282
Views
0
CrossRef citations to date
0
Altmetric
Articles

A review of electro-hydraulic servovalve research and development

ORCID Icon, , &
Received 11 Apr 2018, Accepted 08 Oct 2018, Published online: 30 Oct 2018

References

  • Amirante, R., Andrea Catalano, L., and Tamburrano, P., 2014a. The importance of a full 3D fluid dynamic analysis to evaluate the flow forces in a hydraulic directional proportional valve. Engineering Computations, 31 (5), 898–922. doi:10.1108/EC-09-2012-0221
  • Amirante, R., et al., 2014b. Fluid-dynamic design optimization of hydraulic proportional directional valves. Engineering Optimization, 46 (10), 1295–1314. doi:10.1080/0305215X.2013.836638
  • Amirante, R., Distaso, E., and Tamburrano, P., 2014c. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87, 208–219. doi:10.1016/j.enconman.2014.07.031
  • Amirante, R., Distaso, E., and Tamburrano, P., 2016. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 119 (July), 399–410. doi:10.1016/j.enconman.2016.04.068
  • Anderson, R.T. and Li, P.Y., 2002. Mathematical modeling of a two spool flow control servovalve using a pressure control pilot. Journal of Dynamic Systems, Measurement, and Control, 124 (3), 420. doi:10.1115/1.1485287
  • Atchley, R.D., 1959. U.S. patent 2884907 R.D. Atchley. Filed August 1957 – issued May 1959.
  • Aung, N.Z. and Li, S., 2014. A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape. Energy Conversion and Management, 77, 31–39. doi:10.1016/j.enconman.2013.09.009
  • Aung, N.Z., et al., 2014. CFD analysis of flow forces and energy loss characteristics in a flapper-nozzle pilot valve with different null clearances. Energy Conversion and Management, 83, 284–295. doi:10.1016/j.enconman.2014.03.076
  • Bang, Y.B., et al. (2003). Development of a two-stage high speed electrohydraulic servovalve systems using stack-type piezoelectric elements. In IEEE/ASME international conference on advanced intelligent mechatronics, AIM (Vol.1, pp. 131–136). Kobe, Japan: IEEE. doi:10.1109/AIM.2003.1225084
  • Bertin, M. (2017). Piezoelectric actuation of an aero engine fuel metering valve. PhD Thesis. Department of Mechanical Engineering Centre for Power Transmission and Motion Control, University of Bath.
  • Bertin, M.J.F., et al. (2014). An investigation of piezoelectric ring benders and their potential for actuating servo valves. In Proceedings of the bath/asme symposium on fluid power and motion control. doi:10.1115/FPMC2014-7852
  • Blackburn, J.F., Reethof, G., and Shearer, J.L., 1960. Fluid power control. New York: The Mit press and Wiley.
  • Boyar, R.E., Johnson, B.A., and Schmid, L. (1955). Hydraulic servo control valves. WADC Technical report 55-29, Wright-Patterson Air Force Base, Ohio, 23–35.
  • Branson, D.T., et al., 2011. Piezoelectrically actuated hydraulic valve design for high bandwidth and flow performance. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 225 (3), 345–359. doi:10.1177/09596518JSCE1037
  • Brito, A.G., Filho, W.C.L., and Hemerly, E.M. (2013). Identification of a Hammerstein model for an aerospace electrohydraulic servovalve. In IFAC Proceedings volumes (IFAC-PapersOnline) (Vol.46(19), pp. 459–463). Germany. doi:10.3182/20130902-5-DE-2040.00119
  • Carson, T.H., 1960. U.S. patent 2934765. Filed Sept. 1955 – issued April 1960.
  • Cedrat,, 2017. Available from: http://www.cedrat-technologies.com/en/products/actuators/apa.html [Accessed September 2017].
  • Cheng, G.M., et al., 2005. Double-nozzle piezoelectric servovalve. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 13 (3), 276–282.
  • Claeyssen, F., Lhermet, N., and Maillard, T. 2003. Magnetostrictive actuators compared to piezoelectric actuators. In Proceedings of SPIE – The International Society for Optical Engineering.
