54
Views
0
CrossRef citations to date
0
Altmetric
Review

Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status

ORCID Icon, ORCID Icon & ORCID Icon
Received 09 Feb 2024, Accepted 25 Apr 2024, Published online: 14 May 2024

References

  • Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen. n. sp. ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909;1(2):159–218. doi: 10.1590/S0074-02761909000200008
  • WHO. Chagas disease (also known as American trypanosomiasis) [Internet]. 2023 [cited 2022 Sep 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  • Durães-Oliveira J, Palma-Marques J, Moreno C, et al. Chagas disease: a silent threat for dogs and humans. Int J Mol Sci. 2024;25(7):3840. doi: 10.3390/ijms25073840
  • Gascon J, Bern C, Pinazo M-J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 2010;115(1–2):22–27. doi: 10.1016/j.actatropica.2009.07.019
  • Guhl F, Ramírez JD. Poverty, migration, and Chagas disease. Curr Trop Med Rep [Internet]. 2021 [cited 2021 Feb 11];8(1):52–58. Available from: https://doi.org/10.1007/s40475-020-00225-y
  • Lidani KCF, Andrade FA, Bavia L, et al. Chagas disease: from discovery to a worldwide health problem. Front Public Health. 2019;7:166. doi: 10.3389/fpubh.2019.00166
  • Brener Z. Biology of Trypanosoma Cruzi. Annu Rev Microbiol. 1973;27(1):347–382. doi: 10.1146/annurev.mi.27.100173.002023
  • Carlier Y, Torrico F. Congenital infection with Trypanosoma cruzi: from mechanisms of transmission to strategies for diagnosis and control. Rev Soc Bras Med Trop. 2003;36(6):767–771. doi: 10.1590/S0037-86822003000600024
  • Cevallos AM, Hernández R. Chagas’ disease: pregnancy and congenital transmission. Biomed Res Int. 2014;2014:1–10. doi: 10.1155/2014/401864
  • Dias JCP, Amato Neto V. Prevenção referente às modalidades alternativas de transmissão do trypanosoma cruzi no Brasil. Rev Soc Bras Med Trop. 2011;44 Suppl 2(suppl 2):68–72. doi: 10.1590/S0037-86822011000800011
  • Howard JE, Rios C, Ebensperger I, et al. [Congenital Chagas’ disease]. Bol Chil Parasitol. 1957;12(3):42–45.
  • Wanderley DM, Aranha Camargo LM, de Carvalho ME. Chagas’ disease: registry of an acute transfusional case. Rev Inst Med Trop S Paulo. 1988;30(6):437–440. doi: 10.1590/S0036-46651988000600009
  • Beatty NL, Arango-Ferreira C, Gual-Gonzalez L, et al. Oral Chagas disease in Colombia—confirmed and suspected routes of transmission. Trop Med Infect Dis. 2024;9(1):14. doi: 10.3390/tropicalmed9010014
  • Dias JCP. Notas sobre o Trypanosoma cruzi e suas características bio-ecológicas, como agente de enfermidades transmitidas por alimentos. Rev Soc Bras Med Trop. 2006;39(4):370–375. doi: 10.1590/S0037-86822006000400010
  • Filigheddu MT, Górgolas M, Ramos JM. Enfermedad de Chagas de transmisión oral. Med Clínica. 2017;148(3):125–131. doi: 10.1016/j.medcli.2016.10.038
  • Pereira KS, Schmidt FL, Guaraldo AMA, et al. Chagas’ disease as a foodborne illness. J Food Prot. 2009;72(2):441–446. doi: 10.4315/0362-028X-72.2.441
  • Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi: 10.1016/S0140-6736(17)31612-4
  • Rassi A, Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2012;26(2):275–291. doi: 10.1016/j.idc.2012.03.002
  • Chapadeiro E. Clinical evolution and morbi-mortality in Chagas disease. Mem Inst Oswaldo Cruz. 1999;94 Suppl 1(suppl 1):309–310. doi: 10.1590/S0074-02761999000700058
  • De Sousa AS, Vermeij D, Ramos AN, et al. Chagas disease. Lancet. 2024;403(10422):203–218. doi: 10.1016/S0140-6736(23)01787-7
  • PAHO/WHO. World Chagas disease Day 2023 - PAHO/WHO | Pan American Health Organization [Internet]. 2023 [cited 2024 Jan 22]. Available from: https://www.paho.org/en/campaigns/world-chagas-disease-day-2023
  • Díaz-Bello Z, De Noya BA, Muñoz-Calderón A, et al. Ten-year follow-up of the largest oral Chagas disease outbreak. Laboratory biomarkers of infection as indicators of therapeutic failure. Acta Trop. 2021;222:106034. doi: 10.1016/j.actatropica.2021.106034
  • Molina I, Salvador F, Sánchez-Montalvá A. Posaconazole versus benznidazole for chronic chagas. Disease N Engl J Med. 2014;371:965–966.
  • Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–1306. doi: 10.1056/NEJMoa1507574
  • Ribeiro V, Dias N, Paiva T, et al. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist. 2020;12:7–17. doi: 10.1016/j.ijpddr.2019.11.004
  • Torrico F, Gascon J, Ortiz L, et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis. 2018;18(4):419–430. doi: 10.1016/S1473-3099(17)30538-8
  • Crespillo-Andújar C, Comeche B, Hamer DH, et al. Use of benznidazole to treat chronic Chagas disease: an updated systematic review with a meta-analysis. Rostami A, editor. PLOS Negl Trop Dis. 2022;16(5):e0010386. doi: 10.1371/journal.pntd.0010386
  • Morillo CA, Waskin H, Sosa-Estani S, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. Cruzi Carriers. J Am Coll Cardiol. 2017;69(8):939–947. doi: 10.1016/j.jacc.2016.12.023
  • Torrico F, Gascón J, Barreira F, et al. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial. Lancet Infect Dis. 2021;21(8):1129–1140. doi: 10.1016/S1473-3099(20)30844-6
  • Wilkinson SR, Kelly JM. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med. 2009;11:e31. doi: 10.1017/S1462399409001252
  • Patterson S, Fairlamb AH. Current and future prospects of nitro-compounds as drugs for trypanosomiasis and leishmaniasis. Curr Med Chem. 2019;26(23):4454–4475. doi: 10.2174/0929867325666180426164352
  • Gatto M, Oliveira LRC, De Nuzzi Dias F, et al. Benznidazole affects expression of Th1, Th17 and treg cytokines during acute experimental trypanosoma cruzi infection. J Venom Anim Toxins Incl Trop Dis. 2017;23(1):47. doi: 10.1186/s40409-017-0137-4
  • Maya JD, Cassels BK, Iturriaga-Vásquez P, et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(4):601–620. doi: 10.1016/j.cbpa.2006.03.004
  • Rajão MA, Furtado C, Alves CL, et al. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins in trypanosoma cruzi. Environ Mol Mutagen. 2014;55(4):309–321. doi: 10.1002/em.21839
  • Dias JCP, Novaes Ramos A, Dias Gontijo E, et al. II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiol serv saúde. 2016;25(21):1–10. doi: 10.5123/S1679-49742016002100002
  • PAHO. Guía para el diagnóstico y el tratamiento de la enfermedad de Chagas. 2018; Available from: https://iris.paho.org/handle/10665.2/49653
  • González NL, Moscatelli G, Moroni S, et al. Long-term cardiology outcomes in children after early treatment for Chagas disease, an observational study. Angheben A, editor. PLOS Negl Trop Dis. 2022;16(12):e0010968. doi: 10.1371/journal.pntd.0010968
  • Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop. 2010;115(1–2):55–68. doi: 10.1016/j.actatropica.2009.10.023
  • Yun O, Lima MA, Ellman T, et al. Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of médecins sans frontières. PLOS Negl Trop Dis. 2009;3(7):e488. doi: 10.1371/journal.pntd.0000488
  • Altcheh J, Castro L, Dib JC, et al. Prospective, historically controlled study to evaluate the efficacy and safety of a new paediatric formulation of nifurtimox in children aged 0 to 17 years with Chagas disease one year after treatment (CHICO). Gürtler RE, editor. PlOS Negl Trop Dis. 2021;15(1):e0008912. doi: 10.1371/journal.pntd.0008912
  • Molina-Morant D, Fernández ML, Bosch-Nicolau P, et al. Efficacy and safety assessment of different dosage of benznidazol for the treatment of Chagas disease in chronic phase in adults (MULTIBENZ study): study protocol for a multicenter randomized phase II non-inferiority clinical trial. Trials. 2020;21(1):328. doi: 10.1186/s13063-020-4226-2
  • Cafferata ML, Toscani MA, Althabe F, et al. Short-course benznidazole treatment to reduce trypanosoma cruzi parasitic load in women of reproductive age (BETTY): a non-inferiority randomized controlled trial study protocol. Reprod Health. 2020;17(1):128. doi: 10.1186/s12978-020-00972-1
  • Alonso-Vega C, Urbina JA, Sanz S, et al. New chemotherapy regimens and biomarkers for Chagas disease: the rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the plurinational state of Bolivia. BMJ Open. 2021;11(12):e052897. doi: 10.1136/bmjopen-2021-052897
  • Bosch-Nicolau P, Fernández ML, Sulleiro E, et al. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): an international, randomised, double-blind, phase 2b trial. Lancet Infect Dis. 2024;24(4):S386–394. doi: 10.1016/S1473-3099(23)00629-1
  • Molina-Morant D, Fernández ML, Bosch-Nicolau P, et al. Correction: efficacy and safety assessment of different dosage of benznidazol for the treatment of Chagas disease in chronic phase in adults (MULTIBENZ study): study protocol for a multicenter randomized phase II non-inferiority clinical trial. Trials. 2023;24(1):726. doi: 10.1186/s13063-023-07659-5
  • Torrico F, Gascón J, Ortiz L, et al. A phase 2, randomized, multicenter, placebo-controlled, proof-of-concept trial of oral fexinidazole in adults with chronic indeterminate Chagas disease. Clin Infect Dis. 2023;76(3):e1186–e1194. doi: 10.1093/cid/ciac579
  • Pinazo M-J, Forsyth C, Losada I, et al. Efficacy and safety of fexinidazole for treatment of chronic indeterminate Chagas disease (FEXI-12): a multicentre, randomised, double-blind, phase 2 trial. Lancet Infect Dis. 2024;24(4):S395–403. doi: 10.1016/S1473-3099(23)00651-5
  • Bahia MT, Diniz LDF, Mosqueira VCF. Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opinion On Investigational Drugs. 2014;23(9):1225–1237.
  • Holanda MT, Mediano MFF, Hasslocher-Moreno AM, et al. Effects of selenium treatment on cardiac function in chagas heart disease: results from the STCC randomized trial. EClinicalMedicine. 2021;40:101105. doi: 10.1016/j.eclinm.2021.101105
  • Araujo-Lima CF, Peres RB, Silva PB, et al. Repurposing strategy of atorvastatin against Trypanosoma cruzi: In Vitro monotherapy and combined therapy with benznidazole exhibit synergistic trypanocidal activity. Antimicrob Agents Chemother. 2018;62(9):62. doi: 10.1128/AAC.00979-18
  • Mazzeti AL, Oliveira LT, Gonçalves KR, et al. Benznidazole self-emulsifying delivery system: a novel alternative dosage form for Chagas disease treatment. Eur J Pharm Sci. 2020;145:105234.
