68
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Biochemical characterization of potential virulence markers in the human fungal pathogen Pseudallescheria boydii

, , , , &
Pages 375-386 | Received 30 Apr 2008, Published online: 23 Feb 2009

References

  • Kwon-Chung KJ, Bennett JE. Pseudallescheriasis and Scedosporium. Medical Mycology, KJ Kwon-Chung, JE Bennett. Lea and Febiger, Philadelphia 1992; 678–694
  • De Hoog, GS, Guarro, J, Gene, J, Figueras, MJ. Atlas of Clinical Fungi, 2nd. edn. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands, and University Rovira i Virgili, Reus, Spain, 2000
  • Steinbach WJ, Perfect JR. Scedosporium species infections and treatments. J Chemother 2003; 15: 16–27
  • Defontaine A, Zouhair R, Cimon B, et al. Genotyping study of Scedosporium apiospermum isolates from patients with cystic fibrosis. J Clin Microbiol 2002; 40: 2108–2114
  • Guarro J, Kantarcioglu AS, Horre R, et al. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol 2006; 44: 295–327
  • Lopez FA, Crowley RS, Wastila L, Valantine HA, Remington JS. Scedosporium apiospermum (Pseudallescheria boydii) infection in a heart transplant recipient: a case of mistaken identity. J Heart Lung Transpl 1998; 17: 321–324
  • Kleinschmidt-de-Masters BK. Central nervous system aspergillosis: a 20-year retrospective series. Hum Pathol 2002; 33: 116–124
  • Gueho E, De Hoog GS. Taxonomy of the medical species of Pseudallescheria and Scedosporium. J Mycol Med 1991; 1: 3–9
  • Rainer J, De Hoog GS, Wedde M, Graser I, Gilges S. Molecular variability of Pseudallescheria boydii, a neurotropic opportunist. J Clin Microbiol 2000; 38: 3267–3273
  • Zeng JS, Fukushima K, Takizawa K, et al. Intraspecific diversity of species of the Pseudallescheria boydii complex. Med Mycol 2007; 45: 547–558
  • Gordon MA. Nutrition and sporulation of Allescheria boydii. J Bacteriol 1957; 73: 199–205
  • Cazin J, Decker DW. Carbohydrate nutrition and sporulation of Allescheria boydii. J Bacteriol 1964; 88: 1624–1628
  • Cazin J, Decker DW. Growth of Allescheria boydii in antibiotic-containing media. J Bacteriol 1965; 90: 1308–1313
  • Carrillo A, Guarro J. In vitro activities of four novel triazoles against Scedosporium spp. Antimicrob Agents Chemother 2001; 45: 2151–2153
  • Capilla J, Serena C, Pastor FJ, Ortoneda M, Guarro J. Efficacy of voriconazole in treatment of systemic scedosporiosis in neutropenic mice. Antimicrob Agents Chemother 2004; 48: 4009–4011
  • Gilgado F, Cano J, Gene J, Guarro J. Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol 2005; 43: 4930–4942
  • Gil-Lamaignere C, Maloukou A, Rodriguez-Tudela JL, Roilides E. Human phagocytic cell responses to Scedosporium prolificans. Med Mycol 2001; 39: 169–175
  • Gil-Lamaignere C, Roilides E, Lyman CA, et al. Human phagocyte cell responses to Scedosporium apiospermum (Pseudallescheria boydii): variable susceptibility to oxidative injury. Infect Immun 2003; 71: 6472–6478
  • Bittencourt VCB, Figueiredo RT, da Silva RB, et al. An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 2006; 281: 22614–22623
  • E Barreto-Bergter, Pinto, MR, Rodrigues, ML, Bittencourt, VBC, Gorin, PAJ.. Hugo Verli. Structural and functional aspects of fungal polysaccharides, peptidopolysaccharides and ceramide monohexosides. In:. Insights into Carbohydrate Structure and Biological Function. 2006; 147–173. Transworld Research Network: KeralaIndia.
