124
Views
27
CrossRef citations to date
0
Altmetric
Review article

Adult mesenchymal stromal stem cells for therapeutic applications

&
Pages 79-90 | Published online: 10 Jul 2009

References

  • Friedenstein A. J., Kulagina N. N., Panasuk A. F., Rudakowa S. F., et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83–92
  • Friedenstein A. J., Piatetzky II S., et al. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–90
  • Horwitz E. M., Blanc K. L., et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393–5
  • Dominici M., Blanc K. L., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–7
  • Campagnoli C., Roberts I. A. G., et al. Identification of mesenchymal stem/progenitor cells in human first‐trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396–2402
  • in `t Anker P. S., Scherjon S. A., et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548–9
  • Tsai M. S., Lee J. L., et al. Isolation of human multipotent mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage culture protocol. Hum. Reprod 2004; 19: 1450–6
  • Fan C. G., Thang F. W., Zhang Q., et al. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 2005; 14: 311–21
  • Ying H., Lianming L., et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. The Journal of laboratory and clinical medicine 2003; 141: 342
  • Erices A., Conget P., et al. Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology 2000; 109: 235–42
  • Romanov Y. A., Svintsitskaya V. A., et al. Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC‐Like Cells from Umbilical Cord. Stem Cells 2003; 21: 105–10
  • Igura K., Takahashi K., Mitsuru A., Yamaguchi S., et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004; 6: 543–53
  • Fernandez M., Simon V., et al. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 1997; 20: 265–71
  • Kuznetsov S. A., Mankani M. H., et al. Circulating Skeletal Stem Cells. J. Cell Biol 2001; 153: 1133–40
  • Williams J. T., Souza J., Calcutt A. F., Cartledge R. G. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65: 22–6
  • Young H. E., Steele T. A., et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 2001; 264: 51–62
  • Zuk P. A., Zhu M., et al. Multilineage Cells from Human Adipose Tissue: Implications for Cell‐Based Therapies. Tissue Engineering 2001; 7: 211–28
  • Gronthos S., Mankani M., et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo. Proceedings of the National Academy of Sciences 2001; 97: 13625–30
  • Miura M., Gronthos S., et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003; 100: 5807–12
  • Shih D. T., Lee D. C., et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 2005; 23: 1012–20
  • De Bari C., Tylzanowski P., Luyten F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism 2001; 44: 1928–42
  • Debra J. W., Richard H., et al. A Population of Cells Isolated from Rat Heart Capable of Differentiating into Several Mesodermal Phenotypes. The Journal of surgical research 1996; 62: 233
  • Covas D. T., Orellana M. D., Siufi J. L., Silva W. A Jr., et al. Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res 2005; 309: 340–4, (2005)
  • Abedin M., Tintut Y., et al. Mesenchymal Stem Cells and the Artery Wall. Circ Res 2004; 95: 671–6
  • da Silva Meirelles L., Chagastelles P. C., et al. Mesenchymal stem cells reside in virtually all post‐natal organs and tissues. J Cell Sci 2006; 119: 2204–13
  • Strem B. M., Hicok K. C., et al. Multipotential differentiation of adipose tissue‐derived stem cells. Keio J Med 2005; 54: 132–41
  • Caplan A. I. The mesengenic process. Clin Plast Surg 1994; 21: 429–35
  • Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213: 341–7
  • Sarugaser R., Lickorish D., et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005; 23: 220–9
  • Kogler G., Sensken S., et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–35
  • Wagner W., Wein F., et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402–16
  • Jeong J. A., Ko K. M., et al. Genome‐wide differential gene expression profiling of human bone marrow stromal cells. Stem Cells 2007; 25: 994–1002
  • Djouad F., Bony C., et al. Transcriptional profiles discriminate bone marrow‐derived and synovium‐derived mesenchymal stem cells. Arthritis Res Ther 2005; 7: R1304–15
  • Tsai M. S., Hwang S. M., et al. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 2007; 25: 2511–23
  • Kern S., Eichler H., et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294–301
  • Prockop D. J. "Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 2007; 82: 241–3
  • Bruder S. P., Jaiswal N., et al. Growth kinetics, self‐renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278–94
  • Kveiborg M., Kassem M., et al. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 1999; 106: 261–71
