218
Views
12
CrossRef citations to date
0
Altmetric
Review

An update on antifungal targets and mechanisms of resistance in Candidaalbicans

Pages 285-318 | Published online: 09 Jul 2009

References

  • Houten SM, Waterham HR. Nonorthologous gene displacement of phosphomevalonate kinase. Mol Genet Metab 2001; 72: 273–276
  • Tsay YH, Robinson GW. Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol Cell Biol 1991; 11: 620–631
  • Roemer T, Jiang B, Davison J, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 2003; 50: 167–181
  • Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun 1995; 207: 910–915
  • Watson PF, Rose ME, Ellis SW, England H, Kelly SL. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun 1989; 164: 1170–1175
  • Lamb D, Kelly D, Kelly S. Molecular aspects of azole antifungal action and resistance. Drug Resist Updat 1999; 2: 390–402
  • Bard M, Lees ND, Turi T, et al. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 1993; 28: 963–967
  • Shimokawa O, Kato Y, Nakayama H. Increased drug sensitivity in Candida albicans cells accumulating 14-methylated sterols. J Med Vet Mycol 1986; 24: 481–483
  • Bard M, Lees ND, Barbuch RJ, Sanglard D. Characterization of a cytochrome P450 deficient mutant of Candida albicans. Biochem Biophys Res Commun 1987; 147: 794–800
  • Shimokawa O, Nakayama H. A Candida albicans mutant conditionally defective in sterol 14 alpha- demethylation. J Med Vet Mycol 1989; 27: 121–125
  • Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 2004; 48: 2124–2131
  • Marichal P, Koymans L, Willemsens S, et al. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 1999; 145: 2701–2713
  • Xiao L, Madison V, Chau AS, et al. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 2004; 48: 568–574
  • Fukuoka T, Johnston DA, Winslow CA, et al. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother 2003; 47: 1213–1219
  • Ji H, Zhang W, Zhou Y, et al. A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 2000; 43: 2493–2505
  • Ji H, Zhang W, Zhang M, et al. Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem 2003; 46: 474–485
  • Macchiarulo A, Costantino G, Fringuelli D, et al. 1,4-Benzothiazine and 1,4-benzoxazine imidazole derivatives with antifungal activity: a docking study. Bioorg Med Chem 2002; 10: 3415–3423
  • Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Chemother. 1998; 42: 241–253
  • Kontoyiannis DP, Sagar N, Hirschi KD. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 1999; 43: 2798–2800
  • Marichal P, Vanden Bossche H, Odds FC, et al. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1997; 41: 2229–2237
  • vanden Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1992; 36: 2602–2610
  • Du, W, Coaker, M, Sobel, JD, Akins, RA. Shuttle vectors for Candida, albicans: control of plasmid copy number and elevated expression of cloned genes. Curr Genet 2004; 45: 390–398. Epub 2004 Mar 18.
  • Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47: 2404–2412
  • Kalb VF, Woods CW, Turi TG, et al. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. Dna 1987; 6: 529–537
  • Geber A, Hitchcock CA, Swartz JE, et al. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 1995; 39: 2708–2717
  • Vanden Bossche, H, Dromer, F, Improvisi, I, et al., Antifungal drug resistance in pathogenic fungi. Med Mycol 1998; 36((Suppl 1)): 119–128.
  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12: 501–517
  • White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402
  • Ryder NS, Wagner S, Leitner I. In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother 1998; 42: 1057–1061
  • Ryder, NS. Activity of terbinafine against serious fungal pathogens. Mycoses 1999; 42((Suppl 2)): 115–119.
