26
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A prognostic risk model based on lactate metabolism and transport-related lncRNAs for gastric adenocarcinoma

, , , , , , , & ORCID Icon show all
Pages 211-221 | Received 17 Sep 2023, Accepted 04 Apr 2024, Published online: 17 Apr 2024

References

  • Alatan H, Chen Y, Zhou J, Wang L. 2021. Extracellular matrix-related hubs genes have adverse effects on gastric adenocarcinoma prognosis based on bioinformatics analysis. Genes (Basel). 12(7):1104. doi: 10.3390/genes12071104
  • Allum W, Lordick F, Alsina M, Andritsch E, Ba-Ssalamah A, Beishon M, Braga M, Caballero C, Carneiro F, Cassinello F, et al. 2018. ECCO essential requirements for quality cancer care: oesophageal and gastric cancer. Crit Rev Oncol Hematol. 122:179–193. doi: 10.1016/j.critrevonc.2017.12.019
  • Blanche P, Dartigues JF, Jacqmin-Gadda H. 2013. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 32(30):5381–5397. doi: 10.1002/sim.5958
  • Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al. 2016. LDHA-associated lactic acid production blunts tumour immunosurveillance by T and NK cells. Cell Metab. 24(5):657–671. doi: 10.1016/j.cmet.2016.08.011
  • Bridges MC, Daulagala AC, Kourtidis A. 2021. LNCcation: lncRNA localization and function. J Cell Biol. 220(2). doi: 10.1083/jcb.202009045
  • Cao C, Xu Y, Du K, Mi C, Yang C, Xiang L, Xie Y, Liu W. 2019. LINC01303 functions as a competing endogenous RNA to regulate EZH2 expression by sponging miR-101-3p in gastric cancer. J Cell Mol Med. 23(11):7342–7348. doi: 10.1111/jcmm.14593
  • Chandra R, Karalis JD, Liu C, Murimwa GZ, Voth Park J, Heid CA, Reznik SI, Huang E, Minna JD, Brekken RA, et al. 2021. The colorectal cancer tumour microenvironment and its impact on liver and lung metastasis. Cancers (Basel). 13(24):6206. doi: 10.3390/cancers13246206
  • Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, Liu Y, Wang Z, Chen Y, Jia S, et al. 2021. m(6)A regulator-based methylation modification patterns characterized by distinct tumour microenvironment immune profiles in colon cancer. Theranostics. 11(5):2201–2217. doi: 10.7150/thno.52717
  • El-Kenawi A, Gatenbee C, Robertson-Tessi M, Bravo R, Dhillon J, Balagurunathan Y, Berglund A, Vishvakarma N, Ibrahim-Hashim A, Choi J, et al. 2019. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br J Cancer. 121(7):556–566. doi: 10.1038/s41416-019-0542-2
  • Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, et al. 2022. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol. 53:102339. doi: 10.1016/j.redox.2022.102339
  • Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 33(1):1–22.
  • Guo T, Liu D, Peng S, Wang M, Li Y. 2021. A positive feedback loop of lncRNA MIR31HG-miR-361-3p -YY1 accelerates colorectal cancer progression through modulating proliferation, angiogenesis, and glycolysis. Front Oncol. 11:684984. doi: 10.3389/fonc.2021.684984
  • Guo T, Zhang J, Wang T, Yuan Z, Tang H, Zhang D, Chen S, Wang X. 2022. Lactic acid metabolism and transporter related three genes predict the prognosis of patients with clear cell renal cell carcinoma. Genes (Basel). 13(4):620. doi: 10.3390/genes13040620
  • Halestrap AP. 2013. The SLC16 gene family – structure, role and regulation in health and disease. Mol Aspects Med. 34(2–3):337–349. doi: 10.1016/j.mam.2012.05.003
  • Hänzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 14(1):7. doi: 10.1186/1471-2105-14-7
  • Heremans IP, et al. 2022. Parkinson’s disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc Natl Acad Sci U S A. 119(4).
