70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Bayesian framework for 3D point cloud filtering

ORCID Icon
Received 25 Apr 2023, Accepted 27 Mar 2024, Published online: 12 Apr 2024

References

  • Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33/4, 110–117.
  • Bao, Y., et al., 2007. Segmentation to the point clouds of LIDAR data based on change of Kurtosis. International Symposium Photoelectron, Detection Imaging 2007 Image Process, 6623, 66231N. doi:10.1117/12.791521
  • Bartels, M. and Wei, H., 2010. Threshold-free object and ground point separation in LIDAR data. Pattern Recognition Letters, 31 (10), 1089–1099. doi:10.1016/j.patrec.2010.03.007.
  • Bartels, M., Wei, H., and Mason, D.C., 2006. DTM generation from LIDAR data using skewness balancing. In: 18th International Conference on Pattern Recognition (ICPR’06). IEEE, 566–569. doi:10.1109/ICPR.2006.463.
  • Bayram, E., et al., 2018. Analysis of airborne LiDAR point clouds with spectral graph filtering. Geoscience and Remote Sensing Letters, IEEE, 15 (8), 1284–1288. doi:10.1109/LGRS.2018.2834626.
  • Becker, C., et al., 2018. Classification of aerial photogrammetric 3D point clouds. Photogrammetric Engineering, 84 (5), 287–295. doi:10.14358/PERS.84.5.287.
  • Bigdeli, B., Amini Amirkolaee, H., and Pahlavani, P., 2018. DTM generation from the point cloud using a progressive geodesic morphology and a modified Particle Swarm Optimization. International Journal of Remote Sensing, 39 (23), 8450–8481. doi:10.1080/01431161.2018.1488285.
  • Bretar, F. and Chehata, N., 2010. Terrain modeling from lidar range data in natural landscapes: a predictive and Bayesian framework. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 48 (3), 1568–1578. doi:10.1109/TGRS.2009.2032653.
  • Brooks, S., et al., 2014. Bayesian data analysis. The Statistician. doi:10.2307/2988417.
  • Brunn, A. and Weidner, U., 1998. Hierarchical Bayesian nets for building extraction using dense digital surface models. ISPRS Journal of Photogrammetry and Remote Sensing, 53 (5), 296–307. doi:10.1016/S0924-2716(98)00012-4.
  • Chang, Y., et al., 2008. Automatic classification of lidar data into ground and non-ground points. The International Archives of the Photogrammetry, Remote Sensing, 37, 463–468.
  • Chen, C., et al., 2013. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 1–9. doi:10.1016/j.isprsjprs.2013.05.001
  • Chen, C., et al., 2014. Smooth surface modeling of DEMs based on a regularized least squares method of thin plate spline. Mathematical Geosciences, 46 (8), 909–929. doi:10.1007/s11004-013-9519-5.
  • Chen, C., et al., 2016a. An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds. International Journal of Remote Sensing, 37 (4), 950–968. doi:10.1080/01431161.2016.1142687.
  • Chen, C., et al., 2016b. A robust interpolation method for constructing digital elevation models from remote sensing data. Geomorphology, 268, 275–287. doi:10.1016/j.geomorph.2016.06.025
  • Chen, C., et al., 2020. Multi-level interpolation-based filter for airborne LiDAR point clouds in forested areas. Institute of Electrical and Electronics Engineers Access, 8, 41000–41012. doi:10.1109/ACCESS.2020.2976848
  • Chen, C., et al., 2021. Filtering airborne LiDAR point clouds based on a scale-irrelevant and terrain-adaptive approach. Journal of the International Measurement Confederation, 171, 108756. doi:10.1016/j.measurement.2020.108756
  • Chen, Q., et al., 2007. Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering, 73 (2), 175–185. doi:10.14358/PERS.73.2.175.
  • Cheng, P., et al., 2019. An improved skewness balancing filtering algorithm based on thin plate spline interpolation. Applied Sciences, 9 (1), 203–215. doi:10.3390/app9010203.
  • Chen, Z., Gao, B., and Devereux, B., 2017. State-of-the-art: DTM generation using airborne LIDAR data. Sensors (Switzerland), 17 (12), 150. doi:10.3390/s17010150.
