384
Views
29
CrossRef citations to date
0
Altmetric
Review Article

The role of the insulin-like growth factor 1 receptor axis in multiple myeloma

, , &
Pages 49-57 | Received 15 Dec 2008, Accepted 07 Jan 2009, Published online: 01 May 2009

References

  • Abboud SL, Bethel CR, Aron DC. (1991). Secretion of insulinlike growth factor I and insulinlike growth factor-binding proteins by murine bone marrow stromal cells. J Clin Invest 88(2):470–75.
  • Adams TE, Epa, VC, Garrett DP, Ward CW. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57(7):1050–93.
  • Asosingh K, Gunthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I, Van Camp B, Vanderkerken K. (2000). In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res 60(11):3096–104.
  • Asosingh K, Radl J, Van Riet I, Van Kamp B, Thielemans K. (2000). The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J 1(5):351–6.
  • Bakkus MH, Heirman C, Van Riet I, Van Kamp B, Thielemans K. (1992). Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–35.
  • Baserga R, Peruzzi F, Reiss K. (2003). The IGF-1 receptor in cancer biology. Int J Cancer 107(6):873–7.
  • Bataille R, Robillard N, Avet-Loiseau H, Harousseau JL, Moreau P. (2005). CD221 (IGF-1R) is aberrantly expressed in multiple myeloma, in relation to disease severity. Haematologica 90(5):706–707.
  • Bergui L, Schena M, Gaidano G, Riva M, Caligaris-Cappio F. (1989). Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med 170(2):613–8.
  • Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER, Ludwig DL, McCubrey JA. (2006). Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 20(7):1254–60.
  • Bisping G, Leo R, Wenning D, Dankbar B, Padro Kropff TM, Scheffold C, Kroger M, Mesters RM, Berdel WE, et al. (2003). Paracrine interactions of basic fibroblast growth factor and interleukin–6 in multiple myeloma. Blood 101(7):2775–83.
  • Butcher EC, Picker LJ. (1996). Lymphocyte homing and homeostasis. Science 272(5258):60–66.
  • Caers J, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K. (2004). Of mice and men: disease models of multiple myeloma. Drug discovery today: disease models 1:373–380.
  • Caers J, Van de broek I, De Raeve H, Michaux L, Trullemans F, Schots R, Van Camp B, Vanderkerken K. (2008). Multiple myeloma – an update on diagnosis and treatment. Eur J Haematol 81(5):329–43.
  • Caligaris-Cappio F, Bergui L, Gregoretti MG, Gaidano G, Gaboli M, Schena M, Zallone AZ, Marchisio PC. (1991). Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 77(12):2688–93.
  • Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco DE, Zheng M, Mani M, Henderson J, Pinkus GS, et al. (2007). The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11(4):349–60.
  • Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW, Anderson KC. (1997). Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 89(1):227–34.
  • Chesi, M., Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, Valdez R, Palmer SE, Haas SS, Stewart AK, et al. (2008). AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13(2):167–80.
  • Chng WJ, Gualberto A, Fonseca R. (2006). IGF-1R is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia 20(1):174–6.
  • Cibeira MT, Rozman M, Segarra M, Lozano E, Rosinol L, Cid MC, Filella X, Blade J. (2008). Bone marrow angiogenesis and angiogenic factors in multiple myeloma treated with novel agents. Cytokine 41(3):244–53.
  • Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE, Tengowski MW, Wang F, Gualberto A, Beebe JS, et al. (2005). Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11(5):2063–73.
  • Collette M, Descamps G, Pellat-Deceunynck C, Bataille R, Amiot M. (2007). Crucial role of phosphatase CD45 in determining signaling and proliferation of human myeloma cells. Eur Cytokine Netw 18(3):120–126.
  • Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–36.
  • Descamps G, Wuilleme-Toumi S, Trichet V, Venot C, Debussche L, Hercend T, Collette M, Robillard N, Bataille R, Amiot M. (2006). CD45neg but not CD45pos human myeloma cells are sensitive to the inhibition of IGF-1 signaling by a murine anti-IGF-1R monoclonal antibody, mAVE1642. J Immunol 177(6):4218–23.
