1,859
Views
137
CrossRef citations to date
0
Altmetric
Review Article

The Retinal Ciliopathies

, &
Pages 113-125 | Received 18 Apr 2007, Accepted 14 Jun 2007, Published online: 08 Jul 2009

REFERENCES

  • Hunter D G, Fishman G A, Kretzer F L. Abnormal axonemes in X-linked retinitis pigmentosa. Arch Ophthalmol 1988; 106: 362–368
  • Hunter D G, Fishman G A, Mehta R S, Kretzer F L. Abnormal sperm and photoreceptor axonemes in Usher's syndrome. Arch Ophthalmol 1986; 104: 385–389
  • Wheatley D N. Primary cilia in normal and pathological tissues. Pathobiology. 1995; 63: 222–238
  • Mitchison T J, Kirschner M W. Dynamic instability of microtubule growth. Nature. 1984; 312: 237–242
  • Davenport J, Yoder B. An incredible decade for the primary cilium: A look at once-forgotten organelle. Am J Physiol Renal Physiol 2005; 289: F1159–F1169
  • Mykytyn K, Sheffield V. Establishing a connection between cilia and Bardet-Beidl syndrome. Trends Mol Med. 2004; 10: 106–107
  • Pazour G J, Baker S A, Deane J A, et al. The intraflagellar transport protein IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 2002; 157: 103–113
  • Wolfrum U, Schmitt A. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 2000; 46: 95–107
  • Hirokawa N. The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins). Cell Struct Funct 1996; 21: 357–367
  • Williams D S. Actin filaments and photoreceptor membrane turnover. Bioessays 1991; 13: 171–178
  • Jacobson S, Cideciyan A, Iannaccone A. Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000; 41: 1989
  • Mohand-Said S, Hicks D, Dreyfus H. Selective Transplantation of rods delays cone loss in a retinitis pigmentosa model. Arch Ophthalmol 2000; 18: 807
  • Vaithinathan R, Berson E L, Dryja T P. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. Genomics. 1994; 21: 461–463
  • Gamundi M, Hernan I, Martinez-Gimeno M. Three novel and the common Arg677TerRP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in Spanish population. BMC Med Genet. 2006; 7: 35–44
  • Wang Q, Chen Q, Zhao K. Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet. 2001; 3: 133–154
  • Liu Q, Zhou J, Daiger S P, et al. Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors. Invest Ophthalmol Vis Sci 2002; 43: 22–32
  • Liu Q, Zuo J, Pierce E A. The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 2004; 24: 6427–6436
  • Liu Q, Lyubarsky A, Skalet J H, et al. RP1 is required for the correct stacking of outer segment discs. Invest Ophthalmol Vis Sci. 2003; 44: 4171–4183
  • Gao J, Cheon K, Nusinowitz S, et al. Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Proc Natl Acad Sci USA 2002; 99: 5698–5703
  • Gleeson J G, Allen K M, Fox J W, et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92: 63–72
  • Desai A, Mitchison T J. Microtubule polymerization dynamics. Ann Rev Cell Dev Biol 1997; 13: 83–117
  • Pierre P, Scheel J, Rickard J E, Kreis T E. CLIP-170 links endocytic vesicles to microtubules. Cell 1992; 70: 887–900
  • Komarova Y A, Akhmanova A S, Kojima S, et al. Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol. 2002; 159: 589–599
  • Meindl A, Dry K, Hermann K, et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nature Genet. 1996; 13: 35–42
  • Vervoort R, Lennon A, Bird A C, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nature Genet. 2000; 25: 462–466
  • Falls H F, Cotterman C W. Chorioretinal degeneration: A sex-linked form in which heterozygous women exhibit a tapetal-like retinal reflex. Arch Ophthal 1948; 40: 685–703
  • Ayyagari R, Demirci F Y, Liu J, et al. X-linked recessive atrophic macular degeneration from RPGR mutation. Genomics 2002; 80: 166–171
  • Demirci F YK, Rigatti B W, Wen G, et al. X-linked cone-rod dystrophy (locus COD1): Identification of mutations in RPGR exon ORF15. Am J Hum Genet. 2002; 70: 1049–1053
  • Yang Z, Peachey N S, Moshfeghi D M, et al. Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Molec Genet 2002; 11: 605–611
  • Ebenezer N D, Michaelides M, Jenkins S A, et al. Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy. Invest Ophthal Vis Sci. 2005; 46: 1891–1898
  • Moore A, Escudier E, Roger G, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006; 43: 326–333