  • Chen, C. and Li, Y., 2019. A fast global interpolation method for digital terrain model generation from large LiDAR-derived data. Remote Sensing, 11 (11), 1324. doi:10.3390/rs11111324.
  • Crosilla, F., et al., 2013. LiDAR data filtering and classification by skewness and kurtosis iterative analysis of multiple point cloud data categories. Applied Geomatics, 5 (3), 225–240. doi:10.1007/s12518-013-0113-9.
  • Donovan, T. and Mickey, R.M., 2019. Bayesian statistics for beginners. Oxford University PressOxford. doi:10.1093/oso/9780198841296.001.0001.
  • Duran, Z., Ozcan, K., and Atik, M.E., 2021. Classification of photogrammetric and airborne LiDAR point clouds using machine learning algorithms. Drones, 5 (4), 104. doi:10.3390/drones5040104.
  • Elmqvist, M., 2000. Automatic ground modeling using laser radar data. Master’s thesis (LiTH-ISY-EX-3061). Linkoping University.
  • FDA, 2010. Guidance for the use of Bayesian statistics in medical device clinical trials.
  • Guo, L., et al., 2021. Extraction of dense urban buildings from photogrammetric and LiDAR point clouds. Institute of Electrical and Electronics Engineers Access, 9, 111823–111832. doi:10.1109/ACCESS.2021.3102632
  • Held, L. and Bove, D., 2014. Applied statistical inference: likelihood and bayes. Heidelberg New York Dordrecht London: Springer.
  • He, Y., Zhang, C., and Fraser, C.S., 2018. Progressive filtering of airborne LiDAR point clouds using graph cuts. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (8), 2933–2944. doi:10.1109/JSTARS.2018.2839738.
  • Hu, H., et al., 2014. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 98–111. doi:10.1016/j.isprsjprs.2014.02.014
  • Hu, Q., et al., 2021. Towards semantic segmentation of urban-scale 3D point clouds: a dataset, benchmarks and challenges. Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision & Pattern Recognition, IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 4975–4985. doi:10.1109/CVPR46437.2021.00494.
  • Hui, Z., et al., 2016. An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level kriging interpolation. Remote Sensing, 8 (1), 12–16. doi:10.3390/rs8010035.
  • Hui, Z., et al., 2019a. An active learning method for DEM extraction from airborne LiDAR point clouds. Institute of Electrical and Electronics Engineers Access, 7, 89366–89378. doi:10.1109/ACCESS.2019.2926497
  • Hui, Z., et al., 2019b. Automatic DTM extraction from airborne LiDAR based on expectation-maximization. Optics and Laser Technology, 112, 43–55. doi:10.1016/j.optlastec.2018.10.051
  • Hu, X. and Yuan, Y., 2016. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sensing, 8 (9), 730. doi:10.3390/rs8090730.
  • Isenburg, M., 2019. Lastools [WWW document]. Rapidlasso GmbH. http://lastools.org [Accessed 31 Jan 2022].
  • Jahromi, A.B., et al., 2011. A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4 (4), 836–843. doi:10.1109/JSTARS.2011.2132793.
  • Klápště, P., et al., 2020. Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds. International Journal of Digital Earth, 13 (12), 1672–1694. doi:10.1080/17538947.2020.1791267.
  • Kovanič, Ľ., et al., 2023. Review of photogrammetric and lidar applications of UAV. Applied Sciences, 13 (11), 6732. doi:10.3390/app13116732.
  • Kraus, K. and Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53 (4), 193–203. doi:10.1016/S0924-2716(98)00009-4.
  • Kruschke, J.K., 2010. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier: Academic Press.
  • Lahivaara, T., et al., 2014. Bayesian approach to tree detection based on airborne laser scanning data. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 52 (5), 2690–2699. doi:10.1109/TGRS.2013.2264548.
  • Lehtola, V.V., et al., 2022. Digital twin of a city: Review of technology serving city needs. International Journal of Applied Earth Observation and Geoinformation, 114, 102915. doi:10.1016/j.jag.2022.102915
  • Li, Y., et al., 2017. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology. Remote Sensing, 9 (11), 1104. doi:10.3390/rs9111104.