  • Pinto MR, Mulloy B, Haido RM, Travassos LR, Barreto-Bergter E. A peptidorhamnomannan from the mycelium of Pseudallescheria boydii is a potential diagnostic antigen of this emerging human pathogen. Microbiology 2001; 147: 1499–1506
  • Lopes-Alves L, Travassos LR, Previato JO, Mendonça-Previato L. Novel antigenic determinants from peptidorhamnomannans of Sporothrix schenckii. Glycobiology 1994; 4: 281–288
  • Pinto MR, Gorin PA, Wait R, Mulloy B, Barreto-Bergter E. Structures of the O-linked oligosaccharides of a complex glycoconjugate from Pseudallescheria boydii. Glycobiology 2005; 15: 895–904
  • Leitão EA, Bittencourt VC, Haido RM, et al. Beta-galactofuranose-containing O-linked oligosaccharides present in the cell wall peptidogalactomannan of Aspergillus fumigatus contain immunodominant epitopes. Glycobiology 2003; 13: 681–692
  • Penha CV, Bezerra LM. Concanavalin A-binding cell wall antigens of Sporothrix schenckii: a serological study. Med Mycol 2000; 38: 1–7
  • Pinto MR, de Sá AC, Limongi CL, et al. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 2004; 6: 1259–1267
  • Osherov N, May GS. The molecular mechanisms of conidial germination. FEMS Microbiol Lett 2001; 199: 153–160
  • Barreto-Bergter E, Pinto MR, Rodrigues ML. Structure and biological functions of fungal cerebrosides. An Acad Bras Ciênc 2004; 76: 67–84
  • Saito K, Takakuwa N, Ohnishi M, Oda Y. Presence of glucosylceramide in yeast and its relation to alkali tolerance of yeast. Appl Microbiol Biotechnol 2006; 71: 515–521
  • Rodrigues ML, Travassos LR, Miranda KR, et al. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 2000; 8: 7049–7060
  • Rodrigues ML, Shi L, Barreto-Bergter E, et al. A monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol 2007; 14: 1372–1376
  • Toledo MS, Levery SB, Suzuki E, Straus AH, Takahashi HK. Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum expression of 2-hydroxy fatty N-acyl(E)-Δ3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology 2001; 11: 113–124
  • Levery SB, Momany M, Lindsey R, et al. Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 2002; 525: 59–64
  • Pinto MR, Rodrigues ML, Travassos LR, et al. Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 2002; 12: 251–260
  • Silva AF, Rodrigues ML, Farias SE, et al. Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. FEBS Lett 2004; 561: 137–143
  • Nimrichter L, Cerqueira MD, Leitão EA, et al. Structure, cellular distribution, antigenicity, and biological functions of Fonsecaea pedrosoi ceramide monohexosides. Infect Immun 2005; 73: 7860–7868
  • Ritterhaus PC, Kechichian TB, Allegood JC, et al. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 2006; 116: 1651–1659
  • Thevissen K, Warnecke DC, Francois IE, et al. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 2004; 279: 3900–3905
  • Aerts AM, Francois IE, Meert EM, et al. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 2007; 13: 243–247
  • Dickson RCC, Sumanasekera C, Lester RL. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 2006; 45: 447–465
  • Luberto C, Toffaletti DL, Wills EA, et al. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of Cryptococcus neoformans. Gene Dev 2001; 15: 201–212
  • Leipelt M, Warnecke D, Zahringer U, et al. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glycosphingolipids in animals, plants, and fungi. J Biol Chem 2001; 276: 33621–33629
  • Bahia MCFS, Haido RMT, Figueiredo MHG, et al. Humoral immune response in aspergillosis: an immunodominant glycoprotein of 35 kDa from Aspergillus flavus. Curr Microbiol 2003; 47: 163–168
  • Dinadayala P, Lemassu A, Granovski P, et al. Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains. J Biol Chem 2004; 279: 12369–12378
  • Zang LH, Howseman AM, Shulman RG. Assignment of the 1H chemical shifts of glycogen. Carbohydr Res 1991; 220: 1–9
  • Carpenter S, O'Neill LA. How important are Toll-like receptors for antimicrobial responses?. Cell Microbiol 2007; 9: 1891–1901
  • Miyazaki T, Kohno S, Mitsutake K, et al. Plasma (1→3)-β-d-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. J Clin Microbiol 1995; 33: 3115–3118
  • Kedzierska A, Kochan P, Pietrzyk A, Kedzierska J. Current status of fungal cell wall components in the immunodiagnostics of invasive fungal infections in humans: galactomannan, mannan and (1→3)-β-d-glucan antigens. Eur J Clin Microbiol Infect Dis 2007; 26: 755–766
  • Hohl TM, van Epps HL, Rivera A, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 2005; 1: e30
  • Brown GD, Herre J, Williams DL, et al. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 2003; 197: 1119–1124
  • Reese AJ, Yoneda A, Breger JA, et al. Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 2007; 63: 1385–1398
  • Borges-Walmsley MI, Chen D, Shu X, Walmsley AR. The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol 2002; 10: 80–87
  • Rappleye CA, Engle JT, Goldman WE. RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol 2004; 53: 153–165
  • Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172: 3059–3069
  • Douglas CM. Fungal β(1→3)-d-glucan synthesis. Med Mycol 2001; 39(Suppl. 1)55–66
  • Pazos C, Ponton J, Palácio AD. Contribution of (1→3)-β-d-glucan chromogenic assay to diagnosis and therapeutic monitoring of invasive aspergillosis in neutropenic adult patients: a comparison with serial screening for circulating galactomannan. J Clin Microbiol 2005; 43: 299–305
