410
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells

, , , , &
Pages 176-190 | Received 27 Mar 2009, Accepted 29 May 2009, Published online: 12 Aug 2009

References

  • Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, Ferrieres J. (2008). Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87:1219–23.
  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–69.
  • Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, Defronzo RA. (2005). Effect of a Sustained Reduction in Plasma Free Fatty Acid Concentration on Intramuscular Long-Chain Fatty Acyl-CoAs and Insulin Action in Type 2 Diabetic Patients. Diabetes 54:3148–53.
  • Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71.
  • Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Defronzo RA, Cusi K. (2005). Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54:1640–8.
  • Brightbill HD, Plevy SE, Modlin RL, Smale ST. (2000). A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. J Immunol 164:1940–51.
  • Bruun JM, Helge JW, Richelsen B, Stallknecht B. (2006). Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab 290:E961–7.
  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72.
  • Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. (2008). Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–44.
  • Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE et al. (2006). Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–97.
  • Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. (2005). Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 280:20148–53.
  • Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. (2007). Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 50:471–80.
  • Coll T, Jove M, Rodriguez-Calvo R, Eyre E, Palomer X, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M. (2006). Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation. Diabetes 55:2779–87.
  • Constant VA, Gagnon A, Landry A, Sorisky A. (2006). Macrophage-conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal preadipocytes. Diabetologia 49:1402–11.
  • Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S. (2007). Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–7.
  • DeFronzo RA. (1988). Lilly lecture 1987: The trimvirate: β−cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–87.
  • Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA. (2005). Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 54:2305–13.
  • Dietze D, Koenen M, Rohrig K, Horikoshi H, Hauner H, Eckel J. (2002). Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 51:2369–76.
  • Dietze-Schroeder D, Sell H, Uhlig M, Koenen M, Eckel J. (2005). Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes 54:2003–11.
  • Dimopoulos N, Watson M, Sakamoto K, Hundal HS. (2006). Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J 399:473–81.
  • Doria A, Patti ME, Kahn CR. (2008). The emerging genetic architecture of type 2 diabetes. Cell Metab 8:186–200.
  • Duval C, Camara Y, Hondares E, Sibille B, Villarroya F. (2007). Overexpression of mitochondrial uncoupling protein-3 does not decrease production of the reactive oxygen species, elevated by palmitate in skeletal muscle cells. FEBS Lett 581:955–61.
  • Eckardt K, Sell H, Eckel J. (2008). Novel aspects of adipocyte-induced skeletal muscle insulin resistance. Arch Physiol Biochem 114:287–98.
  • Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. (2004). Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–82.
  • Festa A, D’Agostino R, Jr., Tracy RP, Haffner SM. (2002). Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–7.
  • Fraser DA, Thoen J, Rustan AC, Forre O, Kjeldsen-Kragh J. (1999). Changes in plasma free fatty acid concentrations in rheumatoid arthritis patients during fasting and their effects upon T-lymphocyte proliferation. Rheumatology (Oxford) 38:948–52.
  • Gaulton KJ, Willer CJ, Li Y, Scott LJ, Conneely KN, Jackson AU, Duren WL, Chines PS, Narisu N, Bonnycastle LL et al. (2008). Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes 57:3136–44.
  • Hajduch E, Turban S, Le Liepvre X, Le Lay S, Lipina C, Dimopoulos N, Dugail I, Hundal HS. (2008). Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem J 410:369–79.
  • Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK et al. (2007). Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117:1658–69.
  • Hirasaka K, Kohno S, Goto J, Furochi H, Mawatari K, Harada N, Hosaka T, Nakaya Y, Ishidoh K, Obata T et al. (2007). Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice. Diabetes 56:2511–22.
  • Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE. (2008). IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7:421–33.
  • Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A et al. (2007a). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–79.
  • Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA. (2007b). Lipid mediators of insulin resistance. Nutr Rev 65:S39–46.
  • Holland WL, Summers SA. (2008). Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402.