  • Stenderup K., Justesen J., et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33: 919–26
  • Moussavi‐Harami F., Duwayri Y., et al. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop 2004; J 24: 15–20
  • Lin T., Tsai J. L., et al. Accelerated growth and prolonged lifespan of adipose tissue‐derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 2005; 14: 92–102
  • Bianchi G., Banfi A., et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 2003; 287: 98–105
  • Gregory C. A., Singh H., et al. The Wnt signaling inhibitor dickkopf‐1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278: 28067–78
  • De Boer J., Wang H. J., et al. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2004; 10: 393–401
  • Simonsen J. L., Rosada C., et al. Telomerase expression extends the proliferative life‐span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002; 20: 592–6
  • Nishioka K., Fujimori Y., et al. Immortalization of bone marrow‐derived human mesenchymal stem cells by removable simian virus 40T antigen gene: analysis of the ability to support expansion of cord blood hematopoietic progenitor cells. Int J Oncol 2003; 23: 925–32
  • Hung S. C., Yang D. M., et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. Int J Cancer 2004; 110: 313–9
  • Sekiya I., Larson B. L., et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002; 20: 530–41
  • Heckmann L., Fiedler J., et al. Mesenchymal progenitor cells communicate via alpha and beta integrins with a three‐dimensional collagen type I matrix. Cells Tissues Organs 2006; 182: 143–54
  • Kassis I., Zangi L., et al. Isolation of mesenchymal stem cells from G‐CSF‐mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006; 37: 967–76
  • Deschaseaux F., Gindraux F., et al. Direct selection of human bone marrow mesenchymal stem cells using an anti‐CD49a antibody reveals their CD45med,low phenotype. Br J Haematol 2003; 122: 506–17
  • Aslan H., Zilberman Y., et al. Osteogenic differentiation of noncultured immunoisolated bone marrow‐derived CD105+ cells. Stem Cells 2006; 24: 1728–37
  • Zannettino A. C., Paton S., et al. Multipotential human adipose‐derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 2008; 214: 413–21
  • Gronthos S., Graves S. E., et al. The STRO‐1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 1994; 84: 4164–73
  • Gronthos S., Zannettino A. C., et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827–35
  • Martens F. P., See F., et al. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 2006; 3((Suppl 1))S18–22
  • Boiret N., Rapatel C., et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 2005; 33: 219–25
  • Tondreau T., Meuleman N., et al. Mesenchymal stem cells derived from CD133‐positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005; 23: 1105–12
  • Gang E. J., Bosnakovski D., et al. SSEA‐4 identifies mesenchymal stem cells from bone marrow. Blood 2007; 109: 1743–51
  • Quirici N., Soligo D., et al. Isolation of bone marrow mesenchymal stem cells by anti‐nerve growth factor receptor antibodies. Exp Hematol 2002; 30: 783–91
  • Battula V. L., Treml S., et al. Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled‐9‐specific monoclonal antibody. Differentiation 2007
  • Guo K. T., Schafer R., et al. A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high‐specific DNA aptamers. Stem Cells 2006; 24: 2220–31
  • Schwartz R. E., Reyes M., et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte‐like cells. J Clin Invest 2002; 109: 1291–302
  • D'Ippolito G., Diabira S., et al. Marrow‐isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–81
  • Ratajczak M. Z., Kucia M., et al. Stem cell plasticity revisited: CXCR4‐positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40
  • De Coppi P., Bartsch G Jr., et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–6
  • Kogler G., Radke T. F., et al. Cytokine production and hematopoiesis supporting activity of cord blood‐derived unrestricted somatic stem cells. Exp Hematol 2005; 33: 573–83
  • Rombouts W. J., Ploemacher R. E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17: 160–70
  • Boquest A. C., Shahdadfar A., et al. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 2005; 16: 1131–41
  • Aaa A. Medicinal and other products and human and animal transmissible spongiform encephalopathies: memorandum from a WHO meeting. Bull World Health Organ 1997; 75: 505–13
  • Spees J. L., Gregory C. A., et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 2004; 9: 747–56
  • Heiskanen A., Satomaa T., et al. N‐glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 2007; 25: 197–202
  • Kuznetsov S. A., Mankani M. H., et al. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 2000; 70: 1780–7