  • Milagre MM, Branquinho RT, Gonçalves MF, et al. Activity of the sesquiterpene lactone goyazensolide against Trypanosoma cruzi in vitro and in vivo. Parasitology. 2020;147(1):108–119. doi: 10.1017/S0031182019001276
  • Torchelsen FKVDS, Silva TM, Milagre MM, et al. Evaluation of the anti-trypanosoma cruzi activity in vitro and in vivo of silibinin and silibinin in association to benznidazole. Parasitol Res. 2021;120:1511–1517. doi: 10.1007/s00436-020-06944-5
  • Cardoso-Santos C, Ferreira De Almeida Fiuza L, França Da Silva C, et al. 7-aryl-7-deazapurine 3′-deoxyribonucleoside derivative as a novel lead for Chagas’ disease therapy: in vitro and in vivo pharmacology. JAC-Antimicrob Resist. 2021;3(4):dlab168. doi: 10.1093/jacamr/dlab168
  • de Araújo JS, França da Silva C, Batista DDG, et al. Efficacy of novel pyrazolone phosphodiesterase inhibitors in experimental mouse models of Trypanosoma cruzi. Antimicrob Agents Chemother. 2020;64(9):64. doi: 10.1128/AAC.00414-20
  • Espinosa R, Robledo S, Guzmán C, et al. Synthesis and evaluation of the in vitro and in vivo antitrypanosomal activity of 2-styrylquinolines. Heliyon. 2021;7(5):e07024. doi: 10.1016/j.heliyon.2021.e07024
  • Lin C, Hulpia F, da Silva CF, et al. Discovery of Pyrrolo[2,3- b]pyridine (1,7-dideazapurine) nucleoside analogues as anti- trypanosoma cruzi agents. J Med Chem. 2019;62(19):8847–8865. doi: 10.1021/acs.jmedchem.9b01275
  • Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81(5):755–759. doi: 10.1016/0035-9203(87)90020-4
  • Vela A, Coral-Almeida M, Sereno D, et al. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and meta-analysis. Gürtler RE, editor. PLOS Negl Trop Dis. 2021;15(3):e0009269. doi: 10.1371/journal.pntd.0009269
  • Fesser A, Beilstein S, Kaiser M, et al. Trypanosoma cruzi STIB980: a TcI strain for drug discovery and reverse genetics. Pathogens. 2023;12(10):1217. doi: 10.3390/pathogens12101217
  • Teston APM, Fernandes NDS, Abegg CP, et al. Therapeutic effects of benznidazole in Swiss mice that are orally inoculated with Trypanosoma cruzi IV strains from the western Brazilian Amazon. Exp Parasitol. 2021;228:108136. doi: 10.1016/j.exppara.2021.108136
  • Martín-Escolano R, Rosales MJ, Marín C. Biological characteristics of the trypanosoma cruzi arequipa strain make it a good model for Chagas disease drug discovery. Acta Trop. 2022;236:106679. doi: 10.1016/j.actatropica.2022.106679
  • Grosso NL, Bua J, Perrone AE, et al. Trypanosoma cruzi: biological characterization of a isolate from an endemic area and its susceptibility to conventional drugs. Exp Parasitol. 2010;126(2):239–244. doi: 10.1016/j.exppara.2010.05.010
  • Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov. 2020;15(12):1381–1402.
  • Mateus J, Guerrero P, Lasso P, et al. An animal model of acute and chronic Chagas disease with the reticulotropic Y strain of trypanosoma cruzi that depicts the multifunctionality and dysfunctionality of T cells. Front Immunol. 2019;10:918. doi: 10.3389/fimmu.2019.00918
  • Bahia MT, Andrade ID, Martins TAF, et al. Fexinidazole: a potential new drug candidate for chagas disease. Pollastri MP, editor. PLOS Negl Trop Dis. 2012;6(11):e1870. doi: 10.1371/journal.pntd.0001870
  • Bahia MT, Nascimento AFS, Mazzeti AL, et al. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for chagas disease. Antimicrob Agents Chemother. 2014;58(8):4362–4370. doi: 10.1128/AAC.02754-13
  • Mazzeti AL, Gonçalves KR, Mota SLA, et al. Combination therapy using nitro compounds improves the efficacy of experimental chagas disease treatment. Parasitology. 2021;148(11):1320–1327. doi: 10.1017/S0031182021001001
  • Mazzeti AL, Diniz LDF, Gonçalves KR, et al. Time and dose-dependence evaluation of nitroheterocyclic drugs for improving efficacy following trypanosoma cruzi infection: a pre-clinical study. Biochem Pharmacol. 2018;148:213–221.
  • Moraes CB, Giardini MA, Kim H, et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for chagas disease drug discovery and development. Sci Rep. 2015;4(1):4703. doi: 10.1038/srep04703
  • Buckner FS.Experimental chemotherapy and approaches to drug discovery for Trypanosoma cruzi infection. Adv Parasitol [Internet]. Elsevier. 2011 [cited 2024 Apr 3]. 89–119. Elsevier: https://linkinghub.elsevier.com/retrieve/pii/B9780123858634000058
  • Chatelain E. Chagas disease research and development: is there light at the end of the tunnel? Comput Struct Biotechnol J. 2017;15:98–103. doi: 10.1016/j.csbj.2016.12.002
  • Romanha AJ, Castro SD, Soeiro MDN, et al. In vitro and in vivo experimental models for drug screening and development for chagas disease. Mem Inst Oswaldo Cruz. 2010;105(2):233–238. doi: 10.1590/S0074-02762010000200022
  • Moon S, Siqueira-Neto JL, Moraes CB, et al. An Image-Based Algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. Rodrigues MM, editor. PLOS ONE. 2014;9(2):e87188. doi: 10.1371/journal.pone.0087188
  • De Rycker M, Thomas J, Riley J, et al. Identification of trypanocidal activity for known clinical compounds using a new trypanosoma cruzi hit-discovery screening cascade. Burleigh BA, editor. PlOS Negl Trop Dis. 2016;10(4):e0004584. doi: 10.1371/journal.pntd.0004584
  • Branquinho RT, de Mello CGC, Oliveira MT, et al. Lychnopholide in Poly(D,L-lactide)-block-polyethylene glycol nanocapsules cures infection with a drug-resistant Trypanosoma cruzi strain at acute and chronic phases. Antimicrob Agents Chemother. 2020;64:e01937–19,/aac/64/4/AAC.01937–19.atom.