  • Hommelberg PP, Plat J, Langen RC, Schols AM, Mensink RP. (2009). Fatty acid-induced NF-kappaB activation and insulin resistance in skeletal muscle are chain length dependent. Am J Physiol Endocrinol Metab 296:E114–20.
  • Hotamisligil GS. (2006). Inflammation and metabolic disorders. Nature 444:860–7.
  • Huang C, Thirone AC, Huang X, Klip A. (2005). Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem 280:19426–35.
  • Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ, Flier JS. (2007). Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56:2242–50.
  • Ishikura S, Bilan PJ, Klip A. (2007). Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353:1074–9.
  • Ishikura S, Klip A. (2008). Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am J Physiol Cell Physiol 295:C1016–25.
  • Itani SI, Ruderman NB, Schmieder F, Boden G. (2002). Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–11.
  • JeBailey L, Rudich A, Huang X, Di Ciano-Oliveira C, Kapus A, Klip A. (2004). Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. Mol. Endocrinol. 18:359–72.
  • JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. (2007). Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 56:394–403.
  • Johnston JA, O’Shea JJ. (2003). Matching SOCS with function. Nat Immunol 4:507–9.
  • Jove M, Planavila A, Laguna JC, Vazquez-Carrera M. (2005). Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 146:3087–95.
  • Jove M, Planavila A, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M. (2006). Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology 147:552–61.
  • Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M et al. (2006). Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–14.
  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–505.
  • Khayat Z, Tong P, Yaworsky K, Bloch R, Klip A. (2000). Insulin-induced actin filament remodeling: colocalization with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J. Cell Sci. 113:279–90.
  • Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ, Cline GW, O’Brien WR et al. (2004). PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–7.
  • Kirk EA, Sagawa ZK, McDonald TO, O’Brien KD, Heinecke JW. (2008). Macrophage chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57:1254–61.
  • Kolesnick R. (1994). Signal transduction through the sphingomyelin pathway. Mol Chem Neuropathol 21:287–97.
  • Kruszynska YT, Worrall DS, Ofrecio J, Frias JP, Macaraeg G, Olefsky JM. (2002). Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation. J. Clin. Endocrinol. Metab. 87:226–34.
  • Kuda O, Jelenik T, Jilkova Z, Flachs P, Rossmeisl M, Hensler M, Kazdova L, Ogston N, Baranowski M, Gorski J et al. (2009). n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 52:941–51.
  • Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R, Murray PJ. (2003). SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4:546–50.
  • Laybutt D, Thompson A, Cooney G, Kraegen E. (1997). Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in cardiac muscle in vivo. Am. J. Physiol. 273:H1309–16.
  • Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ. (2006). Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol 100:1467–74.
  • Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, Hwang DH. (2003). Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res 44:479–86.
  • Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 279:16971–9.
  • Leng Y, Karlsson HK, Zierath JR. (2004). Insulin signaling defects in type 2 diabetes. Rev Endocr Metab Disord 5:111–7.
  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–5.
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–3.
  • Li Q, Sato EF, Kira Y, Nishikawa M, Utsumi K, Inoue M. (2006). A possible cooperation of SOD1 and cytochrome c in mitochondria-dependent apoptosis. Free Radic Biol Med 40:173–81.
  • Listenberger LL, Ory DS, Schaffer JE. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–5.
  • Liu YW, Chen CC, Tseng HP, Chang WC. (2006). Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappaB-induced CCAAT/enhancer-binding protein delta in mouse macrophages. Cell Signal 18:1492–500.
  • Lumeng CN, Bodzin JL, Saltiel AR. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–84.
  • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. (2008). Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–46.
  • Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23.
  • Lumeng CN, Deyoung SM, Saltiel AR. (2007c). Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 292:E166–74.
  • Nawrocki AR, Scherer PE. (2004). The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol 4:281–9.
  • Ng Y, Ramm G, Lopez JA, James DE. (2008). Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metab 7:348–56.
  • Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM. (2007). A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways. J Biol Chem 282:35279–92.