  • Lin, X. and Zhang, J., 2014. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments. Remote Sensing, 6 (2), 1294–1326. doi:10.3390/rs6021294.
  • Lu, W.L., et al., 2009. A hybrid conditional random field for estimating the underlying ground surface from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 47 (8), 2913–2922. doi:10.1109/TGRS.2009.2017738.
  • Maguya, A.S., Junttila, V., and Kauranne, T., 2013. Adaptive algorithm for large scale dtm interpolation from lidar data for forestry applications in steep forested terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 74–83. doi:10.1016/j.isprsjprs.2013.08.005
  • Maltezos, E., Kyrkou, A., and Ioannidis, C., 2016. LIDAR vs dense image matching point clouds in complex urban scenes. Fourth International Conference on Remote Sensing and Geo-Information of Environment, 9688, 96881. doi:10.1117/12.2240475
  • Meng, X., et al., 2009. A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (1), 117–124. doi:10.1016/j.isprsjprs.2008.09.001.
  • Meng, X., Wang, L., and Currit, N., 2009. Morphology-based building detection from airborne lidar data. Photogrammetric Engineering and Remote Sensing, 75 (4), 437–442. doi:10.14358/PERS.75.4.437.
  • Mongus, D., Lukač, N., and Žalik, B., 2014. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 145–156. doi:10.1016/j.isprsjprs.2013.12.002
  • Mongus, D. and Žalik, B., 2014. Computationally efficient method for the generation of a digital terrain model from airborne LiDAR. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (1), 340–351. doi:10.1109/JSTARS.2013.2262996.
  • Nie, S., et al., 2017. A revised progressive TIN densification for filtering airborne LiDAR data. Journal of the International Measurement Confederation, 104, 70–77. doi:10.1016/j.measurement.2017.03.007
  • O’Hagan, A., 2004. Bayesian statistics: principles and benefits. In: M.A.J.S. van Boekel, A. Stein and A.H.C. van Bruggen, eds. Bayesian statistics and quality modelling in the agro-food production chain. Dordrecht: Springer, 31–45.
  • Olivatto, T.F., Inguaggiato, F.F., and Stanganini, F.N., 2023. Urban mapping and impacts assessment in a Brazilian irregular settlement using UAV-based imaging. Remote Sensing Applications: Society and Environment, 29, 100911. doi:10.1016/j.rsase.2022.100911
  • Ozcan, A.H. and Unsalan, C., 2017. LiDAR data filtering and DTM generation using empirical mode decomposition. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (1), 360–371. doi:10.1109/JSTARS.2016.2543464.
  • Özcan, A.H., Ünsalan, C., and Reinartz, P., 2018. Ground filtering and DTM generation from DSM data using probabilistic voting and segmentation. International Journal of Remote Sensing, 39 (9), 2860–2883. doi:10.1080/01431161.2018.1434327.
  • Özdemir, E. and Remondino, F., 2019. Classification of aerial point clouds with deep learning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information - ISPRS Arch, 42, 103–110. doi:10.5194/isprs-archives-XLII-2-W13-103-2019
  • Pargieła, K., 2023. Optimising UAV data acquisition and processing for photogrammetry: a review. Geomatics and Environmental Engineering, 17 (3), 29–59. doi:10.7494/geom.2023.17.3.29.
  • Pingel, T.J., Clarke, K.C., and McBride, W.A., 2013. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 21–30. doi:10.1016/j.isprsjprs.2012.12.002
  • Rayburg, S., Thoms, M., and Neave, M., 2009. A comparison of digital elevation models generated from different data sources. Geomorphology, 106 (3–4), 261–270. doi:10.1016/j.geomorph.2008.11.007.
  • Rizaldy, A., et al., 2018. Ground and multi-class classification of airborne laser scanner point clouds using fully convolutional networks. Remote Sensing, 10 (11), 1723. doi:10.3390/rs10111723.
  • Sadeq, H.A.-J., 2021. Building extraction from lidar data using statistical methods. Photogrammetric Engineering and Remote Sensing, 87 (1), 33–42. doi:10.14358/PERS.87.1.33.