  • de Mello CGC, Branquinho RT, Oliveira MT, et al. Efficacy of lychnopholide polymeric nanocapsules after oral and intravenous administration in murine experimental chagas disease. Antimicrob Agents Chemother. 2016;60:5215–5222. doi: 10.1128/AAC.00178-16
  • Branquinho RT, Mosqueira VCF, de Oliveira-Silva JCV, et al. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental chagas disease. Antimicrob Agents Chemother. 2014;58(4):2067–2075. doi: 10.1128/AAC.00617-13
  • Rial MS, Reigada C, Prado N, et al. Effectiveness of the repurposed drug isotretinoin in an experimental murine model of chagas disease. Acta Trop. 2023;242:106920. doi: 10.1016/j.actatropica.2023.106920
  • Olivera GC, Postan M, González MN. Effects of artesunate against Trypanosoma cruzi. Exp Parasitol. 2015;156:26–31. doi: 10.1016/j.exppara.2015.05.014
  • Pandey RP, Nascimento MS, Franco CH, et al. Drug repurposing in chagas disease: chloroquine potentiates benznidazole activity against Trypanosoma cruzi in vitro and in vivo. Antimicrob Agents Chemother. 2022;66(11):e00284–22. doi: 10.1128/aac.00284-22
  • Martinez-Peinado N, Martori C, Cortes-Serra N, et al. Anti-trypanosoma cruzi activity of metabolism modifier compounds. Int J Mol Sci. 2021;22(2):688. doi: 10.3390/ijms22020688
  • Gulin JEN, Eagleson MA, López-Muñoz RA, et al. In vitro and in vivo activity of voriconazole and benznidazole combination on trypanosoma cruzi infection models. Acta Trop. 2020;211:105606. doi: 10.1016/j.actatropica.2020.105606
  • Machado YA, Bahia MT, Caldas IS, et al. Amlodipine Increases the Therapeutic Potential of Ravuconazole upon Trypanosoma cruzi Infection. Antimicrob Agents Chemother. 2020;64(8):e02497–19,/aac/64/8/AAC.02497–19.atom. doi: 10.1128/AAC.02497-19
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Nitrotriazole-based compounds as antichagasic agents in a long-treatment in vivo assay. Antimicrob Agents Chemother. 2017;61(5):e02717–16, e02717–16. doi: 10.1128/AAC.02717-16
  • Álvarez G, Varela J, Cruces E, et al. Identification of a new amide-containing thiazole as a drug candidate for treatment of chagas’ disease. Antimicrob Agents Chemother. 2015;59(3):1398–1404. doi: 10.1128/AAC.03814-14
  • Papadopoulou MV, Bloomer WD, Lepesheva GI, et al. Novel 3-nitrotriazole-based amides and Carbinols as bifunctional antichagasic agents. J Med Chem. 2015;58(3):1307–1319. doi: 10.1021/jm5015742
  • Moraes CB, White KL, Braillard S, et al. Enantiomers of nifurtimox do not exhibit stereoselective anti-trypanosoma cruzi activity, toxicity, or pharmacokinetic properties. Antimicrob Agents Chemother. 2015;59(6):3645–3647. doi: 10.1128/AAC.05139-14
  • Keenan M, Chaplin JH, Alexander PW, et al. Two analogues of fenarimol show curative activity in an experimental model of chagas disease. J Med Chem. 2013;56(24):10158–10170. doi: 10.1021/jm401610c
  • Soeiro MDN, de Souza EM, da Silva CF, et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother. 2013;57(9):4151–4163. doi: 10.1128/AAC.00070-13
  • Villalta F, Dobish MC, Nde PN, et al. VNI cures acute and chronic experimental chagas disease. J Infect Dis. 2013;208(3):504–511. doi: 10.1093/infdis/jit042
  • Guedes-da-Silva FH, Batista DGJ, Da Silva CF, et al. Antitrypanosomal activity of sterol 14α-demethylase (CYP51) inhibitors VNI and VFV in the Swiss mouse models of chagas disease induced by the trypanosoma cruzi Y strain. Antimicrob Agents Chemother. 2017;61(4):e02098–16, e02098–16. doi: 10.1128/AAC.02098-16
  • Guedes-da-Silva FH, Batista DGJ, da Silva CF, et al. Different therapeutic outcomes of benznidazole and VNI treatments in different genders in mouse experimental models of trypanosoma cruzi infection. Antimicrob Agents Chemother. 2015;59(12):7564–7570. doi: 10.1128/AAC.01294-15
  • Spósito PÁ, Mazzeti AL, de Castro KCMP, et al. Higher oral efficacy of ravuconazole in self-nanoemulsifying systems in shorter treatment in experimental chagas disease. Exp Parasitol. 2021;228:108142. doi: 10.1016/j.exppara.2021.108142
  • Mazzeti AL, Gonçalves KR, Boasquívis PF, et al. Poly-ε-caprolactone implants for benznidazole prolonged release: an alternative to chagas disease oral treatment. Pharmaceutics. 2023;15(4):1126. doi: 10.3390/pharmaceutics15041126.
  • Zingales B, Miles MA, Moraes CB, et al. Drug discovery for chagas disease should consider trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz. 2014;109(6):828–833. doi: 10.1590/0074-0276140156
  • Milagre MM, Torchelsen FKVDS, Pedrosa TCF, et al. Lychnopholide loaded in surface modified polylactide nanocapsules (LYC-PLA-PEG-NC) cure mice infected by Trypanosoma cruzi strain a prototype of resistance to benznidazole and nifurtimox: first insights of its mechanism of action. Experimental Parasitology. 2023;255:108647. doi: 10.1016/j.exppara.2023.108647
  • Guedes-da-Silva FH, Batista DGJ, Meuser MB, et al. In vitro and in vivo trypanosomicidal action of novel arylimidamides against Trypanosoma cruzi. Antimicrob Agents Chemother. 2016;60(4):2425–2434. doi: 10.1128/AAC.01667-15
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Discovery of potent nitrotriazole-based antitrypanosomal agents: in vitro and in vivo evaluation. Bioorg Med Chem. 2015;23(19):6467–6476. doi: 10.1016/j.bmc.2015.08.014
  • Russell WMS, Burch RL. The principles of humane experimental technique. Med J Aust. 1960;1:500–500.
  • De Lana M, Martins-Filho OA. Revisiting the posttherapeutic cure criterion in chagas disease: time for new methods, more questions, doubts, and polemics or time to change old concepts? Biomed Res Int. 2015;2015:1–10.