  • Jessup CJ, Ryder NS, Ghannoum MA. An evaluation of the in vitro activity of terbinafine. Med Mycol 2000; 38: 161–168
  • Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 2003; 47: 956–964
  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 2003; 48: 959–976
  • Hiratani T, Yamaguchi H. [Cross-resistance of Candida albicans to several different families of antifungals with ergosterol biosynthesis-inhibiting activity]. Jpn J Antibiot 1994; 47: 125–128
  • Klobucnikova V, Kohut P, Leber R, et al. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun 2003; 309: 666–671
  • Leber R, Fuchsbichler S, Klobucnikova V, et al. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2003; 47: 3890–3900
  • Leber R, Landl K, Zinser E, et al. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 1998; 9: 375–386
  • Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2000; 44: 2693–2700
  • Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP. Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother 2004; 48: 2490–2496
  • Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 1989; 9: 3447–3456
  • Kleinhans FW, Lees ND, Bard M, Haak RA, Woods RA. ESR determinations of membrane permeability in a yeast sterol mutant. Chem Phys Lipids 1979; 23: 143–154
  • Bard M, Lees ND, Burrows LS, Kleinhans FW. Differences in crystal violet uptake and cation-induced death among yeast sterol mutants. J Bacteriol 1978; 135: 1146–1148
  • Welihinda AA, Beavis AD, Trumbly RJ. Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim Biophys Acta 1994; 1193: 107–117
  • Jensen-Pergakes KL, Kennedy MA, Lees ND, et al. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother 1998; 42: 1160–1167
  • Kaur R, Bachhawat AK. The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 1999; 145((Pt 4))809–818
  • Jia N, Arthington-Skaggs B, Lee W, et al. Candida albicans sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Antimicrob Agents Chemother 2002; 46: 947–957
  • Gachotte D, Pierson CA, Lees ND, et al. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci USA 1997; 94: 11173–11178
  • Kennedy MA, Johnson TA, Lees ND, et al. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Pediatr Infect Dis J 2000; 19: 319–324
  • Nose H, Fushimi H, Seki A, et al. PF1163A, a novel antifungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J Antibiot (Tokyo) 2002; 55: 969–974
  • Nose H, Seki A, Yaguchi T, et al. PF1163A and B, new antifungal antibiotics produced by Penicillium sp. I. Taxonomy of producing strain, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2000; 53: 33–37
  • Bujdakova H, Kral'ova K, Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethi ones. Pharmazie 1995; 50: 156
  • Bujdakova H, Kuchta T, Sidoova E, Gvozdjakova A. Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett 1993; 112: 329–333
  • Kuchta T, Leka C, Farkas P, et al. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Antimicrob Agents Chemother 1995; 39: 1538–1541
  • Kuchta T, Bartkova K, Kubinec R. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole. Biochem Biophys Res Commun 1992; 189: 85–91
  • Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425–430
  • Basson ME, Thorsness M, Rine J. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci USA 1986; 83: 5563–5567
  • Casey WM, Keesler GA, Parks LW. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 1992; 174: 7283–7288
  • Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 1998; 49: 66–71
  • Bard M, Lees ND, Burnett AS, Parker RA. Isolation and characterization of mevinolin resistant mutants of Saccharomyces cerevisiae. J Gen Microbiol 1988; 134: 1071–1078
  • Song JL, Lyons CN, Holleman S, Oliver BG, White TC. Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergosterol and prenylation pathways in Candida albicans. Med Mycol 2003; 41: 417–425
  • Lorenz RT, Parks LW. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother 1990; 349: 1660–1665
  • Dimster-Denk D, Rine J, Phillips J, et al. Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix(TM). J Lipid Res 1999; 40: 850–860
  • Brutyan RA, McPhie P. On the one-sided action of amphotericin B on lipid bilayer membranes. J Gen Physiol 1996; 107: 69–78
  • Langlet J, Berges J, Caillet J, Demaret JP. Theoretical study of the complexation of amphotericin B with sterols. Biochimica et Biophysica Acta 1994; 1191: 79–93
  • Vazquez JA, Arganoza MT, Boikov D, et al. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. J Clin Microbiol 1998; 36: 2690–2695
  • Vazquez JA, Arganoza MT, Vaishampayan JK, Akins RA. In vitro interaction between amphotericin B and azoles in Candida albicans. Antimicrob Agents Chemother 1996; 40: 2511–2516
  • Lewis RE, Prince RA, Chi J, Kontoyiannis DP. Itraconazole preexposure attenuates the efficacy of subsequent amphotericin B therapy in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2002; 46: 3208–3214
  • Sokol-Anderson M, Sligh JE, Jr, Elberg S, et al. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 1988; 32: 702–705
  • Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients [letter]. Lancet 1996; 348: 1523–1524
  • Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 1997; 400: 80–82
  • Nolte FS, Parkinson T, Falconer DJ, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 1997; 41: 196–199
  • O'Keeffe J, Kavanagh K. Adriamycin alters the expression of drug efflux pumps and confers amphotericin B tolerance in Candida albicans. Anticancer Res 2004; 24(2A)405–408
  • Gale EF, Johnson AM, Kerridge D, Koh TY. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth. J Gen Microbiol 1975; 87: 20–36
  • Gale EF, Ingram J, Kerridge D, Notario V, Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol 1980; 117: 383–391
  • Gale EF, Johnson AM, Kerridge D, Wayman F. Phenotypic resistance to miconazole and amphotericin B in Candida albicans. J Gen Microbiol 1980; 117: 535–538
  • Cassone A, Kerridge D, Gale EF. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol 1979; 110: 339–349
  • Yoon SA, Vazquez JA, Steffan PE, Sobel JD, Akins RA. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother 1999; 43: 836–845
  • Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol 1999; 43: 1017–1025
  • Barker KS, Crisp S, Wiederhold N, et al. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 2004; 54: 376–385
  • Dimster-Denk D, Thorsness MK, Rine J. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol Biol Cell 1994; 5: 655–665
  • Soustre I, Dupuy PH, Silve S, Karst F, Loison G. Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae. FEBS Lett 2000; 470: 102–106
  • Smith SJ, Crowley JH, Parks LW. Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1996; 16: 5427–5432
  • Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1999; 1445: 110–122
  • Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M. Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Let 1996; 392: 161–165
  • Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001; 67: 2982–2992
  • Hornby JM, Nickerson KW. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 2004; 48: 2305–2307
  • Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 2003; 47: 2366–2369
  • Pierson CA, Eckstein J, Barbuch R, Bard M. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol 2004; 42: 385–389
  • Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2000; 44: 2693–2700
  • Smith WL, Edlind TD. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 2002; 46: 3532–3539
  • Song JL, Harry JB, Eastman RT, Oliver BG, White TC. The Candida albicans lanosterol 14-alpha-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 2004; 48: 1136–1144
  • De Backer MD, Ilyina T, Ma XJ, et al. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 2001; 45: 1660–1670
  • Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 2004; 48: 3064–3079
  • Cowen LE, Nantel A, Whiteway MS, et al. Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci USA 2002; 99: 9284–9289
  • Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 2003; 47: 1220–1227
  • Barker KS, Pearson MM, Rogers PD. Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae. J Antimicrob Chemother 2003; 51: 1131–1140
  • Silver PM, Oliver BG, White TC. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 2004; 3: 1391–1397
  • Henry KW, Nickels JT, Edlind TD. ROX1 and ERG Regulation in Saccharomyces cerevisiae: Implications for Antifungal Susceptibility. Eukaryotic Cell 2002; 1: 1041–1044
  • Lo HJ, Wang JS, Lin CY, et al. Efg1 Involved in Drug Resistance by Regulating the Expression of ERG3 in Candida albicans. Antimicrob Agents Chemother 2005; 49: 1213–1215
  • Lewis RE, Lo HJ, Raad II, Kontoyiannis DP. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 2002; 46: 1153–1155
  • Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90: 939–949
  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. Embo J 1997; 16: 1982–1991
  • van den Hazel HB, Pichler H, do Valle Matta MA, et al. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem 1999; 274: 1934–1941
  • Kennedy MA, Bard M. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim Biophys Acta 2001; 1517: 177–189
  • Prasad R, De Wergifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Current Genetics 1995; 27: 320–329
  • Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143((Pt 2))405–416
  • Prasad R, Kapoor K. Multidrug resistance in yeast Candida. Int Rev Cytol 2005; 242: 215–248
  • Krishnamurthy S, Chatterjee U, Gupta V, et al. Deletion of transmembrane domain 12 of CDR1, a multidrug transporter from Candida albicans, leads to altered drug specificity: expression of a yeast multidrug transporter in baculovirus expression system. Yeast 1998; 14: 535–550
  • Niimi M, Niimi K, Takano Y, et al. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother 2004; 54: 999–1006
  • Bauer BE, Wolfger H, Kuchler K. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1999; 1461: 217–236
  • Jones T, Federspiel NA, Chibana H, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004; 101: 7329–7334
  • Nakamura K, Niimi M, Niimi K, et al. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 2001; 45: 3366–3374
  • Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 2003; 22: 291–300
  • Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 1996; 40: 2300–2305
  • Lopez-Ribot JL, McAtee RK, Lee LN, et al. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 1998; 42: 2932–2937
  • White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997; 41: 1488–1494
  • Maebashi K, Niimi M, Kudoh M, et al. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother 2001; 47: 527–536
  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 2002; 46: 1704–1713
  • Anderson JB, Sirjusingh C, Parsons AB, et al. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 2003; 163: 1287–1298
  • Cowen LE, Sanglard D, Calabrese D, et al. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 2000; 182: 1580–1591
  • Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143((Pt 2))405–416
  • Balan I, Alarco AM, Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol 1997; 179: 7210–7218
  • Franz R, Michel S, Morschh#user J. A fourth gene from the Candida albicans CDR family of ABC transporters. Curr Microbiol 1998; 37: 359–361
  • Jha S, Dabas N, Karnani N, Saini P, Prasad R. ABC multidrug transporter Cdr1p of Candida albicans has divergent nucleotide-binding domains which display functional asymmetry. FEMS Yeast Res 2004; 5: 63–72
  • Shukla S, Ambudkar SV, Prasad R. Substitution of threonine-1351 in the multidrug transporter Cdr1p of Candida albicans results in hypersusceptibility to antifungal agents and threonine-1351 is essential for synergic effects of calcineurin inhibitor FK520. J Antimicrob Chemother 2004; 54: 38–45
  • Egner R, Bauer BE, Kuchler K. The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 2000; 35: 1255–1263
  • Maesaki S, Marichal P, Vanden Bossche H, Sanglard D, Kohno S. Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother 1999; 44: 27–31
  • Shukla S, Saini P, Smriti, et al. Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell 2003; 2: 1361–1375
  • Gauthier C, Weber S, Alarco AM, et al. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. Antimicrob Agents Chemother 2003; 47: 1543–1554
  • Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. International Journal of Antimicrobial Agents 2003; 22: 291–300
  • Wada S, Niimi M, Niimi K, et al. Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 2002; 277: 46809–46821
  • Wada S, Tanabe K, Yamazaki A, et al. Phosphorylation of Candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability. J Biol Chem 2005; 280: 94–103
  • Sauna ZE, Peng XH, Nandigama K, Tekle S, Ambudkar SV. The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Mol Pharmacol 2004; 65: 675–684
  • Loo TW, Clarke DM. Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J Natl Cancer Inst 2000; 92: 898–902
  • Shukla S, Sauna ZE, Prasad R, Ambudkar SV. Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans. Biochem Biophys Res Commun 2004; 322: 520–525
  • Krishnamurthy S, Gupta V, Prasad R, Panwar SL. Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett 1998; 160: 191–197
  • Hernaez ML, Gil C, Pla J, Nombela C. Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals. Yeast 1998; 14: 517–526
  • Puri N, Krishnamurthy S, Habib S, et al. CDR1, a multidrug resistance gene from Candida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiol Lett 1999; 180: 213–219
  • Gaur NA, Puri N, Karnani N, et al. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res 2004; 4: 389–399
  • de Micheli M, Bille J, Schueller C, Sanglard D. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol Microbiol 2002; 43: 1197–214
  • Karnani N, Gaur NA, Jha S, et al. SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast 2004; 21: 219–239
  • Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 2004; 3: 1639–1652
  • Rustad TR, Stevens DA, Pfaller MA, White TC. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 2002; 148: 1061–1072
  • Chen CG, Yang YL, Shih HI, Su CL, Lo HJ. CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob Agents Chemother 2004; 48: 4505–4512
  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 1997; 272: 19304–19313
  • Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 1999; 181: 700–708
  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 1994; 244: 501–511
  • Katzmann DJ, Burnett PE, Golin J, Mahe Y, Moye-Rowley WS. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol 1994; 14: 4653–4661
  • Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 1987; 262: 16871–16879
  • Meyers S, Schauer W, Balzi E, et al. Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet 1992; 21: 431–436
  • Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 1994; 269: 2206–2214
  • Talibi D, Raymond M. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 1999; 181: 231–240
  • Yang X, Talibi D, Weber S, Poisson G, Raymond M. Functional isolation of the Candida albicans FCR3 gene encoding a bZip transcription factor homologous to Saccharomyces cerevisiae Yap3p. Yeast 2001; 18: 1217–1225
  • Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18: 1147–1155