  • Zito I, Downes S M, Patel R J, et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003; 40: 609–615
  • Krawczynski M R, Dmenska H, Witt M. Apparent X-linked primary ciliary dyskinesia associated with retinitis pigmentosa and a hearing loss. J Appl Genet 2004; 45: 107–110
  • Iannaccone A, Breuer D K, Wang X F, et al. Clinical and immunohistochemical evidence for an X-linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation (Letter). J Med Genet 2003; 40: e118
  • Hong D-H, Pawlyk B S, Admian M, et al. A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthal Vis Sci 2005; 46: 435–441
  • Shu X, Black G C, Rice J M, et al. RPGR mutation analysis and disease: An update. Hum Mutat. 2006; 28: 322–328
  • Koenekoop R. PRGRIP1 is mutated in Leber Congenital Amaurosis: A mini-review. Ophthalmic Genet 2005; 26: 175–179
  • Adamian M, Pawlyk B S, Hong D H, Berson E L. Rod and cone opsin islocalization in an autopsy eye from a carrier of X-linked retinitis pigmentosa with a Gly436Asp mutation in the RPGR gene. Am J Ophthalmol 2006; 142: 515–518
  • Khanna H, Hurd T W, Lillo C, et al. RPGR-ORF15, which is mutated in retinitis pigmentosa associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem. 2005; 280: 33580–33587
  • Zhao Y, Hong D H, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: Subserving RPGR function and participating in disc morphogenesis. Proc Natl Acad Sci USA 2003; 100: 3965–3970
  • Hong D-H, Pawlyk B S, Shang J, et al. A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 2000; 97: 3649–3654
  • Bischoff F R, Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature. 1991; 354: 80–82
  • Feldherr C M, Kallenbach E, Schultz N. Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 1984; 99: 2216–2222
  • Dingwall C, Sharnick S V, Laskey R A. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982; 30: 449–458
  • Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene. 2002; 21: 6170–6174
  • Zatsepina O V, Rousselet A, Chan P K, et al. The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J Cell Sci 1999; 112: 455–466
  • Borer R A, Lehner C F, Eppenberger H M. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989; 56: 379–390
  • Dryja T P, Adams S M, Grimsby J L, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 2001; 68: 1295–1298
  • Moore A T. Cone and cone-rod dystrophies. J Med Genet 1992; 29: 289–290
  • Hameed A, Abid A, Aziz A, et al. Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J Med Genet. 2003; 40: 616–619
  • Gerber S, Perrault I, Hanein S, et al. Complete exon-intron structure of the RPGR-interaction protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. Europ J Hum Genet. 2001; 9: 561–571
  • Shu X, Fry A M, Tulloch B, et al. RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum Mol Genet 2005; 14: 1183–1197
  • Vernon M. Usher's syndrome—Deafness and progressive blindness: Clinical cases, prevention, theory and literature survey. J Chronic Dis 1969; 22: 133–151
  • Gorlin R J, Tilsner T J, Feinstein S, Duvall A J, 3rd. Usher's syndrome type III. Arch Otolaryngol 1979; 105: 353–354
  • Kremer H, Van Wijk E, Marker T. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006; 15: R262–R270
  • Van Aarem A, Wagenaar M, Pinckers A J, et al. Ophthalmologic findings in Usher syndrome type 2A. Ophthalmic Genet Dec, 1995; 16(4)151–158
  • Sadeghi A, Eriksson K, Kimberling W. Long term visual prognosis in Usher syndrome types 1 and 2. Acta Ophthalmo. Scand. 2006; 84: 537–544
  • Edwards A, Fishman G, Anderson R. Visual acuity and visual field impairment in Usher syndrome. Arch Ophthalmol 1998; 116: 165–167
  • Iannaccone A, Kritchevshy S, Ciccarelli M. Kinetics of visual field loss in Usher syndrome Type II. Invest Ophthalmol Vis Sci 2004; 45: 784–792
  • Wagner J H. Presynaptic bodies (“ribbons”): from ultrastructural observations to molecular perspectives. Cell Tissue Res 1997; 287: 435–446
  • Tilney L G, Tilney M S, Cotanche D A. New observations on the stereocilia of hair cells of the chick cochlea. Hear Res. 1988; 37: 71–82
  • Nagle B W, Okamoto C, Taggart B, Burnside B. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments. Invest Ophthalmol Vis Sci. 1986; 27: 689–701
  • Reiners J, van Wijk E, Märker T, et al. The scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 2005; 14: 3933–3943
