127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spectral features related to the auditory perception of twang-like voices

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 16 Sep 2023, Accepted 15 Apr 2024, Published online: 24 Apr 2024

References

  • Titze IR. Acoustic interpretation of resonant voice. J Voice. 2001;15(4):519–528. doi:10.1016/S0892-1997(01)00052-2.
  • Lombard LE, Steinhauer KM. A novel treatment for hypophonic voice: twang therapy. J Voice. 2007;21(3):294–299. doi:10.1016/S0892-1997(01)00052-2.
  • Estill J. Estill voice training level one: figures for voice control. 2nd ed. Pittsburgh (PA): Estill Voice International, LLC; 2019.
  • Estill J. Estill voice training level two: figure combinations for six voice qualities. 2nd ed. Pittsburgh (PA): Estill Voice International, LLC; 2019
  • Sadolin C. Complete vocal technique. Copenhagen: shout Publishing; 2014.
  • Yanagisawa E, Estill J, Kmucha ST, et al. The contribution of aryepiglottic constriction to “ringing” voice quality: a videolaryngoscopic study with acoustic analysis. J Voice. 1989;3(4):342–350. doi:10.1016/S0892-1997(89)80057-8.
  • Sundberg J, Thalén M. What is “twang”? J Voice. 2010;24(6):654–660. doi:10.1016/j.jvoice.2009.03.003.
  • Saldías M, Laukkanen AM, Guzmán M, et al. The vocal tract in loud twang-like singing while producing high and low pitches. J Voice. 2021;35(5):807.e1–807-e23. doi:10.1016/j.jvoice.2020.02.005.
  • LoVetri J. The confusion about belting: a personal observation. J N Y Sing Teach Assoc. 2012;10:4–7.
  • LoVetri J. Somatic voiceworkTM the LoVetri method. Course material, level I. New York (NY): the Voice Workshop; 2021.
  • Titze IR, Bergan CC, Hunter EJ, et al. Source and filter adjustments affecting the perception of the vocal qualities twang and yawn. Logoped Phoniatr Vocol. 2003;28(4):147–155. doi:10.1080/14015430310018874.
  • Titze IR, Story BH. How well does the “larynx canal” match the “ear canal”? SING. 2022;78(3):359–361. doi:10.53830/QNJW3164.
  • Takemoto H, Adachi S, Kitamura T, et al. Acoustic roles of the laryngeal cavity in vocal tract resonance. J Acoust Soc Am. 2006;120(4):2228–2238. doi:10.1121/1.2261270.
  • Titze IR, Story BH. Acoustic interactions of the voice source with the lower vocal tract. J Acoust Soc Am. 1997;101(4):2234–2243. doi:10.1121/1.418246.
  • Story BH. Using imaging and modeling techniques to understand the relation between vocal tract shape to acoustic characteristics. Proceedings of the Stockholm Music Acoustics Conference SMAC 03; 2003 Aug 6–9; Stockholm, Sweden.
  • Leino T. Long-term average spectrum in screening of voice quality in speech: untrained male university students. J Voice. 2009;23(6):671–676. doi:10.1016/j.jvoice.2008.03.008.
  • Perta K, Bae Y, Obert K. A pilot investigation of twang quality using magnetic resonance imaging. Logoped Phoniatr Vocol. 2021;46(2):77–85. doi:10.1080/14015439.2020.1757147.
  • Story BH, Titze IR, Hoffman EA. The relationship of vocal tract shape to three voice qualities. J Acoust Soc Am. 2001;109(4):1651–1667. doi:10.1121/1.1352085.
  • Titze IR. Regulating glottal airflow in phonation: application of the maximum power transfer theorem to low dimensional phonation model. J Acoust Soc Am. 2002;111(1 Pt 1):367–376. doi:10.1121/1.1417526.
  • Titze IR, Worley AS. Modeling source-filter interaction in belting and high-pitched operatic male singers. J Acoust Soc Am. 2009;126(3):1530–1540. doi:10.1121/1.3160296.
  • Titze IR. The acoustic characteristics of vocal twang. SING. 2022;78(5):613–614. doi:10.53830/LKZS7620.