  • Sammartano, G. and Spanò, A., 2016. DEM generation based on UAV photogrammetry data in critical areas. GISTAM 2016 - Proceeding 2nd International Conference on Geographical Information Systems Theory, Applications and Management, 92–98. doi:10.5220/0005918400920098.
  • Shan, J. and Sampath, A., 2005. Urban DEM generation urban DEM generation from raw lidar data: a labeling algorithm and its performance urban DEM generation from raw lidar data: a labeling algorithm and its performance. Photogrammetric Engineering and Remote Sensing, 71 (2), 217–226. doi:10.14358/PERS.71.2.217.
  • Shi, X., et al., 2018. A parameter-free progressive TIN densification filtering algorithm for lidar point clouds. International Journal of Remote Sensing, 39 (20), 6969–6982. doi:10.1080/01431161.2018.1468109.
  • Shoemaker, J.S., Painter, I.S., and Weir, B.S., 1999. Bayesian statistics in genetics a guide for the uninitiated. Trends in Genetics, 15 (9), 354–358. doi:10.1016/S0168-9525(99)01751-5.
  • Sithole, G. 2001. Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34 (3/W4), 203–210.
  • Sithole, G. and Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59 (1–2), 85–101. doi:10.1016/j.isprsjprs.2004.05.004.
  • Sithole, G. and Vosselman, G., 2005. Filtering of airborne laser scanner data based on segmented point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 66–71.
  • Susaki, J., 2012. Adaptive slope filtering of airborne lidar data in urban areas for Digital Terrain Model (DTM) generation. Remote Sensing, 4 (6), 1804–1819. doi:10.3390/rs4061804.
  • Tóvári, D. and Pfeifer, N., 2005. Segmentation based robust interpolation - a new approach to laser data filtering. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information - ISPRS Arch, 36, 79–84.
  • Vosselman, G., 2000. Slope based filtering of laser altimetry data. The International Archives of the Photogrammetry, Remote Sensing, 33, Part B3/2 33, 678–684. doi:10.1016/S0924-2716(98)00009-4
  • Wang, O., Lodha, S.K., and Helmbold, D.P., 2007. A Bayesian approach to building footprint extraction from aerial LIDAR data. Proceedings - Third International Symposium on 3D Data Processing, Visualization, and Transmission 3DPVT, 2006, 192–199. doi:10.1109/3DPVT.2006.9
  • Wang, R., Peethambaran, J., and Chen, D., 2018. LiDAR point clouds to 3-D urban models: a review. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (2), 606–627. doi:10.1109/JSTARS.2017.2781132.
  • Yang, B., et al., 2016. Two-step adaptive extraction method for ground points and breaklines from lidar point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 373–389. doi:10.1016/j.isprsjprs.2016.07.002
  • Ye, L., et al., 2021. Gaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne lidar point clouds. Photogrammetric Engineering, 87 (9), 615–630. doi:10.14358/PERS.87.20-00080.
  • Yilmaz, V., et al., 2018. Image classification-based ground filtering of point clouds extracted from UAV-based aerial photos. Geocarto International, 33 (3), 310–320. doi:10.1080/10106049.2016.1250825.
  • Yunfei, B., Guopingb, L., and Chunxiang, C., 2008. Classification of LIDAR point cloud and generation of DTM from LIDAR height and intensity data in forested area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37/7, 313–318.
  • Zeybek, M. and Şanlıoğlu, İ., 2019. Point cloud filtering on UAV based point cloud. Measurement, 133, 99–111. doi:10.1016/j.measurement.2018.10.013
  • Zhang, K., et al., 2003. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 41 (4), 872–882. doi:10.1109/TGRS.2003.810682.
  • Zhang, W., et al., 2016. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sensing, 8 (6), 501–522. doi:10.3390/rs8060501.
  • Zhang, J. and Lin, X., 2013. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS Journal of Photogrammetry and Remote Sensing, 81, 44–59. doi:10.1016/j.isprsjprs.2013.04.001
  • Zhao, X., et al., 2016. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79–91. doi:10.1016/j.isprsjprs.2016.03.016
  • Zhao, Q., Li, Y., and He, X., 2014. Building extraction from LIDAR point cloud data using marked point process. The Journal of the Indian Society of Remote Sensing, 42 (3), 529–538. doi:10.1007/s12524-013-0358-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.