907
Views
0
CrossRef citations to date
0
Altmetric
Artificial Intelligence

Insights into artificial intelligence utilisation in drug discovery

& ORCID Icon
Pages 304-308 | Received 01 Jan 2024, Accepted 05 Feb 2024, Published online: 22 Feb 2024

References

  • Bateman TJ. Chapter 29 - Drug discovery. In: Huang SM, Lertora JJL, Vicini P, Atkinson AJ, editors. Atkinson’s principles of clinical pharmacology (Fourth Edition). Boston: Academic Press; 2022. p. 563–572.
  • Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–395. doi:10.1124/pr.112.007336.
  • Zhou SF, Zhong WZ. Drug design and discovery: principles and applications, Vol. 22, Switzerland: Molecules (Basel, Switzerland); 2017. doi:10.3390/molecules22020279.
  • Singh AV, Bansod G, Mahajan M, et al. Digital transformation in toxicology: improving communication and efficiency in risk assessment. ACS Omega. 2023;8(24):21377–21390. doi:10.1021/acsomega.3c00596.
  • Singh AV, Varma M, Laux P, et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Vol. 97, Archives of toxicology. Germany: Springer Science and Business Media Deutschland GmbH; 2023. p963–979. doi:10.1007/s00204-023-03471-x.
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. doi:10.1016/j.jhealeco.2016.01.012.
  • Al Meslamani AZ, Jarab AS, Ghattas MA. The role of machine learning in healthcare responses to pandemics: maximizing benefits and filling gaps. J Med Econ. 2023;26(1):777–780. doi:10.1080/13696998.2023.2224018.
  • Paudel N, Rai M, Adhikari S, et al. Green extraction, phytochemical profiling, and biological evaluation of dysphania ambrosioides: an in silico and in vitro medicinal investigation. J Herbs Spices Med Plants. 2023;2023:1–18. doi:10.1080/10496475.2023.2267467.
  • Rai M, Singh AV, Paudel N, et al. Herbal concoction unveiled: a computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr Res Toxicol. 2023;5:100118. doi:10.1016/j.crtox.2023.100118.
  • Kang KM, Lee I, Nam H, et al. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists. Eur J Med Chem. 2022;240:114556. doi:10.1016/j.ejmech.2022.114556.
  • Yoo J, Kim TY, Joung I, et al. Industrializing AI/ML during the end-to-end drug discovery process. Curr Opin Struct Biol. 2023;79:102528. doi:10.1016/j.sbi.2023.102528.
  • Jha K, Saha S, Singh H. Prediction of protein-protein interaction using graph neural networks. Sci Rep. 2022;12(1):8360. doi:10.1038/s41598-022-12201-9.
  • Kimber TB, Chen Y, Volkamer A. Deep learning in virtual screening: recent applications and developments. Int J Mol Sci. 2021;22(9):4435. doi:10.3390/ijms22094435.
  • Mahgoub RE, Atatreh N, Ghattas MA. Using filters in virtual screening: a comprehensive guide to minimize errors and maximize efficiency. Annu Rep Med Chem. 2022;59:99–136. https://www.researchgate.net/publication/365111978_Using_filters_in_virtual_screening_A_comprehensive_guide_to_minimize_errors_and_maximize_efficiency.
  • Gentile F, Agrawal V, Hsing M, et al. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. 2020;6(6):939–949. doi:10.1021/acscentsci.0c00229.
  • Ton AT, Gentile F, Hsing M, et al. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol Inform. 2020;39(8):e2000028. doi:10.1002/minf.202000028.
  • Li H, Sze KH, Lu G, et al. Machine-learning scoring functions for structure-based drug lead optimization. Vol. 10, USA: Wiley Interdisciplinary Reviews: Computational Molecular Science. Blackwell Publishing Inc.; 2020.
  • Li H, Sze KH, Lu G, et al. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput Mol Sci. 2020;10(5):e1465. doi:10.1002/wcms.1465.
  • Zeng X, Xiang H, Yu L, et al. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. Nat Mach Intell. 2022;4(11):1004–1016. doi:10.1038/s42256-022-00557-6.
  • Jang HY, Song J, Kim JH, et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit Med. 2022;5(1):88. doi:10.1038/s41746-022-00639-0.
  • Fang Y, Pan X, Shen HB. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment. Bioinformatics. 2023;39(4):157. doi:10.1093/bioinformatics/btad157.
  • Schoenmaker L, Béquignon OJM, Jespers W, et al. UnCorrupt SMILES: a novel approach to de novo design. J Cheminform. 2023;15(1):22. doi:10.1186/s13321-023-00696-x.
  • Rai M, Paudel N, Sakhrie M, et al. Perspective on quantitative structure–toxicity relationship (QSTR) models to predict hepatic biotransformation of xenobiotics. Livers [Internet]. 2023;3(3):448–462. https://www.mdpi.com/2673-4389/3/3/32 doi:10.3390/livers3030032.
  • Mone NS, Syed S, Ravichandiran P, et al. Synergistic and additive effects of menadione in combination with antibiotics on Multidrug-Resistant Staphylococcus aureus: insights from Structure-Function analysis of naphthoquinones. ChemMedChem. 2023;18(24):e202300328. Available from: doi:10.1002/cmdc.202300328.
  • Zeng X, Song X, Ma T, et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning. J Proteome Res. 2020;19(11):4624–4636. doi:10.1021/acs.jproteome.0c00316.