110
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Rescue of Sight by Gene Therapy—Closer than It May Appear

Pages 127-133 | Received 05 Apr 2007, Accepted 15 May 2007, Published online: 08 Jul 2009

REFERENCES

  • Anand V, Duffy B, Yang Z, Dejneka N S, Maguire A M, Bennett J. A deviant immune response to viral proteins and transgene product is generated on subretinal administration of adenovirus and adeno-associated virus. Mol Ther 2002; 5(2)125–132
  • Bennett J. Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 2003; 10(11)977–982
  • Chen J, Flannery J G, La Vail M M, Steinberg R H, Xu J, Simon M I. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Nat Acad Sci. USA 1996; 93: 7042–7047
  • Haire S E, Pang J, Boye S L, Sokal I, Craft C M, Palczewski K, Hauswirth W W, Semple-Rowland S L. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV.GC1. Invest Ophthalmol Vis Sci 2006; 47(9)3745–3753
  • Bennett J. Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 2003; 10(11)977–982
  • Francke U, Kung F. Sporadic bilateral retinoblastoma and 13q-chromosomal deletion. Med Ped Oncol 1976; 2(4)379–385
  • Chevez-Barrios P, Hurwitz M Y, Louie K, Marcus K T, Holcombe V N, Schafer P, Aguilar-Cordova C E, Hurwitz R L. Metastatic and nonmetastatic models of retinoblastoma. Amer J Pathol 2000; 157(4)1405–1412
  • Hurwitz M Y, Marcus K T, Chevez-Barrios P, Louie K, Aguilar-Cordova E, Hurwitz R L. Suicide gene therapy for treatment of retinoblstoma in a murine model. Hum Gene Ther 1999; 10: 441–448
  • Chevez-Barrios P, Chintagumpala M, Mieler W, Paysse E, Boniuk M, Kozinetz C, Hurwitz M Y, Hurwitz R L. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol 2005; 23(31)7927–7935
  • Klein R, Klein B, Linton K. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmol 1992; 99(6)933–943
  • Edwards A, Malek G. Molecular genetics of AMD and current animal models. Angiogenesis 2007; 10: 119–132
  • Rex T S, Tsui I, Hahn P, Maguire A M, Duan D, Bennett J, Dunaief J L. Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum Gene Ther 2004; 15: 960–967
  • Rex T S, Allocca M, Domenici L, Surace E M, Maguire A M, Lyubarsky A, Cellerino A, Bennett J, Auricchio A. Systemic but not intraocular Epo gene transfer protects the retina from light- and genetic-induced degeneration. Mol Ther 2004; 10(5)855–861
  • Imai D, Yoneya S, Gehlbach P L, Wei L L, Mori K. Intraocular gene transfer of pigment epithelium-derived factor rescues photoreceptors from light-induced cell death. J Cell Physiol 2005; 202: 570–578
  • Wang F, Rendahl K G, Manning W C, Quiroz D, Coyne M, Miller S S. AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat. Invest Ophthalmol Vis Sci 2003; 44: 781–790
  • Spilsbury K, Garrett K L, Shen W-Y, Constable I J, Rakoczy P E. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Amer J Pathol 2000; 157(1)135–144
  • Oshima Y, Oshima S, Nambu H, Kachi S, Hackett S F, Melia M, Kaleko M, Connelly S, Esumi N, Zack D J, Campochiaro P A. Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J Cell Physiol 2004; 01: 393–400
  • Baffi J, Byrnes G, Chan C C, Csaky K G. Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 2000; 41(11)3582–3589
  • Gehlbach P, Demetriades A M, Yamamoto S, Deering T, Duh E J, Yang H S, Cingolani C, Lai H, Wei L, Campochiaro P A. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal novascularization. Gene Ther 2003; 10: 637–646
  • Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J, Mori K, Yang H S, Zack D J, Ettyreddy D, Brough D E, Wei L L, Campochiaro P A. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001; 188: 253–263
  • Saishin Y, Silva R L, Saishin Y, Kachi S, Aslam S, Gong Y Y, Lai H, Carrion M, Harris B, Hamilton M, Wei L, Campochiaro P A. Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum Gene Ther 2005; 16: 473–478
  • Campochiaro P, Nguyen Q D, Shah S M, Klein M L, Holz E, Frank R N, Saperstein D A, Gupta A, Stout J T, Macko J, Di Bartolomeo R, Wei L L. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: Results of a phase I clinical trial. Hum Gene Ther 2006; 17: 167–176
  • Rasmussen H, Chu K W, Campochiaro P, Gehlbach P L, Haller J A, Handa J T, Nguyen Q D, Sung J U. Clinical protocol. An open-label, phase I, single administration, dose-escalastion study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 2001; 2(16)2029–2032
