415
Views
0
CrossRef citations to date
0
Altmetric
Case Reports

A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping

, , , , , , , & show all
Pages 210-217 | Received 31 Jul 2023, Accepted 09 Oct 2023, Published online: 26 Jan 2024

References

  • Meschede IP, Burgoyne T, Tolmachova T, Seabra MC, Futter CE, Lewin AS. Chronically shortened rod outer segments accompany photoreceptor cell death in choroideremia. PLoS One. 2020 Nov 17;15(11):e0242284. doi:10.1371/journal.pone.0242284. PMID: 33201897; PMCID: PMC7671558.
  • Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular therapies for choroideremia. Genes (Basel). 2019 Sep 23;10(10):738. doi:10.3390/genes10100738. PMID: 31548516; PMCID: PMC6826983.
  • Stevanovic M, Cehajic Kapetanovic J, Jolly JK, MacLaren RE. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmol. 2020 May;98(3):e322–e7. doi:10.1111/aos.14281. Epub 2019 Nov 17. PMID: 31736270.
  • Aleman TS, Han G, Serrano LW, Fuerst NM, Charlson ES, Pearson DJ, Chung DC, Traband A, Pan W, Ying GS, et al. Natural history of the central structural abnormalities in choroideremia: a prospective cross-sectional study. Ophthalmology. 2017 Mar;124(3):359–73. doi:10.1016/j.ophtha.2016.10.022. Epub 2016 Dec 13. PMID: 27986385; PMCID: PMC5319901.
  • Fry LE, Patrício MI, Williams J, Aylward JW, Hewitt H, Clouston P, Xue K, Barnard AR, MacLaren RE. Association of messenger RNA level with phenotype in patients with choroideremia: potential implications for gene therapy dose. JAMA Ophthalmol. 2020 Feb 1;138(2):128–35. doi:10.1001/jamaophthalmol.2019.5071. PMID: 31855248; PMCID: PMC6990656.
  • Hariri AH, Velaga SB, Girach A, Ip MS, Le PV, Lam BL, Fischer MD, Sankila EM, Pennesi ME, Holz FG, et al. Measurement and reproducibility of preserved ellipsoid zone area and preserved retinal pigment epithelium area in eyes with choroideremia. Am J Ophthalmol. 2017 Jul;179:110–17. doi:10.1016/j.ajo.2017.05.002. Epub 2017 May 10. PMID: 28499705.
  • Jolly JK, Xue K, Edwards TL, Groppe M, MacLaren RE. Characterizing the natural history of visual function in choroideremia using microperimetry and multimodal retinal imaging. Investig Ophthalmol Vis Sci. 2017;58:5575–83. doi:10.1167/iovs.17-22486.
  • Sun LW, Johnson RD, Williams V, Summerfelt P, Dubra A, Weinberg DV, Stepien KE, Fishman GA, Carroll J. Multimodal imaging of photoreceptor structure in choroideremia. PLoS ONE. 2016;11:e0167526. doi:10.1371/journal.pone.0167526.
  • Shen LL, Ahluwalia A, Sun M, Young BK, Nardini HKG, Del Priore LV. Long-term natural history of visual acuity in eyes with choroideremia: a systematic review and meta-analysis of data from 1004 individual eyes. Br J Ophthalmol. 2021;105(2):271–8. doi:10.1136/bjophthalmol-2020-316028.
  • Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther. 2018;18(7):807–20. doi:10.1080/14712598.2018.1484448.
  • Han RC, Gray JM, Han J, MacLaren RE, Jolly JK. Optimisation of dark adaptation time required for mesopic microperimetry. Br J Ophthalmol. 2019;103:1092–8. doi:10.1136/bjophthalmol-2018-312253.
  • Sperring S. Genetic Counsellor, Eye Hospital, JR West Wing LG1, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU; Oxford Regional Genetics Laboratories Churchill Hospital Old Road, Headington Oxford OX3 7LE.
  • Shanks ME, Downes SM, Copley RR, Lise S, Broxholme J, Hudspith KA, Kwasniewska A, Davies WI, Hankins MW, Packham ER, et al. Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur J Hum Genet. 2013 Mar;21(3):274–80. doi:10.1038/ejhg.2012.172. Epub 2012 Sep 12. Erratum in: Eur J Hum Genet. 2013 Sep;21(9):1031. PMID: 22968130; PMCID: PMC3573204.
  • Thomas S, Bunyan DJ. RNA splicing analysis. Wessex regional genetics laboratory. Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, Wiltshire, SP2 8BJ.
  • Patrício MI, Barnard AR, Cox CI, Blue C, MacLaren RE. The biological activity of AAV vectors for choroideremia gene therapy can be measured by in vitro prenylation of RAB6A. Mol Ther Methods Clin Dev. 2018 Mar 28;9:288–95. doi:10.1016/j.omtm.2018.03.009.