  • Machado-de-Assis GF, Silva AR, Do Bem VAL, et al. Posttherapeutic cure criteria in chagas’ disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin Vaccine Immunol. 2012;19(8):1283–1291. doi: 10.1128/CVI.00274-12
  • Katsuno K, Burrows JN, Duncan K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015;14(11):751–758. doi: 10.1038/nrd4683
  • Cerecetto H, González M. Synthetic medicinal chemistry in chagas’ disease: compounds at the final stage of “hit-to-lead” phase. Pharmaceuticals. 2010;3:810–838. doi: 10.3390/ph3040810
  • Keenan M, Alexander PW, Diao H, et al. Design, structure–activity relationship and in vivo efficacy of piperazine analogues of fenarimol as inhibitors of Trypanosoma cruzi. Bioorg Med Chem. 2013;21(7):1756–1763. doi: 10.1016/j.bmc.2013.01.050
  • Keenan M, Abbott MJ, Alexander PW, et al. Analogues of fenarimol are potent inhibitors of trypanosoma cruzi and are efficacious in a murine model of chagas disease. J Med Chem. 2012;55(9):4189–4204. doi: 10.1021/jm2015809
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur J Med Chem. 2016;123:895–904. doi: 10.1016/j.ejmech.2016.08.002
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. 3-nitrotriazole-based piperazides as potent antitrypanosomal agents. Eur J Med Chem. 2015;103:325–334. doi: 10.1016/j.ejmech.2015.08.042
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur J Med Chem. 2014;87:79–88. doi: 10.1016/j.ejmech.2014.09.045
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel 3-nitro-1H-1,2,4-triazole-based compounds as potential anti-chagasic drugs: in vivo studies. Future Med Chem. 2013;5(15):1763–1776. doi: 10.4155/fmc.13.108
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg Med Chem. 2013;21(21):6600–6607. doi: 10.1016/j.bmc.2013.08.022
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J Med Chem. 2012;55(11):5554–5565. doi: 10.1021/jm300508n
  • Papadopoulou MV, Trunz BB, Bloomer WD, et al. Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J Med Chem. 2011;54(23):8214–8223. doi: 10.1021/jm201215n
  • Soeiro MNC, Werbovetz K, Boykin DW, et al. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review. Parasitology. 2013;140(8):929–951. doi: 10.1017/S0031182013000292
  • Batista DDG, Batista MM, de Oliveira GM, et al. Arylimidamide DB766, a potential chemotherapeutic candidate for chagas’ disease treatment. Antimicrob Agents Chemother. 2010;54(7):2940–2952. doi: 10.1128/AAC.01617-09
  • da Silva CF, Batista DDG, de Araújo JS, et al. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of trypanosoma cruzi infection. Drug Des Devel Ther. 2017;11:1095–1105. doi: 10.2147/DDDT.S120618
  • da Silva CF, Batista DDG, Oliveira GM, et al. In vitro and in vivo investigation of the efficacy of arylimidamide DB1831 and its mesylated salt form–DB1965–against Trypanosoma cruzi infection. PLOS One. 2012;7(1):e30356. doi: 10.1371/journal.pone.0030356
  • Liu Z, Wenzler T, Brun R, et al. Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups. Eur J Med Chem. 2014;83:167–173. doi: 10.1016/j.ejmech.2014.06.022
  • Santos CC, Lionel JR, Peres RB, et al. In vitro, in Silico, and in vivo analyses of novel aromatic amidines against Trypanosoma cruzi. Silico, and in vivo analyses of novel aromatic amidines against Trypanosoma cruzi. Antimicrob Agents Chemother. 2018;62(2):62. doi: 10.1128/AAC.02205-17
  • Timm BL, da Silva PB, Batista MM, et al. In vitro and in vivo biological effects of novel arylimidamide derivatives against Trypanosoma cruzi. Antimicrob Agents Chemother. 2014;58(7):3720–3726. doi: 10.1128/AAC.02353-14
  • Barr SC, Warner KL, Kornreic BG, et al. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother. 2005;49(12):5160–5161. doi: 10.1128/AAC.49.12.5160-5161.2005
  • Brak K, Kerr ID, Barrett KT, et al. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for chagas disease chemotherapy. J Med Chem. 2010;53(4):1763–1773. doi: 10.1021/jm901633v
  • Cardoso MDO, de Siqueira LRP, da Silva EB, et al. 2-pyridyl thiazoles as novel anti-trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation. Eur J Med Chem. 2014;86:48–59. doi: 10.1016/j.ejmech.2014.08.012
  • da Silva EB, Oliveira E, DA S, et al. Desing and synthesis of potent anti-trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur J Med Chem. 2017;130:39–50. doi: 10.1016/j.ejmech.2017.02.026
  • de Oliveira Filho GB, Cardoso MDOO, Espíndola JWP, et al. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem. 2017;141:346–361. doi: 10.1016/j.ejmech.2017.09.047
  • de Oliveira Filho GB, de Oliveira Cardoso MV, Espíndola JWP, et al. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg Med Chem. 2015;23(23):7478–7486. doi: 10.1016/j.bmc.2015.10.048
  • Ndao M, Beaulieu C, Black WC, et al. Reversible cysteine protease inhibitors show promise for a chagas disease cure. Antimicrob Agents Chemother. 2014;58(2):1167–1178. doi: 10.1128/AAC.01855-13
  • Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, et al. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art. Biomed Pharmacother. 2018;102:608–617. doi: 10.1016/j.biopha.2018.03.102
  • Saccoliti F, Di Santo R, Costi R. Recent advancement in the search of innovative antiprotozoal agents targeting trypanothione metabolism. ChemMedchem. 2020;15(24):2420–2435. doi: 10.1002/cmdc.202000325
  • Moreira TDB, Barbosa AFS, Veiga-Santos P, et al. Effect of thiazolidine LPSF SF29 on the growth and morphology of Trypanosoma cruzi. Int J Antimicrob Agents. 2013;41:183–187. doi: 10.1016/j.ijantimicag.2012.09.018
  • Olmo F, Cussó O, Marín C, et al. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Exp Parasitol. 2016;164:20–30. doi: 10.1016/j.exppara.2016.02.004