  • Di Rito, G. and Galatolo, R., 2008. Experimental and theoretical study of the electrical failures in a fault-tolerant direct-drive servovalve for primary flight actuators. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 222 (8), 757–769. doi:10.1243/09596518JSCE588
  • El-Araby, M., El-Kafrawy, A., and Fahmy, A., 2011. Dynamic performance of a nonlinear non-dimensional two stage electrohydraulic servovalve model. International Journal of Mechanics and Materials in Design, 7 (2), 99–110. doi:10.1007/s10999-011-9150-x
  • Fang, X., et al., 2013. Physics-of-failure models of erosion wear in electrohydraulic servovalve, and erosion wear life prediction method. Mechatronics, 23 (8), 1202–1214. doi:10.1016/j.mechatronics.2013.09.006
  • Fink, A. and Singh, T., 1998. Discrete sliding mode controller for pressure control with an electrohydraulic servovalve. Proceedings of the 1998 IEEE International Conference on Control Applications, 1 (September), 378–382.
  • Ghasemi, E., Jazayeri, S.A., and Moosavian, S.A.A. (2008). Model improvement for a servovalve with force feedback and back pressure. In 2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008 (pp. 895–900).China: IEEE. doi:10.1109/RAMECH.2008.4681461
  • Gordić, D., Babić, M., and Jovičić, N., 2004. Modelling of spool position feedback servovalves. International Journal of Fluid Power, 5 (1), 37–51. doi:10.1080/14399776.2004.10781182
  • Gordić, D., et al., 2008. Effects of the variation of torque motor parameters on servovalve performance. Strojniski Vestnik/Journal of Mechanical Engineering, 54 (12), 866–873.
  • Grunwald, A. and Olabi, A.G., 2008. Design of a magnetostrictive (MS) actuator. Sensors and Actuators, A: Physical, 144 (1), 161–175. doi:10.1016/j.sna.2007.12.034
  • Hiremath, S., 2013. Modeling and simulation of fluid structure interaction in jet pipe electrohydraulic servovalve. International Journal of Recent Advances in Mechanical Engineering (IJMECH), 2 (4), 1–14.
  • Hiremath, S.S. and Singaperumal, M. 2010. Fluid structure interaction in electrohydraulic servovalve: a finite element approach. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 7500).
  • Hunt, T. and Vaughan, N., 1996. The hydraulic handbook. 9th edition.Oxford, UK: Elsevier.
  • Istanto, I., Kim, H.H., and Lee, I.Y., 2017. Effects of major design parameters on three-stage electro-hydraulic servovalve performance. Lecture Notes in Electrical Engineering, 415 (LNEE), 459–468. doi:10.1007/978-3-319-50904-4_49
  • Jacob, M., Zhang, M., and Li, S. (2011). A study of flow-field distribution between the flapper and nozzle in a hydraulic servo-valve. Proceedings of 2011 International Conference on Fluid Power and Mechatronics, FPM 2011, 658–662.China. doi:10.1109/FPM.2011.6045844
  • Jeon, J., et al., 2014. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool. Smart Materials and Structures, 23 (7), 075002. doi:10.1088/0964-1726/23/7/075002
  • Karunanidhi, S. and Singaperumal, M., 2010a. Mathematical modelling and experimental characterization of a high dynamic servo valve integrated with piezoelectric actuator. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 224 (4), 419–435. doi:10.1243/09596518JSCE899
  • Karunanidhi, S. and Singaperumal, M., 2010b. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sensors and Actuators, A: Physical, 157 (2), 185–197. doi:10.1016/j.sna.2009.11.014
  • Li, L., et al., 2018. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve. Mechanical Systems and Signal Processing, 99, 550–566. doi:10.1016/j.ymssp.2017.06.024
  • Li, P.Y., 2002. Dynamic redesign of a flow control servovalve using a pressure control pilot. Journal of Dynamic Systems, Measurement, and Control, 124 (3), 428. doi:10.1115/1.1485288
  • Li, S., et al., 2013. Experimental and numerical investigation of cavitation phenomenon in flapper-nozzle pilot stage of an electrohydraulic servo-valve. Computers and Fluids, 88, 590–598. doi:10.1016/j.compfluid.2013.10.016
  • Li, Y., 2016. Mathematical modelling and characteristics of the pilot valve applied to a jet-pipe/deflector-jet servovalve. Sensors and Actuators, A: Physical, 245, 150–159. doi:10.1016/j.sna.2016.04.048
  • Lin, S.J. and Akers, A., 1989. A dynamic model of the flapper-nozzle component of an electrohydraulic servovalve. Journal of Dynamic Systems, Measurement, and Control, 111 (1), 105. doi:10.1115/1.3153006
  • Lindler, J.E. and Anderson, E.H. (2002). Piezoelectric direct drive servovalve. In SPIE’s 9th annual international symposium on smart structures and materials, 2002, San Diego, California, United States. doi:10.1044/1059-0889(2002/er01)
  • Liu, X., et al. (2009). Modeling and key technologies study of three-stage electro-hydraulic servo valve. In Proceedings - 2009 international asia conference on informatics in control, automation, and robotics, CAR 2009 (pp. 317–320). Thailand: IEEE. doi:10.1109/CAR.2009.78
  • Maré, J.-C. and Attar, B. (2008). Realistic modelling of electrohydraulic servovalves. In 6th International fluid power conference – IFK 2008.
