412
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Importance of gold nanoparticles for detection of toxic heavy metal ions and vital role in biomedical applications

, &

References

  • Wang X, Hanson JC, Liu G, et al. The behavior of mixed-metal oxides: physical and chemical properties of bulk Ce1-xTbxO2 and nanoparticles of Ce1-xTbxOy. J Chem Phys. 2004;121(11):5434–5444.
  • Street SC, Xu C, Goodman DW. The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem. 1997;4:43–68.
  • Schmid G, Simon U. Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun. 2005;6:697–710.
  • Hao E, Schatz GC, Hupp JT. Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc. 2004;14(4):331–341.
  • Hao E, Bailey RC, Schatz GC, et al. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 2004;4(2):327–330.
  • Freitag M. Nanoelectronics goes flat out. Nat Nanotech. 2008;3:455–457.
  • Avouris P, Chen J. Nanotube electronics and optoelectronics. Mater Today. 2006;9(10):46–54.
  • Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D: Appl Phys. 2007;40:7173.
  • Souza GR, Christianson DR, Staquicini FI, et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci. 2006;103(5):1215–1220.
  • Yonzonm CR, Stuart DA, Zhang X, et al. Towards advanced chemical and biological nanosensors-an overview. Talanta. 2005;67(3):438–448.
  • Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protocol. 2006;1(1):246–252.
  • Lorraine M, Solomon SD, Bahadory M, et al. Synthesis and study of silver nanoparticles. J Chem Educ. 2007;84(2):322–325.
  • Park BK, Jeong S, Kim D, et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci. 2007;311:417–424.
  • Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103:4212–4217.
  • Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small. 2008;4(3):310–325.
  • Willets KA, Duyne RPV. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–297.
  • Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003;3(4):485–491.
  • Dhumale VA, Shah PV, Tanabe K, et al. Effects of particle size and surrounding media on optical radiation efficiencies of spherical plasmonic metal nanoparticles. Bull Mater Sci. 2012;35(2):143–149.
  • Sperling RA, Gil PR, Zhang F, et al. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37:1896–1908.
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Del Rev. 2008;60:1289–1306.
  • Freestone I, Meeks N, Sax M, et al. The Lycurgus Cup-A Roman nanotechnology. Gold Bull. 2007;40(4):270–277.
  • Liz-Marzn LM. Nanometals: formation and color. Mater Today. 2004;7(2):26–31.
  • Thompson D. Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull. 2007;40(4):267–269.
  • Mie G. Ann Phy. 1908;330:377–445.
  • Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater. 2002;14(1):80–82.
  • Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods:  role of the size and nature of the seed. Chem Mater. 2004;16:3633–3640.
  • Turkevich J. Colloidal gold. Part I. Gold Bull. 1985;18(3):86–91.
  • Jiang XC, Brioude A, Pileni MP. Gold nanorods: limitations on their synthesis and optical properties. Colloids Surf A. 2006;277:201–206.
  • Jana NR, Gearheart L, Murphy CJ. Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389–1393.
  • Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;98:2176–2179.
  • Dhumale VA, Gangwar RK, Shah PV, et al. Synthesis of cube-shaped gold nanostructures by electron irradiation. Mater Lett. 2011;65:1605–1607.
  • Young KL, Jones MR, Zhang J, et al. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc Natl Acad Sci. 2012;109(7):2240–2245.
  • Dhumale VA, Shah PV, Bhoraskar VN, et al. Fragmentation of gold flowers into nanopetals by high energy electron irradiation. App Surf Sci. 2010;257:723–726.
  • Dhumale VA, Shah PV, Mulla IS, et al. “Switching of hydrophilic to ultra-hydrophilic properties of flower-like gold nanostructures. App Surf Sci. 2010;256:4192–4195.
  • Cuncheng L, Kevin LS, Minghai C, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano. 2008;2(9):1760–1769.
  • Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–1081.