  • Muller I., Kordowich S., et al. Animal serum‐free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006; 8: 437–44
  • Abdallah B. M., Haack‐Sorensen M., et al. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 2006; 39: 181–8
  • Kocaoemer A., Kern S., et al. Human AB serum and thrombin‐activated platelet‐rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 2007; 25: 1270–8
  • Shetty P., Bharucha K., et al. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol Int 2007; 31: 293–8
  • Shahdadfar A., Fronsdal K., et al. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 2005; 23: 1357–66
  • Mannello F., Tonti G. A. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder‐free; medium with fetal calf serum, human serum, or enriched plasma; serum‐free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!. Stem Cells 2007; 25: 1603–9
  • Meuleman N., Tondreau T., et al. Human marrow mesenchymal stem cell culture: serum‐free medium allows better expansion than classical alpha‐MEM medium. Eur J Haematol 2006; 76: 309–16
  • Stolzing A., Coleman N., et al. Glucose‐induced replicative senescence in mesenchymal stem cells. Rejuvenation Res 2006; 9: 31–5
  • Sotiropoulou P. A., Perez S. A., et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 2006; 24: 462–71
  • Barozzi P., Luppi M., et al. Post‐transplant Kaposi sarcoma originates from the seeding of donor‐derived progenitors. Nat Med 2003; 9: 554–61
  • Aractingi S., Kanitakis J., et al. Skin carcinoma arising from donor cells in a kidney transplant recipient.". Cancer Res 2005; 65: 1755–60
  • Arai Y., Arai H., et al. A solid tumor of donor cell‐origin after allogeneic peripheral blood stem cell transplantation. Am J Transplant 2006; 6: 3042–3
  • Peters B. A., Diaz L. A., et al. Contribution of bone marrow‐derived endothelial cells to human tumor vasculature. Nat Med 2005; 11: 261–2
  • Djouad F., Plence P., et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–44
  • Ramasamy R., Lam E. W., et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2007; 21: 304–10
  • Khakoo A. Y., Pati S., et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235–47
  • Rubio D., Garcia‐Castro J., et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035–9
  • Serakinci N., Guldberg P., et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004; 23: 5095–8
  • Bernardo M. E., Zaffaroni N., et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long‐term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67: 9142–9
  • Pittenger M. F., Mackay A. M., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7
  • Makino S., Fukuda K., et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697–705
  • Gang E. J., Jeong J. A., et al. In vitro endothelial potential of human UC blood‐derived mesenchymal stem cells. Cytotherapy 2006; 8: 215–27
  • Santa Maria L., Rojas C. V., et al. Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone‐marrow‐derived mesenchymal stem cells. Exp Cell Res 2004; 300: 418–26
  • Timper K., Seboek D., et al. Human adipose tissue‐derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006; 341: 1135–40
  • Seo M. J., Suh S. Y., et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.". Biochem Biophys Res Commun 2005; 328: 258–64
  • Spees J. L., Olson S. D., et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci U S A 2003; 100: 2397–402
  • Chun‐mao H., Su‐yi W., et al. Human bone marrow‐derived mesenchymal stem cells differentiate into epidermal‐like cells in vitro. Differentiation 2007; 75: 292–8
  • Vassilopoulos G., Wang P. R., et al. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422: 901–4
  • Wang X., Willenbring H., et al. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature 2003; 422: 897–901
  • Alvarez‐Dolado M., Pardal R., et al. Fusion of bone‐marrow‐derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–73
  • Newsome P. N., Johannessen I., et al. Human cord blood‐derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003; 124: 1891–900
  • Harris R. G., Herzog E. L., et al. Lack of a fusion requirement for development of bone marrow‐derived epithelia. Science 2004; 305: 90–3
  • Schmidt A., Ladage D., et al. Mesenchymal stem cells transmigrate over the endothelial barrier. Eur J Cell Biol 2006; 85: 1179–88
  • Devine S. M., Bartholomew A. M., et al. Mesenchymal stem cells are capable of homing to the bone marrow of non‐human primates following systemic infusion. Exp Hematol 2001; 29: 244–55
  • Barbash I. M., Chouraqui P., et al. Systemic delivery of bone marrow‐derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108: 863–8
  • Chapel A., Bertho J. M., et al. Mesenchymal stem cells home to injured tissues when co‐infused with hematopoietic cells to treat a radiation‐induced multi‐organ failure syndrome. J Gene Med 2003; 5: 1028–38