  • Maskrey, R.H. and Thayer, W.J., 1978. A brief history of electrohydraulic servomechanisms. Journal of Dynamic Systems, Measurement, and Control, 100 (2), 110. doi:10.1115/1.3426352
  • Mcnea, M. and Duan, S.S. (2013). The effects of orifice sizes on a hydraulic servo valve control system. In ASME 2013 international mechanical engineering congress and exposition.
  • Merritt, H., 1967. Hydraulic control system. New York: John Wiley & Sons.
  • Milecki, A., 2006. Modelling and investigations of electrohydraulic servo valve with piezo element. Maszyn i Automatyzacji,Archiwum Technologii, 26 (2), 177–184.
  • Mondal, N. and Datta, B., 2017. Effect of damping length on dynamic performance of two-stage two-spool electrohydraulic servovalve. Lecture Notes in Mechanical Engineering, Part, F8, 1213–1222. doi:10.1007/978-81-322-2743-4_115
  • Mondal, N. and Datta, B.N., 2013. A study on electro hydraulic servovalve controlled by a two spool valve. International Journal of Emerging Technology and Advanced Engineering An ISO Certified Int. Journal, 3 (9001), 479–484. Available from: www.ijetae.com
  • Moog, 1953. U.S. Patent 2625136 W.C. Moog filed April 1950-issued January 1953.
  • Moog, 1965. U.S. Patent 2767689 W.C. Moog filed May 1953-issued October 1965.
  • Moog, 2017. Available from: http://www.moog.com/products/servovalves-servo-proportional-valves.html [Accessed September 2017].
  • Noliac, 2017. Available from: http://www.noliac.com/products/actuators/plate-stacks/ [Accessed September 2017].
  • Pan, X., Wang, G., and Lu, Z., 2011. Flow field simulation and a flow model of servo-valve spool valve orifice. Energy Conversion and Management, 52 (10), 3249–3256. doi:10.1016/j.enconman.2011.05.010
  • Parr, A., 2011. Hydraulics and pneumatics (Third edition) a technician’s and engineer’s guide. (Elsevier, Ed.). Kidlington, Oxford OX5 1GB, UK: Butterworth-Heinemann, The Boulevard, Langford Lane.
  • Persson, J., et al. 2017. Non-linear control of a piezoelectric two stage servovalve. The 15th Scandinavian international conference on fluid power, SICFP’17, June 7- 9,2017, Linköping, Sweden.
  • Persson, J., et al. 2015. Design and modelling of a novel servovalve actuated by a piezoelectric ring bender. In ASME/BATH 2015 Symposium on fluid power and motion control (p. V001T01A043). doi:10.1115/FPMC2015-9576
  • Persson, J., et al. 2016. Dynamic modelling and performance of a two stage piezoelectric servovalve. In 9th FPNI Ph. D. symposium on fluid power. American Society of Mechanic.
  • Plummer, A. 2016. Electrohydraulic servovalves – past, present, and future. 10th international fluid power conference (IFK2016), 405–424.
  • Rashidy, H., et al., 2003. A hierarchical neuro-fuzzy system for identification of simultaneous faults in hydraulic servovalves. Proceedings of the 2003 American Control Conference, 2003, 5, 4269–4274. doi:10.1109/ACC.2003.1240507
  • Reichert, M., 2006. High response hydraulic servovalve with piezo-actuators in the pilot stage. Olhydraulik and Pneumatik, 12, 1–17.
  • Samakwong, T. and Assawinchaichote, W., 2016. PID controller design for electro-hydraulic servo valve system with genetic algorithm. Procedia Computer Science, 86, 91–94. doi:10.1016/j.procs.2016.05.023
  • Sangiah, D.K., et al. 2011. Modelling and experimental validation of a novel piezohydraulic servovalve. In ASME 2011 dynamic systems and control conference and Bath/ASME symposium on fluid power and motion control (Vol.2, pp. 343–350). doi:10.1115/DSCC2011-5940
  • Sangiah, D.K., et al., 2013. A novel piezohydraulic aerospace servovalve. Part 1: design and modelling. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 227 (4), 371–389. doi:10.1177/0959651813478288
  • Sedziak, D. 2010. Investigations of electrohydraulic servo valves with piezo bender as control element. In 7th international fluid power conference (pp. 1–12).