  • Reiners J, Wolfrum U. Molecular analysis of the supramolecular Usher protein complex in the retina: Harmonin as the key protein of the Usher syndrome. Adv Exp Med Biol. 2006; 572: 349–353
  • Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease. Nat Rev Genet. 2005; 6: 928–940
  • Loken A C, Hanssen O, Halvorsen S, Jolster N J. Hereditary renal dysplasia and blindness. Acta Paediat. 1961; 50: 177–184
  • Senior B, Friedmann A I, Braudo J L. Juvenile familial nephropathy with tapetoretinal degeneration: A new oculorenal dystrophy. Am J Ophthal 1961; 52: 625–633
  • Ticho B, Sieving P A. Leber's congenital amaurosis with marbleized fundus and juvenile nephronophthisis. Am J Ophthalmol. 1989; 107: 426–428
  • Sayer J, Otto E, O'Toole J, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006; 38: 674–681
  • Fleigauf M, Horvath J, Von Schnakenburg C. Nephrocystin Specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006; 17: 2424–2433
  • Valente E M, Marsh S E, Castori M, et al. Distinguishing the four genetic causes of Joubert syndrome-related disorders. Ann Neurol. 2005; 57: 513–519
  • Saraiva J M, Baraitser M. Joubert syndrome: A review. Am J Med Genet. 1992; 43: 726–731
  • Joubert M, Eisenring J J, Robb J P, Andermann F. Familial agenesis of the cerebellar vermis: A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 1969; 19: 813–825
  • Valente E M, Salpietro D C, Brancati F, et al. Description, nomenclature, and mapping of a novel cerebello-renal syndrome with the molar tooth malformation. Am J Hum Genet 2003; 73: 663–670
  • Nurnberger J, Kavapurackal R, Zhang S. Different tissue distribution of the INVS gene product inversin. Cell Tissue Res 2006; 323: 147–155
  • Olbrich H, Fleigauf M, Hoefele J. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nature Genetics 2003; 34(4)455
  • Roepman R, Letteboer S, Arts H. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephrnopthisis or Leber congenital amaurosis-associated mutations. Proc Natl Acad Sci USA 2005; 102: 18520–18525
  • Otto E, Hoefele J, Ruf R. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 2002; 71: 1161–1167
  • Otto E, Loeys B, Khanna H. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 2005; 37: 282–288
  • Von Schnakenburg C, Fliegauf M, Omran H. Nephrosytin and ciliary defects not only in the kidney?. Pediatr Nephrol, In Press
  • Schermer B, Hopker K, Omran H. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 2005; 24: 4415–4424
  • Caridi G, Dagnino M, Rossi A. Nephronophthisis type 1 deletion syndrome with neurological symptoms: Prevalence and significance of the association. Kidney Int 2006; 70: 1342–1347
  • Katsanis N, Lupski J R, Beales P L. Exploring the molecular basis of Bardet-Biedl syndrome. Hum Mol Genet 2001; 10: 2293–2299
  • Beales P L, Elcioglu N, Woolf A S, et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J Med Genet 1999; 36: 437–446
  • Green J S, Parfrey P S, Harnett J D, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Lawrence–Moon–Bardet–Biedl syndrome. New Engl J Med 1989; 321: 1002–1009
  • Campo R V, Aaberg T M. Ocular and systemic manifestations of the Bardet-Biedl syndrome. Am J Ophthalmol. 1982; 94: 750–756
  • Heon E, Westall C, Carmi R. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet 2005; 132A: 283–287
  • Iannaccone A, De Propris G, Roncati S, et al. The ocular phenotype of the Bardet-Biedl syndrome. Comparison to non-syndromic retinitis pigmentosa. Ophthalmic Genet. 1997; 18: 13–26
  • Azari A, Aleman T, Cideciyan A. Retinal disease expression in Bardet-Biedl syndrome 1 (BSSA1) is a spectrum from maculopathy to retina-wide degeneration. Invest Ophthalmol Vis Sci 2006; 47: 5004–5010
  • Riise R, Andreasson S, Wright A F, Tomqvist K. Ocular findings in the Laurence-Moon-Bardet-Biedl syndrome. Acta Ophthalmol Scand. 1996; 74: 612–617
  • Riise R, Andreasson S, Tomqvist K. Full-field electroretinograms in individuals with the Laurence-Mood-Bardet-Biedl syndrome. Acta Ophthalmol Scand. 1996; 74: 618–620
  • Moore S, Green J, Fan Y. Clinical and genetic epidemiology of Bardet-Beidl syndrome in Newfoundland: A 22-year prospective, population-based, cohort study. Am J Med Genet 2005; 132A: 352–360
