30
Views
3
CrossRef citations to date
0
Altmetric
Original

Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis

, &
Pages 243-252 | Received 30 May 2005, Published online: 09 Jul 2009

References

  • Mignon BR, Losson BJ. Prevalence and characterization of Microsporum canis carriage in cats. J Med Vet Mycol 1997; 35: 249–256
  • Scott DW, Miller WH, Griffin CE. Fungal skin diseases. Small Animal Dermatology, GH Muller, RW Kirk. WB Saunders, Philadelphia 2001; 339–361
  • Lunder M, Lunder M. Is Microsporum canis infection about to become a serious dermatological problem?. Dermatology 1992; 184: 87–89
  • Hasegawa A, Usui K. Canine and feline dermatophytoses and their possible relation to human infection. Recent Advances in Medical and Veterinary Mycology, K. Iwata. University of Tokyo Press, Tokyo 1997; 135–142
  • Padhye, AA, Weitzman, I. The dermatophytes. In: L Collier, Balows, A, Sussman, M, (eds), Microbiology and Microbial Infections, 9th edn., vol. 4. Medical Mycology. London: Arnold,1999: 215–236.
  • Monod M, Jaccoud S, Zaugg C, Léchenne B, Baudraz F, Panizzon R. Survey of dermatophyte infections in the Lausanne area (Switzerland). Dermatology 2002; 205: 201–203
  • Pepin GA, Oxenham M. Zoonotic dermatophytosis (ringworm). Vet Rec 1986; 118: 110–111
  • Kudla B, Caddick MX, Langdon T, et al. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 1990; 9: 1355–1364
  • Langdon T, Sheerins A, Ravagnani A, et al. Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol 1995; 17: 877–888
  • Stewart V, Vollmer SJ. Molecular cloning of nit-2, a regulatory gene required for nitrogen metabolite repression in Neurospora crassa. Gene 1986; 46: 291–295
  • Fu YH, Marzluf GA. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 1990; 10: 1056–1065
  • Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol 2000; 3: 126–131
  • Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 1997; 61: 17–32
  • Hensel M, Arst HN, Jr, Aufauvre-Brown A, Holden DW. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 1998; 258: 553–557
  • Limjindaporn T, Khalaf RA, Fonzi WA. Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 2003; 50: 993–1004
  • Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 1996; 251: 647–656
  • Makimura K, Mochizuki T, Hasegawa A, et al. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1998; 36: 2629–2633
  • Makimura K, Tamura Y, Mochizuki T, et al. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1999; 37: 920–924
  • Makimura K, Tamura Y, Murakami A, et al. Cluster analysis of human and animal pathogenic Microsporum species and their teleomorphic states, Arthroderma species, based on the DNA sequences of nuclear ribosomal internal transcribed spacer 1. Microbiol Immunol 2001; 45: 209–216
  • Platt A, Langdon T, Arst HN, et al. Nitrogen metabolite signaling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRN A. EMBO J 1996; 15: 2791–2801
  • Barratt RW, Johnson GB, Ogata WN. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 1965; 52: 233–246
  • Girardin H, Latge JP. DNA extraction and quantification. Molecular Biology of Pathogenic Fungi2nd edn, B Maresca, GS Kobayashi. Telos Press, New York 1994; 5–9
  • Mignon BR, Swinnen M, Bouchara JP, et al. Purification and characterization of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 1998; 36: 395–404
  • Turgeon BG, Garber RC, Yoder OC. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol 1987; 7: 3297–3305
  • Yamada, T, Makimura, K, Uchida, K, Yamaguchi, H. Reproducible genetic transformation system for two dermatophytes, Microsporum canis and Trichophyton mentagrophytes. Med Mycol 2005; 43: 533–544.
  • Kimura N, Tsuge T. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 1993; 175: 4427–4435
  • Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE. Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet 1985; 199: 37–45
  • Pellier AL, Laugé R, Veneault-Fourrey C, Langin T. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol Microbiol 2003; 48: 639–655
  • Christensen T, Hynes MJ, Davis MA. Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 1998; 64: 3232–3237
  • MacCabe AP, Vanhanen S, Gelpke MDS, et al. Identification, cloning and sequence of the Aspergillus niger areA wide domain regulatory gene controlling nitrogen utilisation. Biochim Biophys Acta 1998; 1396: 163–168
  • Xiao X, Fu YH, Marzluf GA. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 1995; 34: 8861–8868
  • Pan H, Feng B, Marzluf GA. Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol Microbiol 1997; 26: 721–729
  • Tudzynski B, Homann V, Feng B, Marzluf GA. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 1999; 261: 106–114
  • Jauniaux JC, Grenson M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 1990; 190: 39–44
  • Sophianopoulou V, Scazzocchio C. The proline transport protein of Aspergillus nidulans is very similar to amino acid transporters of Saccharomyces cerevisiae. Mol Microbiol 1989; 3: 705–714
  • Stanbrough M, Magasanik B. Two transcriptional factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J Bacteriol 1996; 178: 2465–2468
  • Brouta F, Descamps F, Fett T, et al. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol 2001; 39: 269–275
  • Gonzalez R, Ferrer S, Buesa J, Ramon D. Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Infect Immun 1989; 57: 2923–2925
  • Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1991; 88: 7585–7589
  • Lu S, Lyngholm L, Yang G, et al. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci USA 1994; 91: 12649–12653
  • Sánchez O, Navarro RE, Aguirre J. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol Gen Genet 1998; 258: 89–94
  • Kaufman G, Horwitz BA, Hadar R, et al. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology 2004; 150: 2785–2790
  • Bird D, Bradshaw R. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 1997; 255: 219–225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.