850
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association of FHL5 and LPA genetic polymorphisms with diabetes mellitus risk: a case-control study

, , , , &
Article: 2235005 | Received 03 Apr 2023, Accepted 05 Jul 2023, Published online: 15 Jul 2023

References

  • Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):s15–s33.
  • Haghvirdizadeh P, Mohamed Z, Abdullah NA, et al. KCNJ11: genetic polymorphisms and risk of diabetes mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152.
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787. doi: 10.1038/414782a.
  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.
  • Liu M, Liu SW, Wang LJ, et al. Burden of diabetes, hyperglycaemia in China from to 2016: findings from the 1990 to 2016, global burden of disease study. Diabetes Metab. 2019;45(3):286–293. doi: 10.1016/j.diabet.2018.08.008.
  • Ou Q, Jin W, Lin L, et al. LASSO-based machine learning algorithm to predict the incidence of diabetes in different stages. Aging Male. 2023;26(1):2205510. doi: 10.1080/13685538.2023.2205510.
  • Sluik D, Boeing H, Li K, et al. Lifestyle factors and mortality risk in individuals with diabetes mellitus: are the associations different from those in individuals without diabetes? Diabetologia. 2014;57(1):63–72. doi: 10.1007/s00125-013-3074-y.
  • Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11):1254–1264. doi: 10.2522/ptj.20080020.
  • Reyes-López R, Perez-Luque E, Malacara JM. Relationship of lactation, BMI, and rs12255372 TCF7L2 polymorphism on the conversion to type 2 diabetes mellitus in women with previous gestational diabetes. Gynecol Endocrinol. 2019;35(5):412–416. doi: 10.1080/09513590.2018.1531984.
  • Aboelkhair NT, Kasem HE, Abdelmoaty AA, et al. TCF7L2 gene polymorphism as a risk for type 2 diabetes mellitus and diabetic microvascular complications. Mol Biol Rep. 2021;48(6):5283–5290. doi: 10.1007/s11033-021-06537-0.
  • Wang Y, Duan L, Yu S, et al. Association between "solute carrier family 30 member 8" (SLC30A8) gene polymorphism and susceptibility to type 2 diabetes mellitus in Chinese Han and minority populations: an updated meta-analysis. Asia Pac J Clin Nutr. 2018;27(6):1374–1390.
  • Mashal S, Khanfar M, Al-Khalayfa S, et al. SLC30A8 gene polymorphism rs13266634 associated with increased risk for developing type 2 diabetes mellitus in Jordanian population. Gene. 2021;768:145279. doi: 10.1016/j.gene.2020.145279.
  • Makhzoom O, Kabalan Y, Al-Quobaili F. Association of KCNJ11 rs5219 gene polymorphism with type 2 diabetes mellitus in a population of Syria: a case-control study. BMC Med Genet. 2019;20(1):107. doi: 10.1186/s12881-019-0846-3.
  • Rastegari A, Rabbani M, Sadeghi HM, et al. Association of KCNJ11 (E23K) gene polymorphism with susceptibility to type 2 diabetes in iranian patients. Adv Biomed Res. 2015;4:1. doi: 10.4103/2277-9175.148256.
  • Chu PH, Yeh LK, Lin HC, et al. Deletion of the FHL2 gene attenuating neovascularization after corneal injury. Invest Ophthalmol Vis Sci. 2008;49(12):5314–5318. doi: 10.1167/iovs.08-2209.
  • Morgan MJ, Whawell SA. The structure of the human LIM protein ACT gene and its expression in tumor cell lines. Biochem Biophys Res Commun. 2000;273(2):776–783. doi: 10.1006/bbrc.2000.3006.
  • Jiang Z, Zhao L, Zhang X, et al. Common variants in KCNK5 and FHL5 genes contributed to the susceptibility of migraine without aura in Han Chinese population. Sci Rep. 2021;11(1):6807. doi: 10.1038/s41598-021-86374-0.
  • Wang X, DeKosky ST, Luedecking-Zimmer E, et al. Genetic variation in alpha(1)-antichymotrypsin and its association with Alzheimer’s disease. Hum Genet. 2002;110(4):356–365. doi: 10.1007/s00439-002-0697-3.
  • Huang C, Wen X, Xie H, et al. Identification and experimental validation of marker genes between diabetes and Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:8122532. doi: 10.1155/2022/8122532.
  • Lynn J, Park M, Ogunwale C, et al. A tale of two diseases: exploring mechanisms linking diabetes mellitus with Alzheimer’s disease. J Alzheimers Dis. 2022;85(2):485–501. doi: 10.3233/JAD-210612.
  • Huang C, Luo J, Wen X, et al. Linking diabetes mellitus with Alzheimer’s disease: bioinformatics analysis for the potential pathways and characteristic genes. Biochem Genet. 2022;60(3):1049–1075. doi: 10.1007/s10528-021-10154-8.
  • Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem. 2001;276(10):7549–7558. doi: 10.1074/jbc.M010242200.
  • Mahmoodi MR, Najafipour H. Association of C-peptide and lipoprotein(a) as two predictors with cardiometabolic biomarkers in patients with type 2 diabetes in KERCADR population-based study. PLoS One. 2022;17(5):e0268927. doi: 10.1371/journal.pone.0268927.
  • Muhanhali D, Zhai T, Cai Z, et al. Lipoprotein(a) concentration is associated with risk of type 2 diabetes and cardiovascular events in a Chinese population with very high cardiovascular risk. Endocrine. 2020;69(1):63–72. doi: 10.1007/s12020-020-02286-5.