  • Odegaard JI, Chawla A. (2008). Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4:619–26.
  • Ohinmaa A, Jacobs P, Simpson S, Johnson JA. (2004). The Projection of Prevalence and Cost of Diabetes in Canada: 2000 to 2016. Can J Diabetes 28:1–8.
  • Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. (2008). Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 295:E313–22.
  • Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. (2008). Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 8:301–09.
  • Perdomo G, Commerford SR, Richard AM, Adams SH, Corkey BE, O’Doherty RM, Brown NF. (2004). Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation. J Biol Chem 279:27177–86.
  • Petersen KF, Shulman GI. (2006). Etiology of insulin resistance. Am J Med 119:S10–6.
  • Pimenta AS, Gaidhu MP, Habib S, So M, Fediuc S, Mirpourian M, Musheev M, Curi R, Ceddia RB. (2008). Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol 217:478–85.
  • Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS. (2004). Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem. J. 382:619–29.
  • Radin MS, Sinha S, Bhatt BA, Dedousis N, O’Doherty RM. (2008). Inhibition or deletion of the lipopolysaccharide receptor Toll-like receptor-4 confers partial protection against lipid-induced insulin resistance in rodent skeletal muscle. Diabetologia 51:336–46.
  • Randhawa VK, Ishikura S, Talior-Volodarsky I, Cheng AW, Patel N, Hartwig JH, Klip A. (2008). GLUT4 vesicle recruitment and fusion are differentially regulated by Rac, AS160, and Rab8A in muscle cells. J Biol Chem 283:27208–19.
  • Rich SS, Norris JM, Rotter JI. (2008). Genes associated with risk of type 2 diabetes identified by a candidate-wide association scan: as a trickle becomes a flood. Diabetes 57:2915–7.
  • Roher N, Samokhvalov V, Diaz M, MacKenzie S, Klip A, Planas JV. (2008). The proinflammatory cytokine tumor necrosis factor-alpha increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology 149:1880–9.
  • Rotter V, Nagaev I, Smith U. (2003). Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and Is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278:45777–84.
  • Ruiz AG, Casafont F, Crespo J, Cayon A, Mayorga M, Estebanez A, Fernadez-Escalante JC, Pons-Romero F. (2007). Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17:1374–80.
  • Sabin MA, Stewart CE, Crowne EC, Turner SJ, Hunt LP, Welsh GI, Grohmann MJ, Holly JM, Shield JP. (2007). Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid. J Cell Physiol 211:244–52.
  • Samokhvalov V, Bilan PJ, Schertzer JD, Antonescu CN, Klip A. (2009). Palmitate- and lipopolysaccharide-activated macrophages evoke contrasting insulin responses in muscle cells. Am J Physiol Endocrinol Metab 296:E37–46.
  • Sartipy P, Loskutoff DJ. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100:7265–70.
  • Schenk S, Saberi M, Olefsky JM. (2008). Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118:2992–3002.
  • Schmitz-Peiffer C, Craig DL, Biden TJ. (1999). Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–10.
  • Schonfeld P, Wojtczak L. (2008). Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–41.
  • Sell H, Dietze-Schroeder D, Eckel J. (2006a). The adipocyte- myocyte axis in insulin resistance. Trends Endocrinol Metab 17:416–22.
  • Sell H, Eckel J, Dietze-Schroeder D. (2006b). Pathways leading to muscle insulin resistance—the muscle—fat connection. Arch Physiol Biochem 112:105–13.
  • Senn JJ. (2006). Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 281:26865–75.
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–25.
  • Shulman GI. (2004). Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology (Bethesda) 19:183–90.
  • Silveira LR, Fiamoncini J, Hirabara SM, Procopio J, Cambiaghi TD, Pinheiro CH, Lopes LR, Curi R. (2008). Updating the effects of fatty acids on skeletal muscle. J Cell Physiol 217:1–12.