  • Hulpia F, Van Hecke K, França da Silva C, et al. Discovery of novel 7-aryl 7-deazapurine 3′-deoxy-ribofuranosyl nucleosides with potent activity against Trypanosoma cruzi. J Med Chem. 2018;61(20):9287–9300. doi: 10.1021/acs.jmedchem.8b00999
  • Bastos JK, Albuquerque S, Silva MLA. Evaluation of the trypanocidal activity of lignans isolated from the leaves of zanthoxylum naranjillo. Planta Med. 1999;65(6):541–544. doi: 10.1055/s-1999-14012
  • Ferreira ME, Nakayama H, de Arias AR, et al. Effects of canthin-6-one alkaloids from Zanthoxylum chiloperone on trypanosoma cruzi-infected mice. J Ethnopharmacol. 2007;109(2):258–263. doi: 10.1016/j.jep.2006.07.028
  • Jimenez-Coello M, Acosta-Viana KY, Guzman-Marin E, et al. Anti-trypanosomal activity of (8-hydroxymethylen)-trieicosanyl acetate against infective forms of trypanosoma cruzi. Pharm Biol. 2010;48(6):666–671. doi: 10.3109/13880200903241853
  • Ferreira ME, Cebrián-Torrejón G, Corrales AS, et al. Zanthoxylum chiloperone leaves extract: first sustainable chagas disease treatment. J Ethnopharmacol. 2011;133(3):986–993. doi: 10.1016/j.jep.2010.11.032
  • Marín C, Ramírez- Macímacías I, López-Céspedes A, et al. In vitro and in vivo trypanocidal activity of flavonoids from delphinium staphisagria against chagas disease. J Nat Prod. 2011;74(4):744–750. doi: 10.1021/np1008043
  • Jiménez-Coello M, Acosta-Viana K, Pérez M, et al. In vivo activity of (8-hydroxymethylen)-trieicosanyl acetate against Trypanosoma cruzi during acute phase of the infection. Afr J Tradit Complement Altern Med [Internet]. 2011 [cited 2020 Dec 1]; 8(5S). Available from: http://www.ajol.info/index.php/ajtcam/article/view/67996
  • Meira CS, Guimarães ET, Bastos TM, et al. Physalins B and F, seco-steroids isolated from physalis angulata L. strongly inhibit proliferation, ultrastructure and infectivity of Trypanosoma cruzi. Parasitology. 2013;140(14):1811–1821. doi: 10.1017/S0031182013001297
  • Jimenez-Coello M, Acosta-Viana KY, Ortega-Pacheco A, et al. In vivo antiprotozoal activity of the chloroform extract from carica papaya seeds against amastigote stage of trypanosoma cruzi during indeterminate and chronic phase of infection. Evid-Based Complement Altern Med ECAM. 2014;2014:458263. doi: 10.1155/2014/458263
  • Varela J, Serna E, Torres S, et al. In vivo anti-trypanosoma cruzi activity of hydro-ethanolic extract and isolated active principles from Aristeguietia glutinosa and mechanism of action studies. Mol. 2014;19(6):8488–8502. doi: 10.3390/molecules19068488
  • da Rocha CQ, Queiroz EF, Meira CS, et al. Dimeric flavonoids from arrabidaea brachypoda and assessment of their anti- trypanosoma cruzi activity. J Nat Prod. 2014;77(6):1345–1350. doi: 10.1021/np401060j
  • Meira CS, Guimarães ET, Dos Santos JAF, et al. In vitro and in vivo antiparasitic activity of physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine Int J Phytother Phytopharm. 2015;22(11):969–974. doi: 10.1016/j.phymed.2015.07.004
  • Lozano E, Strauss M, Spina R, et al. The in vivo trypanocidal effect of the diterpene 5-epi-icetexone obtained from salvia gilliesii. Parasitol Int. 2016;65(1):23–26. doi: 10.1016/j.parint.2015.08.011
  • García-Huertas P, Olmo F, Sánchez-Moreno M, et al. Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from piper jericoense. Exp Parasitol. 2018;189:34–42. doi: 10.1016/j.exppara.2018.04.009
  • Mishina YV, Krishna S, Haynes RK, et al. Artemisinins Inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense In Vitro Growth. Antimicrob Agents Chemother. 2007;51(5):1852–1854. doi: 10.1128/AAC.01544-06
  • Chadwick M, Trewin H, Gawthrop F, et al. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14(6):12780–12805. doi: 10.3390/ijms140612780
  • Branquinho RT, Roy J, Farah C, et al. Biodegradable polymeric nanocapsules prevent cardiotoxicity of Anti-Trypanosomal Lychnopholide. Sci Rep. 2017;7(1):44998. doi: 10.1038/srep44998
  • Laurella LC, Cerny N, Bivona AE, et al. Assessment of sesquiterpene lactones isolated from mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. Schallig HDFH, editor. PloS Negl Trop Dis. 2017;11(9):e0005929. doi: 10.1371/journal.pntd.0005929
  • Alberti AS, Cerny N, Bivona A, et al. Antitrypanosomal and antileishmanial activities. In: Sülsen V, Martino V, editors. Sesquiterpene lact, [internet]. Cham: Springer International Publishing; 2018 [cited 2020 Dec 3]; p. 175–196. Available from: https://doi.org/10.1007/978-3-319-78274-4_8
  • Gonçalves-Santos E, Vilas-Boas DF, Diniz LF, et al. Sesquiterpene lactone potentiates the immunomodulatory, antiparasitic and cardioprotective effects on anti-trypanosoma cruzi specific chemotherapy. Int Immunopharmacol. 2019;77:105961. doi: 10.1016/j.intimp.2019.105961
  • McCabe RE, Remington JS, Araujo FG. In vitro and in vivo effects of itraconazole against Trypanosoma cruzi. Am J Trop Med Hyg. 1986;35(2):280–284. doi: 10.4269/ajtmh.1986.35.280
  • McCabe RE, Remington JS, Araujo FG. Ketoconazole promotes parasitological cure of mice infected with Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1987;81(4):613–615. doi: 10.1016/0035-9203(87)90430-5
  • Goad LJ, Berens RL, Marr JJ, et al. The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol. 1989;32(2–3):179–189. doi: 10.1016/0166-6851(89)90069-8
  • Lazardi K, Urbina JA, de Souza W. Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (schizotrypanum) cruzi. Antimicrob Agents Chemother. 1990;34(11):2097–2105. doi: 10.1128/AAC.34.11.2097
