90
Views
0
CrossRef citations to date
0
Altmetric
Case Reports

Multimodal and longitudinal evaluation of novel phenotype-genotype correlation of CLN3 isolated retinal degeneration in an hispanic female with heterozygous mutations c.944dup and c.1305C>G

, , & ORCID Icon
Pages 180-185 | Received 07 May 2023, Accepted 02 Aug 2023, Published online: 24 Aug 2023

References

  • Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86. doi:10.1016/j.preteyeres.2018.03.005.
  • Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res. 2022;89:101029.
  • Chen FK, Zhang X, Eintracht J, Zhang D, Arunachalam S, Thompson JA, Chelva E, Mallon D, Chen SC, McLaren T, et al. Clinical and molecular characterization of non-syndromic retinal dystrophy due to c.175G>A mutation in ceroid lipofuscinosis neuronal 3 (CLN3). Doc Ophthalmol. 2019;138(1):55–70. doi:10.1007/s10633-018-9665-7.
  • Sengillo JD, Lee W, Bilancia CG, Jobanputra V, Tsang SH. Phenotypic expansion and progression of SPATA7-associated retinitis pigmentosa. Doc Ophthalmol. 2018;136(2):125–33. doi:10.1007/s10633-018-9626-1.
  • Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, et al. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165883. doi:10.1016/j.bbadis.2020.165883.
  • Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, et al. Detailed clinical phenotype and molecular genetic findings in CLN3-associated isolated retinal degeneration. JAMA Ophthalmol. 2017;135(7):749–60. doi:10.1001/jamaophthalmol.2017.1401.
  • Smirnov VM, Nassisi M, Solis Hernandez C, Méjécase C, El Shamieh S, Condroyer C, Antonio A, Meunier I, Andrieu C, Defoort-Dhellemmes S, et al. Retinal phenotype of patients with isolated retinal degeneration due to CLN3 pathogenic variants in a French retinitis pigmentosa cohort. JAMA Ophthalmol. 2021;139(3):278–91. doi:10.1001/jamaophthalmol.2020.6089.
  • Lu J, Xiong K, Qian X, Choi J, Shim YK, Burnett J, Mardon G, Chen R. Spata7 is required for maintenance of the retinal connecting cilium. Sci Rep. 2022;12(1):5575. doi:10.1038/s41598-022-09530-0.
  • Xiao X, Sun W, Li S, Jia X, Zhang Q. Spectrum, frequency, and genotype-phenotype of mutations in SPATA7. Mol Vis. 2019;25:821–33.
  • Díez-Cattini GF, Ancona-Lezama DA, Valdés-Lara C, Morales-Cantón V. The unusual association of inverse retinitis pigmentosa and Fuchs’ heterochromic iridocyclitis. Int J Retina Vitreous. 2017;3(1):3. doi:10.1186/s40942-016-0056-5.
  • Treviño Alanís MG, Escamilla Ocañas CE, González Cerna F, García Flores JB, Moreno Treviño M, Rivera Silva G. Retinitis pigmentosa in an adolescent. Bol Med Hosp Infant Mex. 2015;72(3):195–8. doi:10.1016/j.bmhimx.2015.06.001.
  • Zenteno JC, García-Montaño LA, Cruz-Aguilar M, Ronquillo J, Rodas-Serrano A, Aguilar-Castul L, Matsui R, Vencedor-Meraz CI, Arce-González R, Graue-Wiechers F, et al. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol Genet Genomic Med. 2020;8(1). doi:10.1002/mgg3.1044.
  • Villanueva-Mendoza C, Tuson M, Apam-Garduño D, de Castro-Miró M, Tonda R, Trotta JR, Marfany G, Valero R, Cortés-González V, Gonzàlez-Duarte R, et al. The genetic landscape of Inherited retinal diseases in a Mexican cohort: genes, mutations and phenotypes. Genes (Basel). 2021;12(11):1824. doi:10.3390/genes12111824.
  • Villafuerte-De la Cruz R, Chacon-Camacho OF, Rodriguez-Martinez AC, Xilotl-De Jesus N, Arce-Gonzalez R, Rodriguez-De la Torre C, Valdez-Garcia JE, Rojas-Martinez A, Zenteno JC. Case report: disease phenotype associated with simultaneous biallelic mutations in. Front Genet. 2022;13:949437. doi:10.3389/fgene.2022.949437.
  • Ramos-Dávila EM, Garza-Garza LA, Villafuerte-de la Cruz R, Aguilar-Y-Mendez D, Morales-Garza HJ, Garza-Leon M, Ruiz-Lozano RE, Ancona-Lezama D. Novel RB1 germline mutation in a healthy man. Ophthalmic Genet. 2022;43(4):561–6. doi:10.1080/13816810.2022.2062390.
  • NIH NLoM. National center for biotechnology information, Genbank.td. Homo sapiens spermatogenesis associated 7 (SPATA7), transcript variant 1, mRNA. NIH; 2018.
  • Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, et al. The CLN3 gene and protein: what we know. Mol Genet Genomic Med. 2019;7(12):e859. doi:10.1002/mgg3.859.
  • Tang C, Han J, Dalvi S, Manian K, Winschel L, Volland S, Soto CA, Galloway CA, Spencer W, Roll M, et al. A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor–RPE interface. Commun Biol. 2021;4(1):161. doi:10.1038/s42003-021-01682-5.
  • National Library of Medicine NCfbi. NM_001042432.2(CLN3): C.1305C>G (P.Cys435trp) CLINVAR: NM_001042432.2(CLN3): C.1305C>G (P.Cys435trp); 2023. https://www.ncbi.nlm.nih.gov/clinvar/variation/658557/?oq=CLN3[gene]+AND+c.1305C%3EG[varname]+&m=NM001042432.2(CLN3):c.1305C%3EG%20(p.Cys435Trp).
  • Santorelli FM, Garavaglia B, Cardona F, Nardocci N, Bernardina BD, Sartori S, Suppiej A, Bertini E, Claps D, Battini R, et al. Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet J Rare Dis. 2013;8(1):19. doi:10.1186/1750-1172-8-19.
  • Kwon JM, Adams H, Rothberg PG, Augustine EF, Marshall FJ, Deblieck EA, Vierhile A, Beck CA, Newhouse NJ, Cialone J, et al. Quantifying physical decline in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;77(20):1801–7. doi:10.1212/WNL.0b013e318237f649.
  • Mizobuchi K, Hayashi T, Yoshitake K, Fujinami K, Tachibana T, Tsunoda K, Iwata T, Nakano T. Novel homozygous CLN3 missense variant in isolated retinal dystrophy: a case report and electron microscopic findings. Mol Genet Genomic Med. 2020;8(8):e1308. doi:10.1002/mgg3.1308.
  • Kuper WFE, Oostendorp M, van den Broek BTA, van Veghel K, Nonkes LJP, Nieuwenhuis EES, Fuchs SA, Veenendaal T, Klumperman J, Huisman A, et al. Quantifying lymphocyte vacuolization serves as a measure of CLN3 disease severity. JIMD Rep. 2020;54(1):87–97. doi:10.1002/jmd2.12128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.