  • Sell, N.P., et al. 2013. Control of a fast switching valve for digital hydraulics. The 13th Scandinavian international conference on fluid power, 497–503. Linköping: Linköping University Electronic Press.
  • Stefanski, F., et al., 2017. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–ishlinskii hysteresis model. Mechanical Systems and Signal Processing, 82, 412–431. doi:10.1016/j.ymssp.2016.05.032
  • Tamburrano, P., et al., 2019. A review of direct drive proportional electrohydraulic spool valves: industrial state-of-the-art and research advancements. Journal of Dynamic Systems, Measurement, and Control, 141(2), 020801. doi:10.1115/1.4041063
  • Tamburrano, P., Amirante, R., Distaso, E., and Plummer, A.R. 2018a. A Novel Piezoelectric Double-Flapper Servovalve Pilot Stage: Operating Principle and Performance Prediction. In Bath/ASME Symposium on Fluid Power and Motion Control FPMC. 2018, 12 – 14 September 2018, University of Bath, Bath (UK).
  • Tamburrano, P., Amirante, R., Distaso, E., & Plummer, A. 2018b. Full simulation of a piezoelectric double nozzle flapper pilot valve coupled with a main stage spool valve. Energy Procedia 148C (2018) pp. 487–494
  • Thorlabs, 2017. Available from: https://www.thorlabs.com/thorproduct.cfm?partnumber=PB4NB2W [Accessed September 2017].
  • Tinsley, 1949. English patent 620688. Applied May 1946-accepted March 1949.
  • Urata, P.E., Suzuki, K., and Mori, T. (2008). The stiffness of armature support in servovalve torque-motors. In 6th international fluid power conference – IFK 2008 (pp. 113–126).
  • Wolpin, M.P., 1965. U.S. patent 3209782 M.P. Wolpin. Filed May 1955 - issued October 1965.
  • Yang, Z., et al., 2014. Hydraulic amplifier design and its application to direct drive valve based on magnetostrictive actuator. Sensors and Actuators, A: Physical, 216, 52–63. doi:10.1016/j.sna.2014.05.005
  • Yang, Q., Aung, N.Z., and Li, S., 2015a. Confirmation on the effectiveness of rectangle-shaped flapper in reducing cavitation in flapper-nozzle pilot valve. Energy Conversion and Management, 98, 184–198. doi:10.1016/j.enconman.2015.03.096
  • Yang, Z., et al., 2015b. Direct drive servo valve based on magnetostrictive actuator: multi-coupled modeling and its compound control strategy. Sensors and Actuators, A: Physical, 235, 119–130. doi:10.1016/j.sna.2015.09.032
  • Ye, J., et al., 2010. Experimental study of effects of air content on cavitation and pressure fluctuations. Journal of Hydrodynamics, Ser. B, 22 (5), 634–638. doi:10.1016/S1001-6058(09)60097-4
  • Yu, J., Zhuang, J., and Yu, D., 2014. Modeling and analysis of a rotary direct drive servovalve. Chinese Journal of Mechanical Engineering, 27 (5), 1064–1074. doi:10.3901/CJME.2014.0725.127
  • Zhang, K., Yao, J., and Jiang, T., 2014. Degradation assessment and life prediction of electro-hydraulic servo valve under erosion wear. Engineering Failure Analysis, 36, 284–300. doi:10.1016/j.engfailanal.2013.10.017
  • Zhang, S. and Li, S., 2015. Cavity shedding dynamics in a flapper-nozzle pilot stage of an electro-hydraulic servo-valve: experiments and numerical study. Energy Conversion and Management, 100, 370–379. doi:10.1016/j.enconman.2015.04.047
  • Zhu, L., et al. (2010). Development of hydroelectric servo-valve based on piezoelectric elements. In 2010 Int. conf. mech. autom. control eng. MACE2010 (pp. 3330–3333).
  • Zhu, Y. and Li, Y., 2014. Development of a deflector-jet electrohydraulic servovalve using a giant magnetostrictive material. Smart Materials and Structures, 23, 11. doi:10.1088/0964-1726/23/11/115001
  • Zhu, Y., Yang, X., and Wang, X., 2015. Development of a four-nozzle flapper servovalve driven by a giant magnetostrictive actuator. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 229 (4), 293–307. doi:10.1177/0959651814565829

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.