  • Sinha S, Perdomo G, Brown NF, O’Doherty RM. (2004). Fatty Acid-induced Insulin Resistance in L6 Myotubes Is Prevented by Inhibition of Activation and Nuclear Localization of Nuclear Factor {kappa}B. J. Biol. Chem. 279:41294–301.
  • Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ. (2007). Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab 293:E172–81.
  • Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, Grivennikov S, Wynshaw-Boris A, Scadeng M, Olefsky JM et al. (2007). JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–97.
  • Storgaard H, Jensen CB, Bjornholm M, Song XM, Madsbad S, Zierath JR, Vaag AA. (2004). Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes. J. Clin. Endocrinol. Metab. 89:1301–11.
  • Storz P, Doppler H, Wernig A, Pfizenmaier K, Muller G. (1999). Cross-talk mechanisms in the development of insulin resistance of skeletal muscle cells palmitate rather than tumour necrosis factor inhibits insulin-dependent protein kinase B (PKB)/Akt stimulation and glucose uptake. Eur J Biochem 266:17–25.
  • Stratford S, Hoehn KL, Liu F, Summers SA. (2004). Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279:36608–15.
  • Strle K, Broussard SR, McCusker RH, Shen WH, Johnson RW, Freund GG, Dantzer R, Kelley KW. (2004). Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology 145:4592–602.
  • Summers SA. (2006). Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72.
  • Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A. (2008). Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. J Biol Chem 283:25115–23.
  • Taniguchi CM, Emanuelli B, Kahn CR. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96.
  • Thirone AC, JeBailey L, Bilan PJ, Klip A. (2006). Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance. Diabetes 55:942–51.
  • Thong FS, Bilan PJ, Klip A. (2007). The Rab GTPase-Activating Protein AS160 Integrates Akt, Protein Kinase C, and AMP-Activated Protein Kinase Signals Regulating GLUT4 Traffic. Diabetes 56:414–23.
  • Todd MK, Watt MJ, Le J, Hevener AL, Turcotte LP. (2007). Thiazolidinediones enhance skeletal muscle triacylglycerol synthesis while protecting against fatty acid-induced inflammation and insulin resistance. Am J Physiol Endocrinol Metab 292:E485–93.
  • Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA et al. (2007). Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–98.
  • Varma V, Yao-Borengasser A, Rasouli N, Nolen GT, Phanavanh B, Starks T, Gurley CM, Simpson PM, McGehee Jr RE, Kern PA et al. (2009). Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab 296:1300–10.
  • Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR, Klip A. (1999). Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol. 19:4008–18.
  • Watson ML, Coghlan M, Hundal HS. (2009). Modulating serine palmitoyl transferase. (SPT). expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells. Biochem J 417:791–801.
  • Watt MJ, Steinberg GR. (2008). Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J 414:313–25.
  • Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW, Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–24.
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796–808.
  • Wellen KE, Hotamisligil GS. (2005). Inflammation, stress, and diabetes. J Clin Invest 115:1111–9.
  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112:1821–30.
  • Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M et al. (2003). IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4:551–6.
  • Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ et al. (2002). Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle. J. Biol. Chem. 277:50230–6.
  • Yu R, Kim CS, Kwon BS, Kawada T. (2006). Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 14:1353–62.
  • Zaid H, Antonescu CN, Randhawa VK, Klip A. (2008). Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413:201–15.
  • Zendzian-Piotrowska M, Baranowski M, Zabielski P, Gorski J. (2006). Effects of pioglitazone and high-fat diet on ceramide metabolism in rat skeletal muscles. J Physiol Pharmacol 57 Suppl 10:101–14.
  • Zhong B, Tien P, Shu HB. (2006). Innate immune responses: crosstalk of signaling and regulation of gene transcription. Virology 352:14–21.
  • Zimmet P, Alberti KG, Shaw J. (2001). Global and societal implications of the diabetes epidemic. Nature 414:782–7.
  • Zuany-Amorim C, Hastewell J, Walker C. (2002). Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1:797–807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.