  • Titze IR, Palaparthi A, Cox K, et al. Vocalization with semi-occluded airways is favorable for optimizing sound production. PLoS Comput Biol. 2021;17(3):e1008744. doi:10.1371/journal.pcbi.1008744.
  • Titze IR. Simulation of vocal loudness regulation with lung pressure, vocal fold adduction, and source-airway interaction. J Voice. 2023;37(2):152–161. doi:10.1016/j.jvoice.2020.11.030.
  • Berry DA, Verdolini K, Montequin DW, et al. A quantitative output-cost ratio in voice production. J Speech Lang Hear Res. 2001;44(1):29–37. doi:10.1044/1092-4388(2001/003).
  • Chilean Government, Ministry of Health, Undersecretariat of Public Health. [Law N° 20120, on scientific research in humans, their genome, and prohibits human cloning]. Santiago, Chile: Chilean Government, Ministry of Health, Undersecretariat of Public Health; 2011. https://bcn.cl/2fe0y
  • World Medical Association. Declaration of helsinki. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.281053.
  • Council for International Organizations of Medical Sciences. International ethical guidelines for health-related research involving humans. Geneva, Switzerland: CIOMS, 2016.
  • Sundberg J. Articulatory interpretation of the “singing formant. J Acoust Soc Am. 1974;55(4):838–844. doi:10.1121/1.1914609.
  • Sundberg J, Nordenberg M. Effects of vocal loudness variation on spectrum balance as reflected by alpha measure of long-term-average spectra of speech. J Acoust Soc Am. 2006;120(1):453–457. doi:10.1121/1.2208451.
  • Omori K, Kacker A, Carroll LM, et al. Singing power ratio: quantitative evaluation of singing voice quality. J Voice. 1996;10(3):228–235. doi:10.1016/s0892-1997(96)80003-8.
  • Karnell M, Melton S, Childes J, et al. Reliability of clinician-based (GRBAS and CAPE-V) and patient-based (V-RQOL and IPVI) documentation of voice disorders. J Voice. 2007;21(5):576–590. doi:10.1016/j.jvoice.2006.05.001.
  • Titze IR. Toward standards in acoustic analysis of voice. J Voice. 1994;8(1):1–7. doi:10.1016/S0892-1997(05)80313-3.
  • Ptok M, Schwemmle C, Iven C, et al. [On the auditory evaluation of voice quality]. HNO. 2006;54(10):793–802. doi:10.1007/s00106-005-1310-6.
  • Shrivastav R. Multidimensional scaling of breathy voice quality: individual differences in perception. J Voice. 2006;20(2):211–222. doi:10.1016/j.jvoice.2005.04.005.
  • Barsties B, Maryn Y. The influence of voice sample length in the auditory-perceptual judgement of overall voice quality. J Voice. 2017;31(2):202–210. doi:10.1016/j.jvoice.2016.07.006.
  • Donai JJ, Paschall DD. Identification of high-pass filtered male, female, and child vowels: the use of high-frequency cues. J Acoust Soc Am. 2015;137(4):1971–1982. doi:10.1121/1.4916195.
  • Monson BB, Hunter EJ, Lotto AJ, et al. The perceptual significance of high-frequency energy in the human voice. Front Psychol. 2014;5(587):587. doi:10.3389/fpsyg.2014.00587.
  • Hunter LL, Monson BB, Moore DR, et al. Extended high frequency hearing and speech perception implications in adults and children. Hear Res. 2020;397:107922. doi:10.1016/j.heares.2020.107922.
  • Kitzing P. LTAS criteria pertinent to the measurement of voice quality. J Phon. 1986;14(3-4):477–482. doi:10.1016/S0095-4470(19)30693-X.
  • Gauffin J, Sundberg J. Spectral correlates of glottal voice source waveform characteristics. J Speech Hear Res. 1989;32(3):556–565. doi:10.1044/jshr.3203.556.
  • Bozeman KW. New technology for teaching voice science and pedagogy: the madde synthesizer (svante granqvist). J Singing. 2012;68(4):415–418.
  • Mehta DD, Wolfe PJ. Statistical properties of linear prediction analysis underlying the challenge of formant bandwidth estimation. J Acoust Soc Am. 2015;137(2):944–950. doi:10.1121/1.4906840.
  • Titze IR. Principles of voice production. Iowa City (IA): National Center for Voice and Speech; 2000.