  • Kainth S, Basu S. Quantitative detection of thiopurines by inter-particle distance-dependent properties of gold nanoparticles. Plasmonics. 2018;13:1785–1793.
  • Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111:3828–3857.
  • Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles. Optics Comm. 2003;220:137–141.
  • Grisel R, Weststrate KJ, Gluhoi A, et al. Catalysis by gold nanoparticles. Gold Bull. 2002;35(2):39–45.
  • Stephen A, Hashmi K, Hutchings GJ. Gold Catalysis. Angew Chem Int Ed. 2006;45:7896–7936.
  • Haruta M, Date M. Advances in the catalysis of Au nanoparticles. Appl Catal A. 2001;222:427–437.
  • Sau TK, Pal A, Pal T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B. 2001;105:9266–9272.
  • Jena BK, Raj CR. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir. 2007;723:4064–4070.
  • Greget R, Nealon GL, Vileno B, et al. Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem. 2012;13:3092–3097.
  • Meen TH, Ciou WC, Chao SM, et al. Structural and magnetic properties of different shape gold nanoparticles. ECS Trans. 2009;19(15):17–23.
  • Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–10654.
  • Shi X, Wang S, Sun H, et al. Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter. 2007;3:71–74.
  • Maji S, Cesur B, Zhang Z, et al. Poly(N-isopropyl acrylamide) coated nanoparticles as colourimetric temperature and salt sensors. Polym Chem. 2016;7:1705–1710.
  • Liu XY, Cheng F, Liu Y, et al. Thermoresponsive gold nanoparticles with adjustable lower critical solution temperature as colorimetric sensors for temperature, pH and salt concentration. J Mater Chem. 2010;20:278–284.
  • Dhumale VA, Gangwar RK, Datar SS, et al. Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of pH. Mater Express. 2012;2(4):311–318.
  • Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–182.
  • Mudgal V, Madaan N, Mudgal A, et al. Effect of toxic metals on human health the open. Nutra J. 2010;3:94–99.
  • Kim Y, Johnson RC, Hupp JT. Gold nanoparticle-based sensing of spectroscopically silent heavy metal ions. Nano Lett. 2001;1(4):165–167.
  • Aragay G, Pons J, Merkoc A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev. 2011;111:3433–3458.
  • Kalluri JR, Arbneshi T, Khan SA, et al. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew Chem Int Ed. 2009;48(51):9668–9671.
  • Zhou Y, Wang S, Zhang K, et al. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed. 2008;47(39):7454–7456.
  • Dhumale VA, Gangwar RK, Datar SS, et al. Gold nanoparticles based ultrasensitive colorimetric sensor for Cd2+ ions. Adv Sci Eng Med. 2013;5(5):409–413.
  • Liu CW, Hsieh YT, Huang CC, et al. Detection of mercury(II) based on Hg2+ DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun. 2008;2242–2244.
  • Zhi-qiang T, Jing-fu L, Rui L, et al. Visual and colorimetric detection of Hg2+ by cloud point extraction with functionalized gold nanoparticles as a probe. Chem Commun. 2009;45:7030–7032.
  • Liu X, Cheng X, Bing T, et al. Visual detection of Hg2+ with high selectivity using thymine modified gold nanoparticles. Anal Sci. 2010;26:1169–1172.
  • Kim YR, Mahajan RK, Kim JS, et al. Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. ACS App Mater Inter. 2010;2(1):292–295.
  • Yuan H, Ji W, Chu S, Masson J F and Peng W, et al. Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing. ACS Sens. 2019;4(3):704–710.
  • Wang H, Wang Y, Jin J, et al. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem. 80:9021–9028.
  • Liu D, Qu W, Chen W, et al. Highly Sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem. 2010;82(23):9606–9610.
  • Amanulla B, Perumal KN, Ramaraj SK. Chitosan functionalized gold nanoparticles assembled on sulphur doped graphitic carbon nitride as a new platform for colorimetric detection of trace Hg2<loc>+. Sens Actuators B. 2019;281:281–287.