  • Kim DY, Song WY, Yang YY, Lee Y. The role of PDR13 in tolerance to high copper stress in budding yeast. FEBS Lett 2001; 508: 99–102
  • Hallstrom TC, Moye-Rowley WS. Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the hsp70 protein Pdr13p. Mol Microbiol 2000; 36: 402–413
  • Michimoto T, Aoki T, Toh-e A, Kikuchi Y. Yeast Pdr13p and Zuo1p molecular chaperones are new functional Hsp70 and Hsp40 partners. Gene 2000; 257: 131–137
  • Eisenman HC, Craig EA. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol Microbiol 2004; 53: 335–344
  • Aleman C, Annereau JP, Liang XJ, et al. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res 2003; 63: 3084–3091
  • Luker GD, Pica CM, Kumar AS, Covey DF, Piwnica-Worms D. Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry 2000; 39: 7651–7661
  • Troost J, Lindenmaier H, Haefeli WE, Weiss J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol 2004; 66: 1332–1339
  • Ghetie MA, Marches R, Kufert S, Vitetta ES. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood 2004; 104: 178–183
  • Malinska K, Malinsky J, Opekarova M, Tanner W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci 2004; 117: 6031–6041
  • Li Y, Prinz WA. ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J Biol Chem 2004; 279: 45226–45234
  • Hearn JD, Lester RL, Dickson RC. The uracil transporter Fur4p associates with lipid rafts. J Biol Chem 2003; 278: 3679–3686
  • Bagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 2001; 12: 4129–4138
  • Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 2000; 97: 3254–3259
  • Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem 2000; 275: 2191–2198
  • Malinska K, Malinsky J, Opekarova M, Tanner W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell 2003; 14: 4427–4436
  • Dogra S, Krishnamurthy S, Gupta V, et al. Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast 1999; 15: 111–121
  • Smriti AA, Krishnamurthy SS, Prasad R. Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans [published erratum appears in FEMS Microbiol Lett 1;176:263]. FEMS Microbiol Lett 1999; 173: 475–481
  • Mukhopadhyay K, Prasad T, Saini P, et al. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 2004; 48: 1778–1787
  • Mukhopadhyay K, Kohli A, Prasad R. Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 2002; 46: 3695–3705
  • Kohli A, Smriti, Mukhopadhyay K, Rattan A, Prasad R. In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother 2002; 46: 1046–1052
  • Sa-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 2002; 98: 215–226
  • Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 1994; 38: 648–652
  • Fling ME, Kopf J, Tamarkin A, et al. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Molecular & General Genetics 1991; 227: 318–329
  • Kohli A, Gupta V, Krishnamurthy S, Hasnain SE, Prasad R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. J Biosci 2001; 26: 333–339
  • Wirsching S, Michel S, Morschhauser J. Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 2000; 36: 856–865
  • Morschhauser J, Michel S, Staib P. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 1999; 32: 547–556
  • Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 2000; 146: 2743–2754
  • Gupta V, Kohli A, Krishnamurthy S, et al. Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr Genet 1998; 34: 192–199
  • Wirsching S, Michel S, Kohler G, Morschhauser J. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 2000; 182: 400–404
  • Moosa MY, Sobel JD, Elhalis H, Du W, Akins RA. Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother 2004; 48: 161–167
  • Hooshdaran MZ, Barker KS, Hilliard GM, et al. Proteomic analysis of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 2004; 48: 2733–2735
  • Kusch H, Biswas K, Schwanfelder S, et al. A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol Genet Genomics 2004; 271: 554–565
  • Krcmery V, Huttova M, Mateicka F, et al. Breakthrough fungaemia in neonates and infants caused by Candida albicans and Candida parapsilosis susceptible to fluconazole in vitro. J Antimicrob Chemother 2001; 48: 521–525
  • Sobel JD, Zervos M, Reed BD, et al. Fluconazole susceptibility of vaginal isolates obtained from women with complicated Candida vaginitis: clinical implications. Antimicrob Agents Chemother 2003; 47: 34–38
  • Maxwell MJ, Messer SA, Hollis RJ, et al. Evaluation of Etest method for determining fluconazole and voriconazole MICs for 279 clinical isolates of Candida species infrequently isolated from blood. J Clin Microbiol 2003; 41: 1087–1090
  • Diekema DJ, Messer SA, Brueggemann AB, et al. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol 2002; 40: 1298–1302
  • Pfaller MA, Diekema DJ, Jones RN, Messer SA, Hollis RJ. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J Clin Microbiol 1997 to 2000; 40: 852–856
  • Pfaller MA, Diekema DJ, Jones RN, et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 2001; 39: 3254–3259
  • Pfaller MA, Diekema DJ. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 2004; 42: 4419–4431
  • Pfaller, MA, Diekema, DJ. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 2004; 10((Suppl 1)): 11–23.
