMed PMID: WOS:000295128600001; English.
  • Pounds R, Leonard S, Dawson C, et al. Repurposing itraconazole for the treatment of cancer. Oncol Lett. 2017;14(3):2587–2597. PubMed PMID: 28927025.
  • You M, Varona-Santos J, Singh S, et al. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg. 2014 Jan;147(1):508–516. PubMed PMID: 24094913; eng.
  • Falchi L, Verstovsek S, Ravandi-Kashani F, et al. The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: moving toward an effective oral, outpatient therapy. Cancer. 2016 Apr 15;122(8):1160–1168. PubMed PMID: WOS:000373957800007; English.
  • Eguchi R, Fujimori Y, Takeda H, et al. Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. J Cell Physiol. 2011 Mar;226(3):762–768. PubMed PMID: WOS:000287258100020; English.
  • Lam SK, Li YY, Zheng CY, et al. Downregulation of thymidylate synthase and E2F1 by arsenic trioxide in mesothelioma. Int J Oncol. 2015 Jan;46(1):113–122. PubMed PMID: 25335113; eng.
  • Testino G, Leone S, Borro P. Treatment of alcohol dependence: recent progress and reduction of consumption. Minerva Med. 2014 Dec;105(6):447–466. PubMed PMID: WOS:000347761500001; English.
  • Lin JQ, Haffner MC, Zhang YG, et al. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate. 2011 Mar 1;71(4):333–343. PubMed PMID: WOS:000287894000001; English.
  • Cheriyan VT, Wang Y, Muthu M, et al. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. Plos One. 2014 Apr 1;9(4):e93711. PubMed PMID: WOS:000334101100129; English.
  • Saha S, Mukherjee S, Khan P, et al. Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NF kappa B-IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Res. 2016 Apr 1;76(7):2000–2012. PubMed PMID: WOS:000374169600034; English.
  • Yang H, Pellegrini L, Napolitano A, et al. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis. 2015 Jun;6:e1786-e1786. PubMed PMID: WOS:000357514700012; English.
  • Steinbach G, Lynch PM, Phillips RKS, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. New Engl J Med. 2000 Jun 29;342(26):1946–1952. PubMed PMID: WOS:000087867400003; English.
  • Veltman JD, Lambers MEH, van Nimwegen M, et al. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. Bmc Cancer. 2010 Aug 30;10. PubMed PMID: WOS:000282718800002; English. DOI:10.1186/1471-2407-10-464.
  • Zi F, Zi H, Li Y, et al. Metformin and cancer: an existing drug for cancer prevention and therapy. Oncol Lett. 2018;15(1):683–690. PubMed PMID: 29422962.
  • Lou E, Fujisawa S, Morozov A, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. Plos One. 2012 Mar 9;7(3):e33093. PubMed PMID: WOS:000303062800044; English.
  • Kannappan R, Gupta SC, Kim JH, et al. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr. 2012;7(1):43–52. PubMed PMID: 21484157.
  • Nakashima K, Virgona N, Miyazawa M, et al. The tocotrienol-rich fraction from rice bran enhances cisplatin-induced cytotoxicity in human mesothelioma H28 cells. Phytother Res. 2010 Sep;24(9):1317–1321. PubMed PMID: 20127663; eng.
  • Sato A, Ueno H, Takase A, et al. Cytotoxicity induced by a redox-silent analog of tocotrienol in human mesothelioma H2452 cell line via suppression of cap-dependent protein translation. Anticancer Res. 2016 Apr;36(4):1527–1533. PubMed PMID: 27069128; eng.
  • Abayasiriwardana KS, Barbone D, Kim KU, et al. Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim. Mol Cancer Ther. 2007 Oct;6(10):2766–2776. PubMed PMID: 17938269; eng.
  • Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–1045. PubMed PMID: 18775204.
  • Perry CM, Figgitt DP. Zoledronic acid: a review of its use in patients with advanced cancer. Drugs. 2004;64(11):1197–1211. PubMed PMID: 15161327; eng.
  • Okamoto S, Kawamura K, Li Q, et al. Zoledronic acid produces antitumor effects on mesothelioma through apoptosis and S-phase arrest in p53-independent and ras prenylation-independent manners. J Thorac Oncol. 2012 May 01;7(5):873–882.