  • Jin M, Li S, Moghrabi W N, Sun H, Travis G H. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005; 122(3)449–459
  • Moiseyev G, Chen Y, Takahashi Y, Wu B X, Ma J X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Nat Acad Sci. USA 2005; 102(35)12413–12418
  • Batten M L, Imanishi Y, Tu D C, Doan T, Zhu L, Pang J, Glushakova L, Moise A R, Baehr W, Van Gelder R N, Hauswirth W W, Rieki F, Palczewski K. Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber Congenital Amaurosis. PLoS Med 2005; 2(11)1177–1189
  • Redmond T M, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma J X, Crouch R K, Pfeifer K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 1998; 20(4)344–351
  • Pang J J, Chang B, Hawes N L, Hurd R E, Davisson M T, Li J, Noorwez S M, Malhotra R, McDowell J H, Kaushal S, Hauswirth W W, Nusinowitz S, Thompson D A, Heckenlively J R. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 2005; 11: 152–162
  • Rakoczy P, Lai C M, Yu M J, Daniels D M, Brankov M, Rae B C, Stoddart C W, Barnett N L, Martin-Iverson M T, Redmond T M, Narfstrom K, Zhou X, Constable I J. Assessment of rAAV-mediated gene therapy in the Rpe65−/− mouse. Adv Exp Med Biol 2003; 533: 431–438
  • Pang J J, Chang B, Kumar A, Nusinowitz S, Noorwez S M, Li J, Rani A, Foster T C, Chiodo V A, Doyle T, Li H, Malhotra R, Teusner J T, McDowell J H, Min S-H, Li Q, Kaushal S, Hauswirth W W. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 2006; 13(3)565–572
  • Dejneka N S, Surace E M, Aleman T S, Cideciyan A V, Lyubarsky A, Savchenko A, Redmond T M, Tang W, Wei Z, Rex T S, Glover E, Maguire A M, Pugh E N, Jr, Jacobson S G, Bennett J. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9(2)182–188
  • Acland G M, Aguirre G D, Ray J, Zhang Q, Aleman T S, Cideciyan A V, Pearce-Kelling S E, Anand V, Zeng Y, Maguire A M, Jacobson S G, Hauswirth W W, Bennett J. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28(1)92–95
  • Acland G M, Aguirre G D, Bennett J, Aleman T S, Cideciyan A V, Bennicelli J, Dejneka N S, Pearce-Kelling S E, Maguire A M, Palczewski K, Hauswirth W W, Jacobson S G. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12(6)1072–1082
  • Narfstrom K, Katz M L, Ford M, Redmond T M, Rakoczy E. Bragadottir. In vivo gene therapy in young and adult Rpe65−/− dogs produces long-term visual improvement. J Heredity 2003; 94(1)31–37
  • Jacobson S G, Acland G M, Aguirre G D, Aleman T S, Schwartz S B, Cideciyan A V, Zeiss C J, Komaromy A M, Kaushal S, Roman A J, Windsor E A, Sumaroka A, Pearce-Kelling S E, Conlon T J, Chiodo V A, Boye S L, Flotte T R, Maguire A M, Bennett J, Hauswirth W W. Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gene Ther 2006; 17: 845–858
  • Pawlyk B, Smith A J, Buch P K, Adamian M, Hong D-H, Sandberg M A, Ali R R, Li T. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol & Vis Sci 2005; 46(9)3039–3045
  • Williams M L, Coleman J E, Haire S E, Aleman T S, Cideciyan A V, Sokal I, Palczewski K, Jacobson S G, Semple-Rowland S L. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 2006; 3(6)904–917
  • Schlichtenbrede F, da Cruz L, Stephens C, Smith A J, Georgiadis A, Thrasher A J, Bainbridge J WB, Seeliger M W, Ali R R. Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 2003; 5: 757–764
  • Sarra G-M, Stephens C, de Alwis M, Bainbridge J WB, Smith A J, Thrasher A J, Ali R R. Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 2001; 10(21)2353–2361
  • Ali R R, Sarra G-M, Stephens C, de Alwis M, Bainbridge J WB, Munro P M, Fauser S, Reichell M B, Kinnon C, Hunt D M, Bhattacharya S S, Thrasher A J. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310
  • Buch P K, MacLaren R E, Duran Y, Balaggan K S, MacNeil A, Schlichtenbrede F C, Smith A J, Ali R R. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14(5)700–709
  • McGee Sanftner L H, Abel H, Hauswirth W W, Flannery J G. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 2001; 4(6)622–629
  • Farber D, Flannery J, Bowes-Rickman C. The rd mouse story; seventy years of research on an animal model of inherited retinal degeneration. Prog Ret Eye Res 1994; 13(1)31–64
  • Jomary C, Vincent K A, Grist J, Neal M J, Jones S E. Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther 1997; 4: 683–690
  • Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P, Maguire A M. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med 1996; 2(6)649–654
  • Kumar-Singh R, Farber D B. Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: application to the rescue of photoreceptor degeneration. Hum Mol Genet 1998, 12: 1893–1900
  • Takahashi M, Miyoshi H, Verma I M, Gage F H. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73(9)7812–6
  • Liang F Q, Aleman T S, Dejneka N S, Dudus L, Fisher K J, Maguire A M, Jacobson S G, Bennett J. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther. 2001; 4(5)461–472
  • Leonard K C, Petrin D, Coupland S G, Baker A N, Leonard B C, La Casse E C, Hauswirth W W, Korneluk R G, Tsilfidis C. XIAP protection of photoreceptors in animal models of retinitis pigmentosa. PLoS Med 2007; 2(3)1–8
  • Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire A M, Wilson J M, Bennett J. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: Rhe retina as a model. Hum Mol Genet 2001; 10(26)3075–3081
  • Min S-H, Molday L L, Seeliger M W, Dinculescu A, Timmers A M, Janssen A, Tonagel F, Tanimoto N, Weber B HF, Molday R S, Hauswirth W W. Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of X-linked juvenile retinoschisis. Mol Ther 2005; 12(4)644–651
  • Budzynski E, Lee Y, Sakamoto K N, Aggert J K, Nishina P M. From vivarium to bedside: Lessons learned from animal models. Ophthal Genet 2006; 27: 123–137
  • Manno C S, Pierce G F, Arruda V R, Glader B, Ragni M, Rasko J J, Ozelo M C, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi P K, Nakai H, Chew A, Leonard D, Wright J F, Lessard R R, Sommer J M, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl H C, High K A, Kay M A. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 2(3)342–347
  • Wenzel A, Reme C E, Williams T P, Hafezi F, Grimm C. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci 2001; 21(1)53–58
  • Smith L E, Wesolowski E, McLellan A, Kostyk S K, D'Amato R, Sullivan R, D'Amore P A. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35(1)101–111
  • Reich S J, Auricchio A, Hildinger M, Glover E, Maguire A M, Wilson J M, Bennett J. Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 2003; 14(1)37–44
  • Gao G, Vandenberghe L H, Wilson J M. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5(3)285–297
  • Millington-Ward S, O'Neill B, Tuohy G, Al-Jandal N, Kiang A-S, Kenna P F, Palfi A, Hayden P, Mansergh F, Kennan A, Humphries P, Farrar G J. Strategems in vitro for gene therapies directed to dominant mutations. Hum Mol Genet 1997; 6(9)1415–1426
  • Gorbatyuk M S, PAng J-J, Thomas J, Jr, Hauswirth W W, Lewin A S. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis 2005; 11: 648–656
  • Kiang A-S, Palfi A, Ader M, Kenna P F, Millington-Ward S, Clark G, Kennan A, O'Reilly M, Tam L CT, Ahern A, McNally N, Humphries P, Farrar G J. Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation- independent approach. Mol Ther 2005; 12(3)555–561
  • Gorbatyuk M, Justilien V, Liu J, Hauswirth W W, Lewin A S. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exper Eye Res 2007; 84: 44–52
  • Cashman S M, Binkley E A, Kumar-Singh R. Towards mutation-independent silencing of genes involved in retinal degeneration by RNA interference. Gene Ther 2005; 12: 1223–1228
  • Palfi A, Ader M, Kiang A-S, Millington-Ward S, Clark G, O'Reilly M, McMahon H P, Kenna P F, Humphries P, Farrar G J. RNAi-based suppression and replacement of rds-peripherin in retinal organotypic culture. Hum Mut 2006; 7(3)260–268
  • Sullivan J M, Pietras K M, Shin B J, Misasi J N. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa. Mol Vis 2002; 8: 102–113
  • Goverdhana S, Puntel M, Xiong W, Zirger J M, Barcia C, Curtin J F, Soffer E B, Mondkar S, King G D, Hu J, Sciascia S A, Candolfi M, Greengold D S, Lowenstein P R, Castro M G. Regulatable gene expression systems for gene therapy applications: Progress and future challenges. Curr Gene Ther 2006; 6(4)421–438
  • Lebherz C, Auricchio A, Maguire A M, Rivera V M, Tang W, Grant R L, Clackson T, Bennett J, Wilson J M. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum Gene Ther 2005; 16(2)178–186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.