  • Kovacicova G, Mateicka F, Hanzen J, et al. Breakthrough candidaemias during empirical therapy with fluconazole in non-cancer and non-HIV adults caused by in vitro-susceptible Candida spp.: report of 33 cases. Scand J Infect Dis 2001; 33: 749–751
  • Nucci M, Colombo AL. Risk factors for breakthrough candidemia. Eur J Clin Microbiol Infect Dis 2002; 21: 209–211
  • Uzun, O, Ascioglu, S, Anaissie, EJ, Rex, JH. Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia. Clin Infect Dis 2001; 32: 1713–1717. Epub 2001 May 7.
  • Perepnikhatka V, Fischer FJ, Niimi M, et al. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J Bacteriol 1999; 181: 4041–4049
  • Sobel JD. Treatment of vaginal Candida infections. Expert Opin Pharmacother 2002; 3: 1059–1065
  • Pfaller MA, Rhine-Chalberg J, Redding SW, et al. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J Clin Microbiol 1994; 32: 59–64
  • Owen DH, Katz DF. A vaginal fluid simulant. Contraception 1999; 59: 91–95
  • Sobel JD, Wiesenfeld HC, Martens M, et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med 2004; 351: 876–883
  • Calvet HM, Yeaman MR, Filler SG. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob Agents Chemother 1997; 41: 535–539
  • Marr KA, Lyons CN, Rustad T, Bowden RA, White TC. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob Agents Chemother 1998; 42: 2645–2649
  • Marr KA, Lyons CN, Rustad TR, et al. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR [published erratum appears in Antimicrob Agents Chemother Feb;43:438]. Antimicrob Agents Chemother 1998; 42: 2584–2589
  • Marr KA, Lyons CN, Ha K, Rustad TR, White TC. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob Agents Chemother 2001; 45: 52–59
  • Calvet HM, Yeaman MR, Filler SG. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob Agents Chemother 1997; 41: 535–539
  • Soll DR. High-frequency switching in Candida albicans. Clin Microbiol Rev 1992; 5: 183–203
  • Soll DR, Galask R, Isley S, et al. Switching of Candida albicans during successive episodes of recurrent vaginitis. J Clin Microbiol 1989; 27: 681–690
  • Soll DR. High-frequency switching in Candida albicans and its relations to vaginal candidiasis. Am J Obstet Gynecol 1988; 158: 997–1001
  • Zhao R, Lockhart SR, Daniels K, Soll DR. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell 2002; 1: 353–365
  • Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 2001; 183: 4614–4625
  • Klar AJ, Srikantha T, Soll DR. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 2001; 158: 919–924
  • Soll DR. Gene regulation during high-frequency switching in Candida albicans. Microbiology 1997; 143((Pt 2))279–288
  • Soll DR, Morrow B, Srikantha T, Vargas K, Wertz P. Developmental and molecular biology of switching in Candida albicans. Oral Surg Oral Med Oral Pathol 1994; 78: 194–201
  • Vargas K, Messer SA, Pfaller M, et al. Elevated phenotypic switching and drug resistance of Candida albicans from human immunodeficiency virus-positive individuals prior to first thrush episode. J Clin Microbiol 2000; 38: 3595–3607
  • Marr KA, Rustad TR, Rex JH, White TC. The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob Agents Chemother 1999; 43: 1383–1386
  • Revankar SG, Kirkpatrick WR, McAtee RK, et al. Interpretation of trailing endpoints in antifungal susceptibility testing by the National Committee for Clinical Laboratory Standards method. J Clin Microbiol 1998; 36: 153–156
  • Lee MK, Williams LE, Warnock DW, Arthington-Skaggs BA. Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother 2004; 53: 217–224
  • Rex JH, Nelson PW, Paetznick VL, et al. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. Antimicrob Agents Chemother 1998; 42: 129–134
  • Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev 2000; 80: 1483–1521
  • Bader T, Bodendorfer B, Schroppel K, Morschhauser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003; 71: 5344–5354
  • Maesaki S, Marichal P, Hossain MA, et al. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains. J Antimicrob Chemother 1998; 42: 747–753
  • Cruz MC, Goldstein AL, Blankenship JR, et al. Calcineurin is essential for survival during membrane stress in Candida albicans. Embo J 2002; 21: 546–559