  • Hu Y, Luo M. 2022. NORAD-sponged miR-378c alleviates malignant behaviors of stomach adenocarcinoma via targeting NRP1. Cancer Cell Int. 22(1):79. doi: 10.1186/s12935-022-02474-5
  • Huang C, Liu Z, Xiao L, Xia Y, Huang J, Luo H, Zong Z, Zhu Z. 2019. Clinical significance of serum CA125, CA19-9, CA72-4, and fibrinogen-to-lymphocyte ratio in gastric cancer with peritoneal dissemination. Front Oncol. 9:1159. doi: 10.3389/fonc.2019.01159
  • Husain Z, Seth P, Sukhatme VP. 2013. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. Oncoimmunology. 2(11):e26383. doi: 10.4161/onci.26383
  • Ippolito L, Morandi A, Giannoni E, Chiarugi P. 2019. Lactate: a metabolic driver in the tumour landscape. Trends Biochem Sci. 44(2):153–166. doi: 10.1016/j.tibs.2018.10.011
  • Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al. 2018. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 24(10):1550–1558. doi: 10.1038/s41591-018-0136-1
  • Lei T, Qian H, Lei P, Hu Y. 2021. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma. Cancer Sci. 112(11):4785–4798. doi: 10.1111/cas.15131
  • Liao B, Chen S, Li Y, Yang Z, Yang Y, Deng X, Ke S. 2021. LncRNA BLACAT1 promotes proliferation, migration and invasion of prostate cancer cells via regulating miR-29a-3p/DVL3 axis. Technol Cancer Res Treat. 20:1533033820972342. doi: 10.1177/1533033820972342
  • Lin J, Liu G, Chen L, Kwok HF, Lin Y. 2022. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol. 86(Pt 3):1231–1243. doi: 10.1016/j.semcancer.2022.10.009
  • Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, Vogel A, Smyth EC. 2022. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 33(10):1005–1020. doi: 10.1016/j.annonc.2022.07.004
  • Luo ZF, et al. 2020. Long noncoding RNA SNHG14 promotes malignancy of prostate cancer by regulating with miR-5590-3p/YY1 axis. Eur Rev Med Pharmacol Sci. 24(9):4697–4709.
  • Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. 2022. Development and validation of lactate metabolism-related lncRNA signature as a prognostic model for lung adenocarcinoma. Front Endocrinol (Lausanne). 13:829175. doi: 10.3389/fendo.2022.829175
  • Murphy AC, Young PW. 2015. The actinin family of actin cross-linking proteins – a genetic perspective. Cell Biosci. 5(1):49. doi: 10.1186/s13578-015-0029-7
  • Niclauss N, Gütgemann I, Dohmen J, Kalff JC, Lingohr P. 2021. Novel biomarkers of gastric adenocarcinoma: current research and future perspectives. Cancers (Basel). 13(22):5660. doi: 10.3390/cancers13225660
  • Noh JH. 2018. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA. 9(3):e1471.
  • Orlando G, Law PJ, Palin K, Tuupanen S, Gylfe A, Hänninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, et al. 2016. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Hum Mol Genet. 25(11):2349–2359. doi: 10.1093/hmg/ddw087
  • Paraskevopoulou MD, Hatzigeorgiou AG. 2016. Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 1402:271–286. doi: 10.1007/978-1-4939-3378-5_21
  • Pereira-Nunes A, Afonso J, Granja S, Baltazar F. 2020. Lactate and lactate transporters as key players in the maintenance of the warburg effect. Adv Exp Med Biol. 1219:51–74.