  • Slavotinek A, Biesecker L. Phenotypic overlap of McKusick-Kaufman syndrome with Bardet-Biedl syndrome: A literary review. Am J Med Genet 2000; 95: 208–215
  • Toma H S, Tan P L, McKusick V A, et al. Bardet-Biedl syndrome in an African-American patient: Should the diagnostic criteria be expanded to include hydrometrocolpos?. Ophthalmic Genet 2007; 28: 95–99
  • Verloes A, Temple I K, Bonnett S. Coloboma, mental retardation, hypogonadism and obesity. Am J Med Genet 1997; 69: 370–379
  • Blacque O E, Leroux M R. Bardet-Beidl Syndrome: An emerging pathomechanism of intracellular transport. Cell Mol Life Sci. 2006; 63: 2145–2161
  • Whitfield J F. The neuronal primary cilium—An extrasynaptic signaling device. Cell Signal. 2004; 16: 763–767
  • Mykytyn K, Mullins R F, Andres M, et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci. USA 2004; 101: 8664–8669
  • Nishimura D Y, Fath M, Mullins R F, et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci USA. 2004; 101: 16588–16593
  • Stoetzel C, Muller J, Laurier V. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Beidl syndrome. Am J Hum Genet 2007; 80: 1–11
  • Yen H J, Tayeh M K, Mullins R F, et al. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Hum Mol Genet. 2006; 5: 667–677
  • Beales P. Lifting the lid on Pandora's box: The Bardet-Biedl syndrome. Curr Opin Genet Dev. 2005; 15: 315–323
  • Kim J C, Badano J L, Sibold S, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 2004; 36: 462–470
  • Tosi G, Margherita de Santi M, Pradal U. Usher Syndrome type 1 associated with primary ciliary aplasia. Arch Ophthalmol. 2003; 121: 407–408
  • Li G, Vega R, Nelms K. A role for Alsrom Syndrome protein, Alms1, in kidney ciligenesis and cellular quiescence. PLoS Genetics. 2007; 3: 9–20
  • Russell-Eggitt I, Clayton P, Coffey R. Alsrom syndrome. Ophthamology. 1998; 105: 1274–1280
  • Collin G B, Cyr E, Bronson R. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet 2005; 14: 2323–2333
  • Edwards J A, Sethi P K, Scoma A J. A new familial syndrome characterized by pigmentary retinopathy, hypogonadism, mental retardation, nerve deafness and glucose intolerance. Am J Med 1976; 60: 23–32
  • Boor R, Herwig J, Schrezenmier J. Familial insulin resistant diabetes associated with acanthosis nigricans, polycystic ovaries, hypogonadism, pigmentary retinopathy, labyrinthine deafness, and mental retardation. Am J Med Genet 1993; 45: 649–653
  • Calver J. New insights into ciliary function: Kidney cysts and photoreceptors. Proc Natl Acad Sci USA 2003; 100: 5583–5585
  • Tompson S, Ruiz-Perez V, Blair S. Sequencing EVC and EVC2 identifies mutations in two-thirds of Ellis-van Creveld syndrome patients. Hum Genet. 2007; 120: 663–670
  • Phillips C, Stokoe N L, Bartholomew R S. Asphyxiating thoracic dystrophy (Jeune's disease) with retinal aplasia: A sibship of two. J Ped Ophthalmol Strabismus 1979; 16: 279–289
  • Casteels I, Demandt E, Legius E. Visual loss as the presenting sign of Jeune syndrome. Eur J Ped Neurol 2000; 4: 243–247
  • Morgan N V, Bacchelli C, Gissen P. A locus for asphyxiating thoracic dystrophy, ATD, maps to chromosome 15q13. J Med Genet 2003; 40: 431–435
  • Alexiev B, Lin X, Sun C. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and different diagnosis. Arch Pathol Lab Med. 2006; 130: 1236–1238
  • MacRae D, Howard R, Albert D. Ocular manifestations of the Meckel syndrome. Arch Ophthal. 1972; 88: 107–113
  • Dawe H, Smith U, Cullinane A R, et al. The Meckel-Gruber Syndrome proteins MKS1 and mecklin interact and are required for primary cilium formation. Hum Mol Genet 2007; 16: 173–186
  • Baala L, Ramano S, Khaddour R. The Meckle-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet 2007; 80: 186–194
  • Gurrieri F, Sammito V, Ricci B, et al. Possible new type of oral-facial-digital syndrome with retinal abnormalities: OFDS type (VIII). Am J Med Genet 1992; 42: 789–792
  • Nagai K, Nagao M, Nagao M. Oral-facial-digital syndrome type IX in a patient with Dandy-Walker malformation. J Med Genet 1998; 35: 342–344
  • Ferrante M, Zullo A, Barra A. Oral-facial-digital type 1 protein is required for primary cilia formation and left-right axis specifications. Nat Genet 2006; 38: 112–117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.