  • Marchetti O, Moreillon P, Entenza JM, et al. Fungicidal synergism of fluconazole and cyclosporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1, CDR2, CaMDR1, and FLU1 genes. Antimicrob Agents Chemother 2003; 47: 1565–1570
  • Cameron AM, Steiner JP, Roskams AJ, et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 1995; 83: 463–472
  • Onyewu C, Wormley FL, Jr, Perfect JR, Heitman J. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 2004; 72: 7330–7333
  • Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 1999; 33: 904–918
  • Kafadar KA, Cyert MS. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase. A Eukaryot Cell 2004; 3: 1147–1153
  • Jain P, Akula I, Edlind T. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2003; 47: 3195–3201
  • do Valle Matta MA, Jonniaux JL, Balzi E, Goffeau A, van den Hazel B. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 2001; 272: 111–119
  • De Deken X, Raymond M. Constitutive activation of the PDR16 promoter in a Candida albicans azole-resistant clinical isolate overexpressing CDR1 and CDR2. Antimicrob Agents Chemother 2004; 48: 2700–2703
  • Panwar SL, Krishnamurthy S, Gupta V, et al. CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast 2001; 18: 1117–1129
  • Noel T, Francois F, Paumard P, et al. Flucytosine-fluconazole cross-resistance in purine-cytosine permease-deficient Candida lusitaniae clinical isolates: indirect evidence of a fluconazole uptake transporter. Antimicrob Agents Chemother 2003; 47: 1275–1284
  • Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996; 40: 2835–2841
  • Maebashi K, Kudoh M, Nishiyama Y, et al. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient. Microbiol Immunol 2002; 46: 317–326
  • Fox TD, Folley LS, Mulero JJ, et al. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 1991; 194: 149–165
  • O'Connor RM, McArthur CR, Clark-Walker GD. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mu m. J Bacteriol 1976; 126: 959–968
  • Kontoyiannis DP. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 2000; 46: 191–197
  • Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999; 43: 2753–2765
  • Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999; 43: 2753–2765
  • Brun S, Berges T, Poupard P, et al. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother 2004; 48: 1788–1796
  • Defontaine A, Bouchara JP, Declerk P, et al. In vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. J Med Microbiol 1999; 48: 663–670
  • Hallstrom TC, Moye-Rowley WS. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 2000; 275: 37347–37356
  • Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 2004; 48: 1773–1777
  • Sanglard D, Ischer F, Bille J. Role of ATP-Binding-Cassette Transporter Genes in High-Frequency Acquisition of Resistance to Azole Antifungals in Candida glabrata. Antimicrob Agents Chemother 2001; 45: 1174–1183
  • Zhang X, Moye-Rowley WS. Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F(0) component of the mitochondrial ATPase. J Biol Chem 2001; 276: 47844–47852
  • Kaur R, Castano I, Cormack BP. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 2004; 48: 1600–1613
  • Kontoyiannis DP. Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. J Antimicrob Chemother 2000; 46: 199–203
  • Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362: 1142
  • Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 2000; 44: 368–377
  • Kurtz MB, Douglas C, Marrinan J, et al. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis. Antimicrob Agents Chemother 1994; 38: 2750–2757
  • Douglas CM, D'Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 1997; 41: 2471–2479
  • Higashiyama Y, Kohno S. Micafungin: a therapeutic review. Expert Rev Anti Infect Ther 2004; 2: 345–355
  • Rex JH, Pfaller MA, Walsh TJ, et al. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 2001; 14: 643–658
  • Pfaller MA, Messer SA, Boyken L, et al. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol 2003; 41: 5729–5731
  • Carver PL. Micafungin. Ann Pharmacother 2004; 38: 1707–1721
  • Douglas CM, Foor F, Marrinan JA, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci USA 1994; 91: 12907–12911
  • Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol 1994; 176: 5686–5696
  • Mazur P, Morin N, Baginsky W, et al. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol 1995; 15: 5671–5681