  • Prensner JR, Chinnaiyan AM. 2011. The emergence of lncRNAs in cancer biology. Cancer Discov. 1(5):391–407. doi: 10.1158/2159-8290.CD-11-0209
  • Rabinowitz JD, Enerbäck S. 2020. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2(7):566–571. doi: 10.1038/s42255-020-0243-4
  • Rugge M, Genta RM, Di Mario F, El-Omar EM, El-Serag HB, Fassan M, Hunt RH, Kuipers EJ, Malfertheiner P, Sugano K, et al. 2017. Gastric cancer as preventable disease. Clin Gastroenterol Hepatol. 15(12):1833–1843. doi: 10.1016/j.cgh.2017.05.023
  • San-Millan I, Brooks GA. 2017. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 38(2):119–133. doi: 10.1093/carcin/bgw127
  • Shen K, Liu T. 2021. Comprehensive analysis of the prognostic value and immune function of immune checkpoints in stomach adenocarcinoma. Int J Gen Med. 14:5807–5824. doi: 10.2147/IJGM.S325467
  • Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. 2020. Gastric cancer. Lancet. 396(10251):635–648. doi: 10.1016/S0140-6736(20)31288-5
  • Statello L, Guo C-J, Chen L-L, Huarte M. 2021. Author correction: gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22(2):159–159. doi: 10.1038/s41580-021-00330-4
  • Statello L, Guo C-J, Chen L-L, Huarte M. 2021. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Wang JX, et al. 2020. Lactic acid and an acidic tumour microenvironment suppress anticancer immunity. Int J Mol Sci. 21(21).
  • Wang J, Zhao W, Liu H, He H, Shao R. 2018. Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD. J Drug Target. 26(8):643–648. doi: 10.1080/1061186X.2017.1401077
  • Xia X, Li Y. 2020. Comprehensive analysis of transcriptome data stemness indices identifies key genes for controlling cancer stem cell characteristics in gastric cancer. Transl Cancer Res. 9(10):6050–6061. doi: 10.21037/tcr-20-704
  • Xiao D, et al. 2021. LINC01303 promotes the proliferation and migration of laryngeal carcinoma by regulating miR-200c/TIMP2 axis. Am J Transl Res. 13(3):1643–1656.
  • Yang X, Pang Y, Zhang J, Shi J, Zhang X, Zhang G, Yang S, Wang J, Hu K, Wang J, et al. 2019. High expression levels of ACTN1 and ACTN3 indicate unfavorable prognosis in acute myeloid leukemia. J Cancer. 10(18):4286–4292. doi: 10.7150/jca.31766
  • Yin HM, et al. 2021. Drug metabolism-related eight-gene signature can predict the prognosis of gastric adenocarcinoma. J Clin Lab Anal. 35(12):e24085.
  • Yoon JH, Abdelmohsen K, Gorospe M. 2013. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 425(19):3723–3730. doi: 10.1016/j.jmb.2012.11.024
  • Zhang Y, Tao Y, Liao Q. 2018. Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform. 19(5):930–945. doi: 10.1093/bib/bbx042
  • Zhang B, Cheng Y, Li R, Lian M, Guo S, Liang C. 2023. Development of a novel angiogenesis-related lncRNA signature to predict the prognosis and immunotherapy of glioblastoma multiforme. Transl Cancer Res. 12(1):13–30. doi: 10.21037/tcr-22-1592
  • Zhang J, Le TD, Liu L, Li J. 2019. Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer. Brief Bioinform. 20(4):1403–1419. doi: 10.1093/bib/bby008
  • Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, et al. 2022. Lactate: the mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne). 13:901495. doi: 10.3389/fendo.2022.901495
  • Zhang G, Zhang Y, Dong D, Wang F, Ma X, Guan F, Sun L. 2018. MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer. 9(14):2492–2501. doi: 10.7150/jca.25257
  • Zheng J, Guo J, Cao B, Zhou Y, Tong J. 2021. Identification and validation of lncRNAs involved in m6A regulation for patients with ovarian cancer. Cancer Cell Int. 21(1):363. doi: 10.1186/s12935-021-02076-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.