  • Ortiz L. A., Gambelli F., et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100: 8407–11
  • Vulliet P. R., Greeley M., et al. Intra‐coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004; 363: 783–4
  • Moelker A. D., Baks T., et al. Intracoronary delivery of umbilical cord blood derived unrestricted somatic stem cells is not suitable to improve LV function after myocardial infarction in swine. J Mol Cell Cardiol 2007; 42: 735–45
  • Kim BO Tian H. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 2005; 112((9 Suppl))I96–104
  • Miyahara Y., Nagaya N., et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12: 459–65
  • Silva G. V., Litovsky S., et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005; 111: 150–6
  • Iwase T., Nagaya N., et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005; 66: 543–51
  • Bruder S. P., Kurth A. A., et al. Bone regeneration by implantation of purified, culture‐expanded human mesenchymal stem cells. J Orthop Res 1998; 16: 155–62
  • Ponticiello M. S., Schinagl R. M., et al. Gelatin‐based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000; 52: 246–55
  • Solchaga L. A., Temenoff J. S., et al. Repair of osteochondral defects with hyaluronan‐ and polyester‐based scaffolds. Osteoarthritis Cartilage 2005; 13: 297–309
  • Rodriguez A. M., Pisani D., et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 2005; 201: 1397–405
  • Kopen G. C., Prockop D. J., et al. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999; 96: 10711–6
  • Zhao L. R., Duan W. M., et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174: 11–20
  • Lee R. H., Seo M. J., et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 2006; 103: 17438–43
  • Xu J., Lu Y., et al. Reversal of diabetes in mice by intrahepatic injection of bone‐derived GFP‐murine mesenchymal stem cells infected with the recombinant retrovirus‐carrying human insulin gene. World J Surg 2007; 31: 1872–82
  • Mangi A. A., Noiseux N., et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9: 1195–201
  • Kinnaird T., Stabile E., et al. Marrow‐derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678–85
  • Gnecchi M., He H., et al. Paracrine action accounts for marked protection of ischemic heart by Akt‐modified mesenchymal stem cells. Nat Med 2005; 11: 367–8
  • Kunter U., Rong S., et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 2006; 17: 2202–12
  • Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485–9
  • Di Nicola M., Carlo‐Stella C., et al. Human bone marrow stromal cells suppress T‐lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–43
  • Bartholomew A., Sturgeon C., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–8
  • Jiang X. X., Zhang Y., et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte‐derived dendritic cells. Blood 2005; 105: 4120–6
  • Meisel R., Zibert A., et al. Human bone marrow stromal cells inhibit allogeneic T‐cell responses by indoleamine 2,3‐dioxygenase‐mediated tryptophan degradation. Blood 2004; 103: 4619–21
  • Horwitz E. M., Gordon P. L., et al. Isolated allogeneic bone marrow‐derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99: 8932–7
  • Lazarus H. M., Haynesworth S. E., et al. Ex vivo expansion and subsequent infusion of human bone marrow‐derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–64
  • Koc O. N., Gerson S. L., et al. Rapid hematopoietic recovery after coinfusion of autologous‐blood stem cells and culture‐expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high‐dose chemotherapy. J Clin Oncol 2000; 18: 307–16
  • Lazarus H. M., Koc O. N., et al. Cotransplantation of HLA‐identical sibling culture‐expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–98
  • Koc O. N., Day J., et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS‐IH). Bone Marrow Transplant 2002; 30: 215–22
  • Garcia‐Olmo D., Garcia‐Arranz M., et al. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005; 48: 1416–23
  • Le Blanc K., Rasmusson I., et al. Treatment of severe acute graft‐versus‐host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–41
  • Ringden O., Uzunel M., et al. Mesenchymal stem cells for treatment of therapy‐resistant graft‐versus‐host disease. Transplantation 2006; 81: 1390–7
  • Mazzini L., Fagioli F., et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 2003; 4: 158–61
  • Bang O. Y., Lee J. S., et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57: 874–82
  • Chen SL Fang WW. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J 2004; (Engl) 117: 1443–8
  • Katritsis D. G., Sotiropoulou P. A., et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005; 65: 321–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.