  • Jamil MO, Jerome MS, Miley D, et al. A pilot study of zoledronic acid in the treatment of patients with advanced malignant pleural mesothelioma. Lung Cancer-Targets. 2017;8:39–44. PubMed PMID: WOS:000404587800005; English.
  • Clive AO, Hooper CE, Edey AJ, et al. A randomised controlled trial of intravenous zoledronic acid in malignant pleural disease: a proof of principle pilot study. Plos One. 2015;10(3):e0118569. PubMed PMID: 25781025; PubMed Central PMCID: PMCPmc4364455. eng.
  • de Fonseka D, Morley A, Stadon L, et al. Zoledronic acid in the management of mesothelioma - a feasibility study (Zol-A Trial): study protocol for a randomised controlled trial. Trials. 2018 Aug 29;19(1):467.
  • Klabatsa A, Sheaff MT, Steele JPC, et al. Expression and prognostic significance of hypoxia-inducible factor 1α (HIF-1α) in malignant pleural mesothelioma (MPM). Lung Cancer. 2006 Jan 01;51(1):53–59.
  • Francis RJ, Segard T, Morandeau L, et al. Characterization of hypoxia in malignant pleural mesothelioma with FMISO PET-CT. Lung Cancer. 2015 Oct;90(1):55–60. PubMed PMID: 26259878; eng.
  • Kim M-C, Hwang S-H, Kim N-Y, et al. Hypoxia promotes acquisition of aggressive phenotypes in human malignant mesothelioma. BMC Cancer. 2018 Aug 15;18(1):819.
  • Nabavi N, Bennewith KL, Churg A, et al. Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Genes Cancer. 2016;7(11–12):340–354. PubMed PMID: 28191281.
  • De Santi C, Melaiu O, Bonotti A, et al. Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism. Sci Rep. 2017;7(1): 3140–3140. PubMed PMID: 28600498. DOI:10.1038/s41598-017-02694-0.
  • Moody HL, Lind MJ, Maher SG. MicroRNA-31 regulates chemosensitivity in malignant pleural mesothelioma. Mol Ther Nucleic Acids. 2017 Sep 15;8:317–329. PubMed PMID: 28918032; PubMed Central PMCID: PMCPMC5537169. eng.
  • Reid G, Pel ME, Kirschner MB, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013 Dec;24(12):3128–3135. PubMed PMID: 24148817; eng.
  • van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017 Oct;18(10):1386–1396. PubMed PMID: 28870611; eng.
  • Zhang X, Varin E, Allouche S, et al. Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res. 2009 Apr;29(4):1249–1254. PubMed PMID: 19414371.
  • Perumal V, Pohl S, Keane KN, et al. Therapeutic approach to target mesothelioma cancer cells using the Wnt antagonist, secreted frizzled-related protein 4: metabolic state of cancer cells. Exp Cell Res. 2016 Feb 15;341(2):218–224.
  • Li T, Hou S-C, Mao J-H, et al. The expression of Dishevelled-3 and glutamine metabolism in malignant pleural mesothelioma. J Clin Pathol. 2012;65(9):855–858. PubMed PMID: 22569537.
  • Guazzelli A, Meysami P, Bakker E, et al. BAP1 status determines the sensitivity of malignant mesothelioma cells to gemcitabine treatment. Int J Mol Sci. 2019 Jan 19;20(2):429. PubMed PMID: 30669483; PubMed Central PMCID: PMCPMC6359027. eng.
  • Bononi A, Giorgi C, Patergnani S, et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature. 2017 Jun 22;546(7659):549–553. PubMed PMID: 28614305; PubMed Central PMCID: PMC5581194.
  • Frizelle SP, Kratzke MG, Carreon RR, et al. Inhibition of both mesothelioma cell growth and Cdk4 activity following treatment with a TATp16INK4a peptide. Anticancer Res. 2008 Jan-Feb;28(1a):1–7. PubMed PMID: 18383817; eng.
  • Bonelli MA, Digiacomo G, Fumarola C, et al. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia (New York, NY). 2017 Aug;19(8):637–648. PubMed PMID: 28704762; PubMed Central PMCID: PMCPMC5508477. eng.
  • Collins DC, Constantinidou A, Sundar R, et al. Patterns of metastases in malignant pleural mesothelioma in the modern era: redefining the spread of an old disease. J Clin Oncol. 2017;35(15_suppl): 8556–8556.
  • Massard C, Michiels S, Ferté C, et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.