  • Araujo MSS, Martins-Filho OA, Pereira MES, et al. A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental chagas’ disease. J Antimicrob Chemother. 2000;45(6):819–824. doi: 10.1093/jac/45.6.819
  • Molina J. In vivo activity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite trypanosoma cruzi. J Antimicrob Chemother. 2000;46(1):137–140. doi: 10.1093/jac/46.1.137
  • Toledo MDO, Bahia MT, Carneiro CM, et al. Chemotherapy with benznidazole and itraconazole for mice infected with different trypanosoma cruzi clonal genotypes. Antimicrob Agents Chemother. 2003;47(1):223–230. doi: 10.1128/AAC.47.1.223-230.2003
  • Urbina JA, Payares G, Sanoja C, et al. In vitro and in vivo activities of ravuconazole on trypanosoma cruzi, the causative agent of chagas disease. Int J Antimicrob Agents. 2003;21(1):27–38. doi: 10.1016/S0924-8579(02)00273-X
  • Guedes PDM, Urbina JA, de Lana M, et al. Activity of the new triazole derivative albaconazole against Trypanosoma (schizotrypanum) cruzi in dog hosts. Antimicrob Agents Chemother. 2004;48(11):4286–4292. doi: 10.1128/AAC.48.11.4286-4292.2004
  • Benaim G, Sanders JM, Garcia-Marchán Y, et al. Amiodarone has intrinsic anti- Trypanosoma c ruzi activity and acts synergistically with posaconazole †. J Med Chem. 2006;49(3):892–899. doi: 10.1021/jm050691f
  • Diniz LDF, Caldas IS, Guedes PDM, et al. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob Agents Chemother. 2010;54(7):2979–2986. doi: 10.1128/AAC.01742-09
  • Diniz LDF, Urbina JA, de Andrade IM, et al. Benznidazole and posaconazole in experimental chagas disease: positive interaction in concomitant and sequential treatments. Rodrigues MM, editor. PloS Negl Trop Dis. 2013;7(8):e2367. doi: 10.1371/journal.pntd.0002367
  • Assíria Fontes Martins T, de Figueiredo Diniz L, Mazzeti AL, et al. Benznidazole/Itraconazole Combination Treatment Enhances Anti-Trypanosoma cruzi Activity in Experimental Chagas Disease. Costa FTM, editor. PLoS One. 2015;10(6):e0128707. doi: 10.1371/journal.pone.0128707
  • Diniz LDF, Mazzeti AL, Caldas IS, et al. Outcome of E1224-benznidazole combination treatment for infection with a multidrug-resistant trypanosoma cruzi strain in mice. Antimicrob Agents Chemother. 2018;62(6):e00401–18. doi: 10.1128/AAC.00401-18
  • Cencig S, Coltel N, Truyens C, et al. Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains. Int J Antimicrob Agents. 2012;40(6):527–532. doi: 10.1016/j.ijantimicag.2012.08.002
  • Buckner FS, Bahia MT, Suryadevara PK, et al. Pharmacological characterization, structural studies, and in vivo activities of anti-chagas disease lead compounds derived from Tipifarnib. Antimicrob Agents Chemother. 2012;56(9):4914–4921. doi: 10.1128/AAC.06244-11
  • Hucke O, Gelb MH, Verlinde CLMJ, et al. The protein farnesyltransferase inhibitor tipifarnib as a new lead for the development of drugs against chagas disease. J Med Chem. 2005;48(17):5415–5418. doi: 10.1021/jm050441z
  • Kraus JM, Tatipaka HB, McGuffin SA, et al. Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-chagas disease drug discovery. J Med Chem. 2010;53(10):3887–3898. doi: 10.1021/jm9013136
  • Simões-Silva MR, De Araújo JS, Peres RB, et al. Repurposing strategies for chagas disease therapy: the effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology. 2019;146(8):1006–1012. doi: 10.1017/S0031182019000234
  • Bustamante JM, Craft JM, Crowe BD, et al. New, combined, and reduced dosing treatment protocols cure trypanosoma cruzi infection in mice. J Infect Dis. 2014;209(1):150–162. doi: 10.1093/infdis/jit420
  • Echeverría LE, González CI, Hernandez JCM, et al. Efficacy of the Benznidazole+Posaconazole combination therapy in parasitemia reduction: an experimental murine model of acute chagas. Rev Soc Bras Med Trop. 2020;53:e20190477. doi: 10.1590/0037-8682-0477-2019
  • Guedes-da-Silva FH, Batista DDG, Da Silva CF, et al. Successful aspects of the coadministration of sterol 14α-demethylase inhibitor VFV and benznidazole in experimental mouse models of chagas disease caused by the drug-resistant strain of Trypanosoma cruzi. ACS Infect Dis. 2019;5(3):365–371. doi: 10.1021/acsinfecdis.8b00253
  • da Silva RM, Oliveira LT, Silva Barcellos NM, et al. Preclinical monitoring of drug association in experimental chemotherapy of chagas’ disease by a new HPLC-UV method. Antimicrob Agents Chemother. 2012;56(6):3344–3348. doi: 10.1128/AAC.05785-11
  • Cunha ELA, Torchelsen FDS, Cunha LM, et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental chagas disease in dogs. Exp Parasitol. 2019;204:107711. doi: 10.1016/j.exppara.2019.05.005
  • Cunha ELA, Torchelsen FDS, Cunha LM, et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental chagas disease in dogs. MethodsX. 2019;6:2544–2552. doi: 10.1016/j.mex.2019.10.007
  • Carrillo I, Rabelo RAN, Barbosa C, et al. Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic chagas disease. Santiago HDC, editor. PloS Negl Trop Dis. 2021;15(11):e0009978. doi: 10.1371/journal.pntd.0009978
  • Horta AL, Figueiredo VP, Leite ALJ, et al. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the trypanosoma cruzi. Mem Inst Oswaldo Cruz [Internet]. 2018 [cited 2023 Jul 27]; 113(11). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762018001100301&lng=en&tlng=en
  • Leite ALJ, Paula Costa GD, Lopes LR, et al. The immunomodulatory effects of the enalapril in combination with benznidazole during acute and chronic phases of the experimental infection with Trypanosoma cruzi. Acta Trop. 2017;174:136–145. doi: 10.1016/j.actatropica.2017.07.005
  • Penitente AR, Leite ALJ, de Paula Costa G, et al. Enalapril in combination with benznidazole reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am J Trop Med Hyg. 2015;93(5):976–982. doi: 10.4269/ajtmh.15-0237