  • Kurtz MB, Abruzzo G, Flattery A, et al. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infection & Immunity 1996; 64: 3244–3251
  • Douglas CM, D'Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 1997; 41: 2471–2479
  • Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 2002; 40: 2228–2230
  • Paderu P, Park S, Perlin DS. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother 2004; 48: 3845–3849
  • Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother 2004; 48: 3407–3411
  • Osherov N, May GS, Albert ND, Kontoyiannis DP. Overexpression of Sbe2p, a Golgi protein, results in resistance to caspofungin in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2002; 46: 2462–2469
  • Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N. Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2004; 48: 3871–3876
  • Lesage G, Sdicu AM, Menard P, et al. Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 2004; 167: 35–49
  • Waldorf AR, Polak A. Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother 1983; 23: 79–85
  • Polak A, Wain WH. The effect of 5-fluorocytosine on the blastospores and hyphae of Candida albicans. J Med Microbiol 1979; 12: 83–97
  • Kurtz JE, Exinger F, Erbs P, Jund R. New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine metabolism. Curr Genet 1999; 36: 130–136
  • Weber S, Polak A. Susceptibility of yeast isolates from defined German patient groups to 5-fluorocytosine. Mycoses 1992; 35: 163–171
  • Stiller RL, Bennett JE, Scholer HJ, et al. Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrob Agents Chemother 1982; 22: 482–487
  • Polak A. Combination therapy of experimental candidiasis, cryptococcosis, aspergillosis and wangiellosis in mice. Chemotherapy 1987; 33: 381–395
  • Polak A. Combination therapy for systemic mycosis. Infection 1989; 17: 203–209
  • Polak A. Combination therapy in systemic mycosis. J Chemother 1990; 2: 211–217
  • Polak A. Synergism of polyene antibiotics with 5-fluorocytosine. Chemotherapy 1978; 24: 2–16
  • Polak A, Scholer HJ, Wall M. Combination therapy of experimental candidiasis, cryptococcosis and aspergillosis in mice. Chemotherapy 1982; 28: 461–479
  • Dodgson AR, Dodgson KJ, Pujol C, Pfaller MA, Soll DR. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother 2004; 48: 2223–2227
  • Pujol C, Pfaller MA, Soll DR. Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob Agents Chemother 2004; 48: 262–266
  • Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 2004; 48: 4377–4386
  • Montplaisir S, Drouhet E, Mercier-Soucy L. Sensitivity and resistance of pathogenic yeasts to 5-fluoropyrimidines. II.--Mechanisms of resistance to 5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU) (author's transl)]. Ann Microbiol (Paris) 1975; 126B: 41–49
  • Fasoli MO, Kerridge D, Morris PG, Torosantucci A. 19F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob Agents Chemother 1990; 34: 1996–2006
  • Kelly SL, Lamb DC, Kelly DE. Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol Lett 1999; 180: 171–175
  • Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha- demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother. 1998; 42: 241–253
  • Lamb D, Kelly DE, Hagen-Schunck W. The mutation T315A in Candida albicans sterol 14a-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 1997; 272: 5682–5688
  • Lamb DC, Kelly DE, White TC, Kelly SL. The R467K amino acid substitution in Candida albicans sterol 14alpha- demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 2000; 44: 63–67
  • White T. The presence of R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14a-demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41: 1488–1494
  • Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE. The G464S amino acid substitution in Candida albicans sterol 14alpha- demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 1999; 262: 174–179
  • Loffler J, Kelly SL, Hebart H, et al. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. Gene 1997; 192: 235–240
  • Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 2004; 48: 2124–2131
  • Favre B, Didmon M, Ryder NS. Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans. Microbiology 1999; 145: 2715–2725

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.