  • Tian K, Siegel G, Tiwari A. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2, 6-pyridinedicarboxylic acid. Mater Sci Eng C. 2017;71:195–199.
  • He Y, Zhang X, Zhang S, et al. Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosen Bioelectron. 2011;26(11):4464–4470.
  • Alizadeh A, Khodaei MM, Karami C, et al. Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology. 2010;21:21315503.
  • Megarajan S, Kanth KR, Anbazhagan V. Highly selective rapid colorimetric sensing of Pb2+ ion in water samples and paint based on metal induced aggregation of N- decanoyltro methamine capped gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2020;239:118485.
  • Huanga KW, Yua CJ, Tseng WL. Sensitivity enhancement in the colorimetric detection of lead (II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosen Bioelectron. 2010;25:984–989.
  • Prabowo BA, Purwidyantri A, Liu KC. Surface plasmon resonance optical sensor: a review on light source technology. Biosensors (Basel). 2018;8:80.
  • Shao Y, Xu S, Zheng X, et al. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors. 2010;10:3585–3596.
  • Zhang Q, Xue C, Yuan Y, et al. Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors. Sensors. 2012;12:2729–2741.
  • Lu M, Zhu H, Geraldine Bazuin C, et al. Polymer-templated gold nanoparticles on optical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors. ACS Sens. 2019;4(3):613–622.
  • Vales G, Suhonen S, Siivola K M, Savolainen K M, Catalán J and Norppa H, Genotoxicity and Cytotoxicity of Gold Nanoparticles In Vitro: Role of Surface Functionalization and Particle Size. Nanomaterials. 2020;10:271.
  • Brust M, Gordillo GJ. Electrocatalytic hydrogen redox chemistry on gold nanoparticles. J Am Chem Soc. 2012;34:3318–3321.
  • Alivisatos P. The use of nanocrystals in biological detection. Nat Biotech. 2004;22:47–52.
  • Kong FY, Zhang JW, Li RF, Wang W J, Wang W, et al. unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1445.
  • Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotech Adv. 2013;31:593–606.
  • Daraee H, Eatemadi A, Abbasi E, et al. Application of gold nanoparticles in biomedical and drug delivery. Artificial cells. Nanomed Biotech. 2016;44:410–422.
  • Liao H, Nehl CL, Hafner JH. Biomedical applications of plasmon resonant metal nanoparticles. Nanomed. 2006;1:201–208.
  • Dykmana L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–2282.
  • Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62:339–345.
  • Vines JB, Yoon JH, Ryu NE, et al. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167.
  • Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett. 1987;16:405–408.
  • Haruta M. Size- and support-dependency in the catalysis of gold. CatalToday. 1997;36:153–166.
  • Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: beyond tox icity to cellular imaging. Acc Chem Res. 2008;41:1721–1730.
  • Jahangirian H, Kalantari K, Izadiyan Z, et al. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine. 2019;14:1633–1657.
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120.
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-Functionalized Gold Nanoparticles. J Am Chem Soc. 2007;129:11653–11661.
  • Dickersona EB, Dreadenb EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269:57–66.
  • Agasti SS, Chompoosor A, You CC, et al. Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc. 2009;131:5728–5729.
  • Patra CR, Bhattacharya R, Mukhopadhyay D, et al. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 2010;62:346–361.
  • Dreaden EC, Mackey MA, Huang X, et al. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–3404.
  • Manju S, Sreenivasan K. Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci. 2012;368:144–151.
  • Gangwar RK, Dhumale VA, Kumari D, et al. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mat Sci Engg C. 2012;32:2659–2663.
  • Karmani L, Labar D, Valembois V, et al. Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging. 2013;8:402–408.
  • Zhang A, Ye F, Lu J, et al. Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilized enzyme onto polymer monolith modified by gold nanoparticles. Food Chem. 2013;141:1854–1859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.