  • Odabasi Z, Paetznick VL, Rodriguez JR, et al. Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol 2006; 44: 267–72
  • Kahn JN, Hsu MJ, Racine F, Giacobbe R, Motyl M. Caspofungin susceptibility in Aspergillus and non-Aspergillus molds: inhibition of glucan synthase and reduction of beta-d-1,3 glucan levels in culture. Antimicrob Agents Chemother 2006; 50: 2214–2216
  • Canuto MM, Rodero FG. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis 2002; 2: 550–563
  • Pitson SM, Seviour RJ, McDougall BM. Noncellulolytic fungal β-glucanases: their physiology and regulation. Enz Microb Technol 1993; 15: 178–190
  • Hube B. Extracellular peptidases of human pathogenic fungi. Contrib Microbiol 2000; 5: 126–137
  • Monod M, Capoccia S, Lechenne B, et al. Secreted proteases from pathogenic fungi. Int J Med Microbiol 2002; 292: 405–419
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl peptidases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67: 400–428
  • Larcher G, Cimon B, Symoens F, et al. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 1996; 315: 119–126
  • Larcher G, Bouchara JP, Annaix V, et al. Purification and characterization of a fibrinogenolytic serine proteinase from Aspergillus fumigatus culture filtrate. FEBS Lett 1992; 308: 65–69
  • Silva BA, Santos ALS, Barreto-Bergter E, Pinto MR. Extracellular peptidase in the fungal pathogen Pseudallescheria boydii. Curr Microbiol 2006; 53: 18–22
  • Silva BA, Pinto MR, Soares RMA, Barreto-Bergter E, Santos ALS. Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Res Microbiol 2006; 157: 425–432
  • Pereira MM, Silva BA, Pinto MR, Barreto-Bergter E, Santos ALS. Proteins and peptidases from conidia and mycelia of Scedosporium apiospermum strain HLPB. Mycopathologia 2009; 167: 25–30
  • Cohen PTW. The structure and regulation of protein phosphatases. Annu Rev Biochem 1989; 58: 453–508
  • Zhan XL, Hong Y, Zhu T, et al. Essential functions of protein tyrosine phosphatase Ptp2 and Ptp3 and Rim 11 tyrosine phosphorylation in Sascharomyces cerevisiae meiosis and sporulation. Mol Biol Cell 2000; 11: 663–676
  • Kiffer-Moreira T, Pinheiro AA, Pinto MR, et al. Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Arch Microbiol 2007; 188: 159–166
  • Fernanado PHP, Panagoda GJ, Samaranayare LP. The relation between the acid and alkaline phosphatase activity and the adherence of clinical isolates of Candida parapsilosis to human epithelial cell. APMIS 1999; 107: 1034–1042
  • Belanger PH, Johnston DA, Fratti RA, Zhang M, Filler SG. Endocytosis of Candida albicans by vascular endothelial cells is associated with tyrosine phosphorylation of specific host cells proteins. Cell Microbiol 2002; 4: 805–812
  • Nakagura KH, Tachibana H, Kaneda Y. Alteration of the cell surface acid phosphatase concomitant with morphological transformation in Trypanosoma cruzi. Comp Biochem Physiol 1985; 81: 815–817
  • Bakalara N, Santarelli X, Davis C, Baltz T. Purification, cloning and characterization of an acid ectoprotein phosphatase differentially expressed in the infectious bloodstream form of Trypanosoma brucei. J Biol Chem 2000; 275: 8863–8871
  • Touati E, Dassa E, Dassa J, Boquet PL. Acid phosphatase (pH2.5) of Escherichia coli: regulatory characteristics. Microorganisms, A Torriani-Gorini, FG Rothman, S Silver, A Wright, E Yagil. ASM Press, Washington, DC 1987; 31–40
  • Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 1999; 37: 375–389
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97–112
  • Hamilton AJ, Holdom MD, Jeavons L. Expression of the Cu,Zn-superoxide dismutase of Aspergillus fumigatus as determined by immunohistochemistry and immunoelectron microscopy. FEMS Immunol Med Microbiol 1996; 14: 95–102
  • Holdom MD, Hay RJ, Hamilton AJ. The Cu,Zn-superoxide dismutases of Aspergillus flavus, Aspergillus niger, Aspergillus nidulans and Aspergillus terreus: purification and biochemical comparison with the Aspergillus fumigatus Cu,Zn-superoxide dismutase. Infect Immun 1996; 64: 3326–3332
  • Hwang CS, Rhie GE, Oh JH, et al. Copper- and zinc-containing superoxide dismutase (Cu/Zn-SOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 2002; 148: 3705–3713
  • Tesfa-Selase F, Hay RJ. Superoxide dismutase of Cryptococcus neoformans: purification and characterization. J Med Vet Mycol 1995; 33: 253–259
  • Ungpakorn R, Holdom MD, Hamilton AJ, Hay RJ. Purification and partial characterization of the Cu,Zn-superoxide dismutase from the dermatophyte Trichophyton mentagrophytes var. interdigitale. Clin Exp Dermatol 1996; 21: 190–196
  • Lima OC, Larcher G, Vandeputte P, et al. Molecular cloning and biochemical characterization of a Cu,Zn-superoxide dismutase from Scedosporium apiospermum. Microbes Infect 2007; 9: 558–565
  • Oberegger H, Zadra I, Schoeser M, Haas H. Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus. FEBS Lett 2000; 485: 113–116
  • Haas H, Zada I, Stöffler G, Angermayr K. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 1999; 8: 4613–4619
  • Kasahara K, Sanai Y. Possible roles of glycosphingolipids in lipid rafts. Biophys Chem 1999; 82: 121–127

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.