184
Views
4
CrossRef citations to date
0
Altmetric
Invasive and Allergic Clinical Disease

Invasive aspergillosis in chronic granulomatous disease

&
Pages S282-S290 | Received 25 Jan 2008, Published online: 18 Mar 2009

References

  • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79: 170–200
  • Babior BM. NADPH oxidase: an update. Blood 1999; 93: 1464–1476
  • Abo A, Pick E, Hall A, et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 1991; 353: 668–670
  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 1991; 254: 1512–1515
  • Reeves EP, Lu H, Jacobs HL, et al. Killing activity of neutrophils is mediated through activation of proteases by K+flux. Nature 2002; 416: 291–297
  • Tkalcevic J, Novelli M, Phylactides M, et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 2000; 12: 201–210
  • Cornish EJ, Hurtgen BJ, McInnerney K, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J Immunol 2008; 180: 685468–685467
  • Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ, Gallin JI. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J Immunol 2007; 178: 6367–6373
  • Rex JH, Bennett JE, Gallin JI, Malech HL, Melnick DA. Normal and deficient neutrophils can cooperate to damage Aspergillus fumigatus hyphae. J Infect Dis 1990; 162: 523–528
  • Curnutte JT, Hopkins PJ, Kuhl W, Beutler E. Studying X inactivation [letter]. Lancet 1992; 339: 749
  • Rosen-Wolff A, Soldan W, Heyne K, et al. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age- related skewing of lyonization. Ann Hematol 2001; 80: 113–115
  • Vowells SJ, Fleisher TA, Malech HL. Testing for chronic granulomatous disease [letter; comment]. Lancet 1996; 347: 1048–1049
  • Liese JG, Jendrossek V, Jansson A, et al. Chronic granulomatous disease in adults [see comments]. Lancet 1996; 347: 220–223
  • Vowells SJ, Fleisher TA, Sekhsaria S, et al. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr 1996; 128: 104–107
  • Winkelstein JA, Marino MC, Johnston RBJr, et al. Chronic granulomatous disease: report on a national registry of 368 patients. Medicine (Baltimore) 2000; 79: 155–169
  • Segal BH, DeCarlo ES, Kwon-Chung KJ, et al. Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore) 1998; 77(5)345–354
  • Kontoyiannis DP, Lewis RE, May GS, Osherov N, Rinaldi MG. Aspergillus nidulans is frequently resistant to amphotericin B. Mycoses 2002; 45: 406–407
  • Casale TB, Macher AM, Fauci AS. Concomitant pulmonary aspergillosis and nocardiosis in a patient with chronic granulomatous disease of childhood. South Med J 1984; 77: 274–275
  • Dennis CG, Greco WR, Brun Y, et al. Effect of amphotericin B and micafungin combination on survival, histopathology, and fungal burden in experimental aspergillosis in the p47phox-/- mouse model of chronic granulomatous disease. Antimicrob Agents Chemother 2006; 50: 422–427
  • Walsh, TJ (2002) , Schaufele, RL, Sein, T, , et al. Reduced expression of galactomannan antigenemia in patients with invasive aspergillosis and chronic granulomatous disease or Job's syndrome. In: Infectious Disease Society of America 40th annual meeting; 2002., Chicago, IL; : Abstract 345.
  • Conrad DJ, Warnock M, Blanc P, Cowan M, Golden JA. Microgranulomatous aspergillosis after shoveling wood chips: report of a fatal outcome in a patient with chronic granulomatous disease. Am J Ind Med 1992; 22: 411–418
  • Chusid MJ, Sty JR, Wells RG. Pulmonary aspergillosis appearing as chronic nodular disease in chronic granulomatous disease. Pediatr Radiol 1988; 18: 232–234
  • Siddiqui S, Anderson VL, Hilligoss DM, et al. Fulminant mulch pneumonitis: an emergency presentation of chronic granulomatous disease. Clin Infect Dis 2007; 45: 673–681
  • Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347: 408–415
  • Walsh TJ, Lutsar I, Driscoll T, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis, and other invasive fungal infections in children. Pediatr Infect Dis J 2002; 21: 240–248
  • Walsh, TJ (2007) , Driscoll, TA, Groll, AH, , et al. Population Pharmacokinetic (POP-PK) analysis of voriconazole (VRC): developing a rationale for dosage in pediatric patients. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, September, 2007, Chicago, IL( M-620) .
  • Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother 2004; 48: 2166–2172
  • Segal BH, Barnhart LA, Anderson VL, et al. Posaconazole as salvage therapy in patients with chronic granulomatous disease with invasive filamentous fungal infection. Clin Infect Dis 2005; 40: 1684–1688
  • Mouy R, Veber F, Blanche S, et al. Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr 1994; 125(Pt 1)998–1003
  • Gallin JI, Alling DW, Malech HL, et al. Itraconazole prophylaxis for fungal infections in chronic granulomatous disease of childhood. N Engl J Med 2003; 348: 2416–2422