  • Gudbjartsson DF, Thorgeirsson G, Sulem P, et al. Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes. J Am Coll Cardiol. 2019;74(24):2982–2994. doi: 10.1016/j.jacc.2019.10.019.
  • Lamina C, Ward NC. Lipoprotein (a) and diabetes mellitus. Atherosclerosis. 2022;349:63–71. doi: 10.1016/j.atherosclerosis.2022.04.016.
  • Kollerits B, Drechsler C, Krane V, et al. Lipoprotein(a) concentrations, apolipoprotein(a) isoforms and clinical endpoints in haemodialysis patients with type 2 diabetes mellitus: results from the 4D study. Nephrol Dial Transplant. 2016;31(11):1901–1908. doi: 10.1093/ndt/gfv428.
  • Mu-Han-Ha-Li D-L-D-E, Zhai T-Y, Ling Y, et al. LPA kringle IV type 2 is associated with type 2 diabetes in a Chinese population with very high cardiovascular risk. J Lipid Res. 2018;59(5):884–891. doi: 10.1194/jlr.P082792.
  • Singh SS, Rashid M, Lieverse AG, et al. Lipoprotein(a) plasma levels are not associated with incident microvascular complications in type 2 diabetes mellitus. Diabetologia. 2020;63(6):1248–1257. doi: 10.1007/s00125-020-05120-9.
  • Rahimi M, Khanahmad H, Gharipour M, et al. Polymorphisms of LPA gene, rs1801693 and rs7765781, are not associated with premature myocardial infarction in the Iranian population. ARYA Atheroscler. 2021;17(5):1–8. doi: 10.22122/arya.v17i0.2369.
  • Xu S, Cheng J, Li NH, et al. The association of APOC4 polymorphisms with premature coronary artery disease in a Chinese Han population. Lipids Health Dis. 2015;14:63. doi: 10.1186/s12944-015-0065-7.
  • Linnér C, Svartberg J, Giwercman A, et al. Estrogen receptor alpha single nucleotide polymorphism as predictor of diabetes type 2 risk in hypogonadal men. Aging Male. 2013;16(2):52–57. doi: 10.3109/13685538.2013.772134.
  • Yang C, Tang R, Ma X, et al. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the Chinese Han population. Oncotarget. 2015;6(17):15311–15320. doi: 10.18632/oncotarget.3840.
  • Lu W, Cheng YC, Chen K, et al. Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels. Hum Mol Genet. 2015;24(8):2390–2400. doi: 10.1093/hmg/ddu731.
  • Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998;15(7):539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.
  • Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–1847. doi: 10.1161/01.cir.97.18.1837.
  • Luke MM, Kane JP, Liu DM, et al. A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol. 2007;27(9):2030–2036. doi: 10.1161/ATVBAHA.107.141291.
  • Chasman DI, Shiffman D, Zee RY, et al. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009;203(2):371–376. doi: 10.1016/j.atherosclerosis.2008.07.019.
  • Song ZK, Cao HY, Wu HD, et al. A case-control study of the relationship between SLC22A3-LPAL2-LPA gene cluster polymorphism and coronary artery disease in the Han Chinese population. Iran Red Crescent Med J. 2016;18(6):e35387. doi: 10.5812/ircmj.35387.
  • García-Chapa EG, Leal-Ugarte E, Peralta-Leal V, et al. Genetic epidemiology of type 2 diabetes in Mexican Mestizos. Biomed Res Int. 2017;2017:3937893. doi: 10.1155/2017/3937893.
  • Zhang Y, Zhou X, Dai W, et al. CTNNA3 genetic polymorphism may be a new genetic signal of type 2 diabetes in the Chinese Han population: a case control study. BMC Med Genomics. 2021;14(1):257. doi: 10.1186/s12920-021-01105-8.
  • Cui J, Tong R, Xu J, et al. Association between STAT4 gene polymorphism and type 2 diabetes risk in Chinese Han population. BMC Med Genomics. 2021;14(1):169. doi: 10.1186/s12920-021-01000-2.
  • Tarnowski M, Malinowski D, Safranow K, et al. MTNR1A and MTNR1B gene polymorphisms in women with gestational diabetes. Gynecol Endocrinol. 2017;33(5):395–398. doi: 10.1080/09513590.2016.1276556.
  • Filus A, Trzmiel A, Kuliczkowska-Płaksej J, et al. Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male. 2008;11(3):134–139. doi: 10.1080/13685530802273426.
  • Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med. 2002;162(15):1737–1745. doi: 10.1001/archinte.162.15.1737.
  • Tian Y, Xu J, Huang T, et al. A novel polymorphism (rs35612982) in CDKAL1 is a risk factor of type 2 diabetes: a case-control study. Kidney Blood Press Res. 2019;44(6):1313–1326. doi: 10.1159/000503175.
  • Matharoo K, Arora P, Bhanwer AJ. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with type 2 diabetes in North Indian population of Punjab. Gene. 2013;527(1):228–234. doi: 10.1016/j.gene.2013.05.075.
  • Bragg F, Holmes MV, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. Jama. 2017;317(3):280–289. doi: 10.1001/jama.2016.19720.
  • Maeda T, Oyama J, Higuchi Y, et al. The correlation between clinical laboratory data and telomeric status of male patients with metabolic disorders and no clinical history of vascular events. Aging Male. 2011;14(1):21–26. doi: 10.3109/13685538.2010.502270.
  • Jin H. Increased levels of glycosylated hemoglobin, microalbuminuria and serum cystatin C predict adverse outcomes in high-risk pregnancies with gestational diabetes mellitus. Exp Therap Med. 2020;19(2):1281–1287.