  • Nanda A, Salvetti AP, Martinez-Fernandez de la Camara C, MacLaren RE. Misdiagnosis of X-linked retinitis pigmentosa in a choroideremia patient with heavily pigmented fundi. Ophthalmic Genet. 2018 Jun;39(3):380–3. doi:10.1080/13816810.2018.1430242. Epub 2018 Jan 29. PMID: 29377744.
  • Aylward JW, Xue K, Patrício MI, Jolly JK, Wood JC, Brett J, Jasani KM, MacLaren RE. Retinal degeneration in choroideremia follows an exponential decay function. Ophthalmology. 2018 Jul;125(7):1122–4. doi:10.1016/j.ophtha.2018.02.004. Epub 2018 Mar 23. PMID: 29580667.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. ACMG Laboratory quality assurance committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular pathology. Genet Med. 2015 May;17(5):405–24. doi:10.1038/gim.2015.30. Epub 2015 Mar 5. PMID: 25741868; PMCID: PMC4544753.
  • Tolmachova T, Tolmachov OE, Barnard AR, de Silva SR, Lipinski DM, Walker NJ, MacLaren RE, Seabra MC. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med (Berl). 2013;91(7):825–37. doi:10.1007/s00109-013-1006-4.
  • Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, et al. Rapid generation of hypomorphic mutations. Nat Commun. 2017 Feb 16;8:14705. doi:10.1038/ncomms14705. PMID: 28106166; PMCID: PMC5263891.
  • Fry LE, Patrício MI, Jolly JK, Xue K, MacLaren RE. Expression of Rab prenylation pathway genes and relation to disease progression in choroideremia. Transl Vis Sci Technol. 2021 Jul 1;10(8):12. doi:10.1167/tvst.10.8.12. PMID: 34254989; PMCID: PMC8287038.
  • Parmann R, Greenstein VC, Tsang SH, Sparrow JR. Choroideremia carriers: dark-adapted perimetry and retinal structures. Invest Ophthalmol Vis Sci. 2022 Jul 8;63(8):4. doi: 10.1167/iovs.63.8.4. PMID: 35816046; PMCID: PMC9284471.
  • Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018 Dec 27;10:2515841418817490. doi:10.1177/2515841418817490. PMID: 30627697; PMCID: PMC6311551.
  • Magagnotti C, Bachi A, Zerbini G, Fattore E, Fermo I, Riba M, Previtali S, Ferrari M, Andolfo A, Benedetti S. Protein profiling reveals energy metabolism and cytoskeletal protein alterations in LMNA mutation carriers. Biochim Biophys Acta. 2012;1822:970–9. doi:10.1016/j.bbadis.2012.01.014.
  • Velickovic M, Prasad ML, Weston SA, Benson EM. Identification of the Bruton tyrosine kinase (BTK) gene mutations in 20 Australian families with X-linked agammaglobulinemia (XLA). Hum Mutat. 2004;23(4):398–9. doi:10.1002/humu.9228.
  • Samiy N. Gene therapy for retinal diseases. J Ophthalmic Vis Res. 2014 Oct-Dec;9(4):506–9. doi:10.4103/2008-322X.150831. PMID: 25709778; PMCID: PMC4329713.
  • MacDonald IM, Moen C, Duncan JL, Tsang SH, Cehajic-Kapetanovic J, Aleman TS. Perspectives on gene therapy: choroideremia represents a challenging model for the treatment of other inherited retinal degenerations. Transl Vis Sci Technol. 2020 Feb 14;9(3):17. doi:10.1167/tvst.9.3.17. PMID: 32714643; PMCID: PMC7351877.
  • Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, Rodríguez-Hidalgo M, Lara-López A, Ruiz-Ederra J. Subretinal injection techniques for retinal disease: a review. J Clin Med. 2022 Aug 12;11(16):4717. doi:10.3390/jcm11164717. PMID: 36012955; PMCID: PMC9409835.
  • Lam BL, Davis JL, Gregori NZ. Choroideremia gene therapy. Int Ophthalmol Clin. 2021 Oct 1;61(4):185–93. doi:10.1097/IIO.0000000000000385. PMID: 34584056; PMCID: PMC8478312.
  • Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770–88. doi:10.1038/s41576-018-0059-1.
  • Li JJ, Lin X, Tang C, Lu YQ, Hu X, Zuo E, Li H, Ying W, Sun Y, Lai LL, et al. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl Sci Rev. 2019 Sep 3;7(1):92–101. doi:10.1093/nsr/nwz131. PMID: 34691481; PMCID: PMC8446915.
  • Chen G, Wei T, Yang H, Li G, Li H. CRISPR-based therapeutic gene editing for Duchenne muscular dystrophy: advances, challenges and perspectives. Cells. 2022 Sep 22;11(19):2964. doi:10.3390/cells11192964. PMID: 36230926; PMCID: PMC9564082.
  • Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173:665–76. doi:10.1016/j.cell.2018.02.033.
  • La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. Elife. 2021 Aug 31;10:e70948. doi: 10.7554/eLife.70948. PMID: 34463618; PMCID: PMC8476124.