  • Shrestha D, Penitente AR, Horta AL, et al. Enalapril in combination with benznidazole reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am J Trop Med Hyg. 2015;93(5):976–982. doi: 10.4269/ajtmh.15-0237
  • Grosso NL, Alarcon ML, Bua J, et al. Combined treatment with benznidazole and allopurinol in mice infected with a virulent trypanosoma cruzi isolate from Nicaragua. Parasitology. 2013;140(10):1225–1233. doi: 10.1017/S0031182013000176
  • Mazzeti AL, Diniz LDF, Gonçalves KR, et al. Synergic effect of allopurinol in combination with nitroheterocyclic compounds against Trypanosoma cruzi. Antimicrob Agents Chemother. 2019;63(6):e02264–18,/aac/63/6/AAC.02264–18.atom. doi: 10.1128/AAC.02264-18
  • Perez-Mazliah DE, Alvarez MG, Cooley G, et al. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of trypanosoma cruzi infection: a pilot study. J Antimicrob Chemother. 2013;68(2):424–437. doi: 10.1093/jac/dks390
  • Rial MS, Scalise ML, López Alarcón M, et al. Experimental combination therapy using low doses of benznidazole and allopurinol in mouse models of trypanosoma cruzi chronic infection. Parasitology. 2019;146(3):305–313. doi: 10.1017/S0031182018001567
  • Veiga-Santos P, Barrias ES, Santos JFC, et al. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents. 2012;40(1):61–71. doi: 10.1016/j.ijantimicag.2012.03.009
  • Rocha Simões-Silva M, Brandão Peres R, Britto C, et al. Impact of levamisole in co-administration with benznidazole on experimental chagas disease. Parasitology. 2019;146:1055–1062. doi: 10.1017/S0031182019000374
  • Simões-Silva MR, De Araújo JS, Oliveira GM, et al. Drug repurposing strategy against Trypanosoma cruzi infection: in vitro and in vivo assessment of the activity of metronidazole in mono- and combined therapy. Biochem Pharmacol. 2017;145:46–53. doi: 10.1016/j.bcp.2017.08.025
  • Fonseca-Berzal C, da Silva CF, Batista DDG, et al. Activity profile of two 5-nitroindazole derivatives over the moderately drug-resistant trypanosoma cruzi Y strain (DTU TcII): in vitro and in vivo studies. Parasitology. 2020;147(11):1216–1228. doi: 10.1017/S0031182020000955
  • Vilas-Boas DF, Oliveira RRG, Gonçalves-Santos E, et al. 4-nitrobenzoylcoumarin potentiates the antiparasitic, anti-inflammatory and cardioprotective effects of benznidazole in a murine model of acute trypanosoma cruzi infection. Acta Trop. 2022;228:106314. doi: 10.1016/j.actatropica.2022.106314
  • González S, Wall RJ, Thomas J, et al. Short-course combination treatment for experimental chronic chagas disease. Sci Transl Med. 2023;15(726):eadg8105. doi: 10.1126/scitranslmed.adg8105
  • Mosqueira VCF, Mazzeti AL, Bahia MT. Nanomedicines against chagas disease. Appl Nanobiotechnology Neglected Trop Dis [Internet]. 2021 cited 2021 Feb 27;169–189. Elsevier Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012821100700008X
  • Esteva MI, Rial MS, Scalise ML, et al. Promising efficacy of benznidazole nanoparticles in acute trypanosoma cruzi murine model: In-vitro and in-vivo studies. Am J Trop Med Hyg. 2016;95(2):388–393. doi: 10.4269/ajtmh.15-0889
  • Rial MS, Arrúa EC, Natale MA, et al. Efficacy of continuous versus intermittent administration of nanoformulated benznidazole during the chronic phase of trypanosoma cruzi Nicaragua infection in mice. J Antimicrob Chemother. 2020;75(7):1906–1916. doi: 10.1093/jac/dkaa101
  • Molina I, Perin L, Aviles AS, et al. The effect of benznidazole dose among the efficacy outcome in the murine animal model. A quantitative integration of the literature. Acta Trop. 2020;201:105218. doi: 10.1016/j.actatropica.2019.105218
  • Perin L, da S FK, de Carvalho TV, et al. Low-dose of benznidazole promotes therapeutic cure in experimental chronic chagas’ disease with absence of parasitism in blood, heart and colon. Exp Parasitol. 2020;210:107834. doi: 10.1016/j.exppara.2020.107834
  • Bustamante JM, Sanchez-Valdez F, Padilla AM, et al. A modified drug regimen clears active and dormant trypanosomes in mouse models of chagas disease. Sci Transl Med. 2020;12(567). doi: 10.1126/scitranslmed.abb7656
  • Rao SPS, Gould MK, Noeske J, et al. Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science. 2023;380(6652):1349–1356. doi: 10.1126/science.adh0614
  • Campos MCO, Leon LL, Taylor MC, et al. Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol. 2014;193(1):17–19. doi: 10.1016/j.molbiopara.2014.01.002
  • Petravicius PO, Costa-Martins AG, Silva MN, et al. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop. 2019;200:105161. doi: 10.1016/j.actatropica.2019.105161
  • Zingales B. Trypanosoma cruzi genetic diversity: something new for something known about chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018;184:38–52. doi: 10.1016/j.actatropica.2017.09.017
  • Moreno M, D’ávila DA, Silva MN, et al. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human chagas disease. Mem Inst Oswaldo Cruz. 2010;105(7):918–924. doi: 10.1590/S0074-02762010000700014
  • Sánchez-Valdéz FJ, Padilla A, Wang W, et al. Spontaneous dormancy protects trypanosoma cruzi during extended drug exposure. Elife. 2018;7. doi: 10.7554/eLife.34039
  • Chatelain E, Ioset J-R. Phenotypic screening approaches for chagas disease drug discovery. Expert Opin Drug Discov. 2018;13(2):141–153. doi: 10.1080/17460441.2018.1417380
  • Kratz JM, Gonçalves KR, Romera LM, et al. The translational challenge in chagas disease drug development. Mem Inst Oswaldo Cruz. 2022;117:e200501. doi: 10.1590/0074-02760200501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.