  • Nathan CF, Horowitz CR, de la Harpe J, et al. Administration of recombinant interferon gamma to cancer patients enhances monocyte secretion of hydrogen peroxide. Proc Natl Acad Sci USA 1985; 82: 8686–8690
  • Kaplan G, Nathan CF, Gandhi R, et al. Effect of recombinant interferon-gamma on hydrogen peroxide-releasing capacity of monocyte-derived macrophages from patients with lepromatous leprosy. J Immunol 1986; 137: 983–987
  • Nathan CF, Kaplan G, Levis WR, et al. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N Engl J Med 1986; 315: 6–15
  • Newburger PE, Ezekowitz RA, Whitney C, Wright J, Orkin SH. Induction of phagocyte cytochrome b heavy chain gene expression by interferon gamma. Proc Natl Acad Sci USA 1988; 85: 5215–5219
  • Sechler JM, Malech HL, White CJ, Gallin JI. Recombinant human interferon-gamma reconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood. Proc Natl Acad Sci USA 1988; 85: 4874–4878
  • Ezekowitz RA, Orkin SH, Newburger PE. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 1987; 80: 1009–1016
  • Ezekowitz RA, Dinauer MC, Jaffe HS, Orkin SH, Newburger PE. Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon gamma. N Engl J Med 1988; 319: 146–151
  • Rex JH, Bennett JE, Gallin JI, et al. In vivo interferon-gamma therapy augments the in vitro ability of chronic granulomatous disease neutrophils to damage Aspergillus hyphae. J Infect Dis 1991; 163: 849–852
  • A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. [No authors listed], N Engl J Med 1991; 324: 509–516.
  • Woodman RC, Erickson RW, Rae J, Jaffe HS, Curnutte JT. Prolonged recombinant interferon-gamma therapy in chronic granulomatous disease: evidence against enhanced neutrophil oxidase activity. Blood 1992; 79: 1558–1562
  • Muhlebach TJ, Gabay J, Nathan CF, et al. Treatment of patients with chronic granulomatous disease with recombinant human interferon-gamma does not improve neutrophil oxidative metabolism, cytochrome b558 content or levels of four anti- microbial proteins. Clin Exp Immunol 1992; 88: 203–206
  • Ohno Y, Gallin JI. Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide. J Biol Chem 1985; 260: 8438–8446
  • Chusid MJ, Shea ML, Sarff LD. Determination of posttransfusion granulocyte kinetics by chemiluminescence in chronic granulomatous disease. J Lab Clin Med 1980; 95: 168–174
  • Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 1995; 178: 89–97
  • Gallin JI, Buescher ES. Abnormal regulation of inflammatory skin responses in male patients with chronic granulomatous disease. Inflammation 1983; 7: 227–232
  • Emmendorffer A, Lohmann-Matthes ML, Roesler J. Kinetics of transfused neutrophils in peripheral blood and BAL fluid of a patient with variant X-linked chronic granulomatous disease. Eur J Haematol 1991; 47: 246–252
  • Wright DG, Robichaud KJ, Pizzo PA, Deisseroth AB. Lethal pulmonary reactions associated with the combined use of amphotericin B and leukocyte transfusions. N Engl J Med 1981; 304: 1185–1189
  • Horwitz ME, Barrett AJ, Brown MR, et al. Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 2001; 344: 881–888
  • Malech HL, Bauer TR, Jr, Hickstein DD. Prospects for gene therapy of neutrophil defects. Semin Hematol 1997; 34: 355–361
  • Mardiney, M, 3rd, Jackson, SH, Spratt, SK, et al. Enhanced host defense after gene transfer in the murine p47phox- deficient model of chronic granulomatous disease. Blood 1997; 89: 2268–2275.
  • Bjorgvinsdottir H, Ding C, Pech N, et al. Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 1997; 89: 41–48
  • Malech HL, Maples PB, Whiting-Theobald N, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA 1997; 94: 12133–12138
  • Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409
  • Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 1997; 185: 207–218
  • Bignell E, Negrete-Urtasun S, Calcagno AM, et al. Virulence comparisons of Aspergillus nidulans mutants are confounded by the inflammatory response of p47phox−/ − mice. Infect Immun 2005; 73: 5204–5207
  • Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 2006; 34: 229–242
  • Reiner SL. Development in motion: helper T cells at work. Cell 2007; 129: 33–36
  • Belladonna ML, Grohmann U, Guidetti P, et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 2006; 177: 130–137
  • Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4(10)762–74
  • Montagnoli C, Fallarino F, Gaziano R, et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 2006; 176: 1712–1723
  • Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37: 2695–2706
  • Romani L, Fallarino F, De Luca A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008; 451: 211–215
  • Murray HW, Szuro-Sudol A, Wellner D, et al. Role of tryptophan degradation in respiratory burst-independent antimicrobial activity of gamma interferon-stimulated human macrophages. Infect Immun 1989; 57: 845–849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.