  • Ferlin M, Noraz N, Hertogh C, Brochier J, Taylor N, Klein B. (2000). Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol 111(2):626–34.
  • Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, Vigneri R. (2008). The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114(1):23–37.
  • Freund GG, Kulas DT, Mooney RA. (1993). Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 151(4):1811–20.
  • Ge NL, Rudikoff S. (2000). Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 96(8):2856–61.
  • Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K. (1996). Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 88(6):2250–58.
  • Girnita A, Girnita L, del Prete F, Bartolazzi A, Larsson O, Axelson M. (2004). Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res 64(1):236–42.
  • Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D, Richardson P, Munshi N, Anderson KC. (2002). The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 1(7):539–44.
  • Hjorth-Hansen H, Waage A, Borset M. (1999). Interleukin-15 blocks apoptosis and induces proliferation of the human myeloma cell line OH-2 and freshly isolated myeloma cells. Br J Haematol 106(1):28–34.
  • Holt RU, Fagerli UM, Baykov V, Ro TB, Hov H, Waage A, Sundan A, Borset M. (2008). Hepatocyte growth factor promotes migration of human myeloma cells. Haematologica 93(4):619–22.
  • Jelinek DF, Witzig TE, Arendt BK. (1997). A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol 159(1):487–96.
  • Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L, Piechaczyk M, Bataille R. (1989). Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 73(2):517–26.
  • Lacy MQ, Alsina M, Fonseca R, Paccagnella ML, Melvin CL, Yin D, Sharma A, Enriquez Sarano M, Pollak M, Jagannath S, et al. (2008). Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 Receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 26(19):3196–203.
  • Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. (2001). The somatomedin hypothesis: 2001. Endocr Rev 22(1):53–74.
  • Lu ZY, Gu ZJ, Zhang XG, Wijdenes J, Neddermann P, Rossi JF, Klein B. (1995). Interleukin-10 induces interleukin-11 responsiveness in human myeloma cell lines. FEBS Lett 377(3): 515–18.
  • Macor P, Secco E, Zorzet S, Tripodo C, Celeghini C, Tedesco F. (2008). An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies. Curr Pharm Des 14(21):2023–39.
  • Maiso P, Ocio EM, Garayoa M, Montero JC, Hofmann F, Garcia-Echeverria C, Zimmermann J, Pandiella A, San Miguel JF. (2008). The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. Br J Haematol 141(4):470–82.
  • Menoret E, Maiga S, Descamps G, Pellat-Deceunynck C, Fraslon C, Cappellano M, Moreau P, Bataille R, Amiot M. (2008). IL-21 stimulates human myeloma cell growth through an autocrine IGF-1 loop. J Immunol 181(10):6837–42.
  • Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, Vande Broek I, Fujii N, Tamamura H, Van Camp B, et al. (2006). The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91(5):605–12.
  • Menu E, Asosingh K, Van Riet I, Croucher P, Van Camp B, Vanderkerken K. (2004). Myeloma cells (5TMM) and their interactions with the marrow microenvironment. Blood Cells Mol Dis 33(2):111–19.
  • Menu E, De Leenheer E, De Raeve H, Coulton L, Imanishi T, Miyashita K, Van Valckenborgh E, Van Riet I, Van Camp B, Horuk R, et al. (2006). Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clin Exp Metastasis 23(5–6):291–300.
  • Menu E, Jernberg-Wiklund H, De Raeve H, De Leenheer E, Coulton L, Gallagher O, Van Valckenborgh E, Larsson O, Axelson M, Nilsson K, et al. (2007). Targeting the IGF-1R using picropodophyllin in the therapeutical 5T2MM mouse model of multiple myeloma: beneficial effects on tumor growth, angiogenesis, bone disease and survival. Int J Cancer 121(8):1857–61.
  • Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O, Axelson M, Asosingh K, Nilsson K, Van Camp B, et al. (2006). Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107(2):655–60.
  • Menu E, Kooijman R, Van Valckenborgh E, Asosingh K, Bakkus M, Van Camp B, Vanderkerken K. (2004). Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer 90(5):1076–83.
  • Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi NC, Richardson PG, et al. (2002). Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21(37):5673–83.
  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5(3):221–30.
  • Nilsson K, Georgii-Hemming P, Spets H, Jernberg-Wiklund H. (1999). The control of proliferation, survival and apoptosis in human multiple myeloma cells in vitro. Curr Top Microbiol Immunol 246:325–32; discussion 333.
  • Ogawa M, Nishiura T, Oritani K, Yoshida H, Yoshimura M, Okajima Y, Ishikawa J, Hashimoto K, Matsumura I, Tomiyama Y, et al. (2000). Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogen– activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res 60(15):4262–9.
  • Qiang YW, Kopantzev E, Rudikoff S. (2002). Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99(11):4138–46.
  • Qiang YW, Yao L, Tosato G, Rudikoff S. (2004). Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308.
  • Radl J, De Glopper ED, Schuit HR, Zurcher C. (1979). Idiopathic paraproteinemia. II. Transplantation of the paraprotein–producing clone from old to young C57BL/KaLwRij mice. J Immunol 122(2):609–13.
  • Rodon J, DeSantos V, Ferry Jr RJ, Kurzrock R. (2008). Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials. Mol Cancer Ther 7(9):2575–88.
  • Roodman GD. (2001). Biology of osteoclast activation in cancer. J Clin Oncol 19(15):3562–71.
  • Sahara N, Takeshita A, Ono T, Sugimoto Y, Kobayashi M, Shigeno K, Nakamura S, Shinjo K, Naito K, Shibata K, et al. (2006). Role for interleukin-6 and insulin-like growth factor-I via PI3-K/Akt pathway in the proliferation of CD56– and CD56+ multiple myeloma cells. Exp Hematol 34(6):736–44.
  • Shaheen SP, Talwalkar SS, Medeiros LJ. (2008). Multiple myeloma and immunosecretory disorders: an update. Adv Anat Pathol 15(4):196–210.
  • Sirohi B, Powles R. (2004). Multiple myeloma. Lancet 363(9412):875–87.
  • Standal T, Borset M, Lenhoff C, Wisloff F, Stordal B, Sundan A, Waage A, Seidel C. (2002). Serum insulinlike growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor. Blood 100(12):3925–9.
  • Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson O, Axelson M, Lennartsson J, Hellman U, Carlson K, Osterborg A, et al. (2006). IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107(2):669–78.
  • Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R, Burger R, Hideshima T, Chauhan D, Mitsiades N, et al. (2003). Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 39-kinase/AKT signaling. Cancer Res 63(18):5850–58.
  • Tu Y, Gardner A, Lichtenstein A. (2000). The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 60(23):6763–70.
  • Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F. (1994). Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87(3):503–508.
  • Valentinis B, Baserga R. (2001). IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54(3):133–7.
  • van de Donk, NW, Lokhorst HM, Bloem AC. (2005). Growth factors and antiapoptotic signaling pathways in multiple myeloma. Leukemia 19(12):2177–85.
  • Van Valckenborgh E, Croucher PI, De Raeve H, Carron C, De Leenheer E, Blacher S, Devy L, Noel A, De Bruyne E, Asosingh K, et al. (2004). Multifunctional role of matrix metalloproteinases in multiple myeloma: a study in the 5T2MM mouse model. Am J Pathol 165(3):869–78.
  • Vanderkerken K, Asosingh K, Braet F, Van Riet I, Van Camp B. (1999). Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood 93(1):235–41.
  • Vanderkerken K, Asosingh K, Croucher P, Van Camp B. (2003). Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 194:196–206.
  • Wu KD, Zhou L, Burtrum D, Ludwig DL, Moore MA. (2007). Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunol Immunother 56(3):343–57.
  • Xu F, Gardner A, Tu Y, Michl P, Prager D, Lichtenstein A. (1997). Multiple myeloma cells are protected against dexamethasone-induced apoptosis by insulin-like growth factors. Br J Haematol 97(2):429–40.
  • Yaccoby S, Barlogie B, Epstein J. (1998). Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 92(8):2908–13.
  • Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH. (2006). RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 26(2):413–24.
  • Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH. (2000). Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275(20):15099–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.