  • Kreiman J, Gerrat BR, Kempster GB, et al. Perceptual evaluation of voice quality: review, tutorial, and a framework for future research. J Speech Hear Res. 1993;36(1):21–40. doi:10.1044/jshr.3601.21.
  • Chan KM, Yiu EM. The effect of anchors and training on the reliability of perceptual voice evaluation. J Speech Lang Hear Res. 2002;45(1):111–126. doi:10.1044/1092-4388(2002/009).
  • Peirce JW, Gray JR, Simpson S, et al. PsychoPy2: experiments in behavior made easy. Behav Res Methods. 2019;51(1):195–203. doi:10.3758/s13428-018-01193-y.
  • R Core Team. R: a language and environment for statistical computing. Vienna (Austria): Foundation for Statistical Computing; 2022.
  • Kuhn M, Jackson S, Cimentada J. corrr: Correlations in R (R package version 0.4.4). 2022. https://CRAN.R-project.org/package=corrr.
  • Sundberg J. Formant structure and articulation of spoken and sung vowels. Folia Phoniatr (Basel). 1970;22(1):28–48. doi:10.1159/000263365.
  • Svancara P, Horácek J, Vokrál J, et al. Computational modelling of effect of tonsillectomy on voice production. Logoped Phoniatr Vocol. 2006;31(3):117–125. doi:10.1080/14015430500342277.
  • Laukkanen AM, Horácek J, Švancara P, et al. Effects of FE modelled consequences of tonsillectomy on perceptual evaluation of voice. Proceedings of Interspeech 2007; 2007 Aug 17–22; Antwerp, Belgium. doi:10.21437/Interspeech.2007-382.
  • Fant G. Acoustic theory of speech production. The Hague: Mouton; 1960.
  • Kent RD. Vocal tract acoustics. J Voice. 1993;7(2):97–117. doi:10.1016/s0892-1997(05)80339-x.
  • Lindblom B, Sundberg J. Acoustical consequences of lip, tongue, jaw, and larynx movement. J Acoust Soc Am. 1971;50(4):1166–1179. doi:10.1121/1.1912750.
  • Sundberg J, Nordström PE. Raised and lowered larynx: the effect on vowel formant frequencies. STL-QPSR. 1976;17(2-3):035–039.
  • Nordenberg M, Sundberg J. Effect on LTAS of vocal loudness variation. Logoped Phoniatr Vocol. 2004;29(4):183–191. doi:10.1080/14015430410004689.
  • Titze IR. A short tutorial on sound level and loudness for voice. JOS. 2013;70(2):191–192.
  • Oxenham AJ. How we hear: the perception and neural coding of sound. Annu Rev Psychol. 2018;69(1):27–50. doi:10.1146/annurev-psych-122216-011635.
  • Menezes PL, Cabral A, Morais LS, et al. Ressonância: um estudo da orelha externa. Pro Fono. 2004;11(3):333–340.
  • Couto CM, Carvallo RMM. The effect external and Middle ears have in otoacoustic emissions. Braz J Otorhinolaryngol. 2009;75(1):15–23. doi:10.1016/s1808-8694(15)30826-0.
  • Silva APR, Blasca WQ, Lauris JRP, et al. Correlation between the characteristics of resonance and aging of the external ear. Codas. 2014;26(2):112–116. doi:10.1590/2317-1782/2014211in.
  • Master S, De Biase N, Chiari BM, et al. Acoustic and perceptual analysis of Brazilian male actors’ and nonactors’ voices: long-term average spectrum and the “actor’s formant”. J Voice. 2008;22(2):146–154. doi:10.1016/j.jvoice.2006.09.006.
  • Chung H, Kong EJ, Edwards J, et al. Cross-linguistic studies of children’s and adults’ vowel spaces. J Acoust Soc Am. 2012;131(1):442–454. doi:10.1121/1.3651823.
  • Titze IR, Palaparthi A. Vocal loudness variation with spectral slope. J Speech Lang Hear Res. 2020;63(1):74–82. doi:10.1044/2019_JSLHR-19-00018.
  • Titze IR. The effect of single harmonic tuning on vocal loudness. J Voice. 2021;35(6):832–837. doi:10.1016/j.jvoice.2020.02.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.