134
Views
3
CrossRef citations to date
0
Altmetric
Articles

The accumulation of ascorbic acid and lignin, and differential expression of ascorbic acid and lignin related-genes in yellow celery

, , , , , , , , , , & ORCID Icon show all
Pages 722-733 | Accepted 29 Apr 2020, Published online: 04 Jun 2020

References

  • Alok, A., Kaur, H., Bhati, K.K., Kumar, J., Pandey, P., Upadhyay, S.K., … Tiwari, S. (2015). Biochemical characterization and spatio-temporal expression of myo-inositol oxygenase (MIOX) from wheat (Triticum aestivum L.). Plant Gene, 4, 10–19. doi:10.1016/j.plgene.2015.09.004
  • Alós, E., Rodrigo, M.J., & Zacarías, L. (2013). Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of l-ascorbic acid in pepper fruits (Capsicum annuum L.). Plant Science, 207, 2–11. doi:10.1016/j.plantsci.2013.02.007
  • Alós, E., Rodrigo, M.J., & Zacarías, L. (2014). Differential transcriptional regulation of l-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta, 239(5), 1113–1128. doi:10.1007/s00425-014-2044-z
  • Badejo, A.A., Fujikawa, Y., & Esaka, M. (2009). Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). Journal of Plant Physiology, 166(6), 652–660. doi:10.1016/j.jplph.2008.09.004
  • Badejo, A.A., Tanaka, N., & Esaka, M. (2008). Analysis of GDP-d-mannose pyrophosphorylase gene promoter from Acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the Acerola gene. Plant and Cell Physiology, 49(1), 126–132. doi:10.1093/pcp/pcm164
  • Badejo, A.A., Wada, K., Gao, Y., Maruta, T., Sawa, Y., Shigeoka, S., & Ishikawa, T. (2012). Translocation and the alternative d-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the d-mannose/l-galactose pathway. Journal of Experimental Botany, 63(1), 229–239. doi:10.1093/jxb/err275
  • Bedon, F., Levasseur, C., Grima-Pettenati, J., Séguin, A., & MacKay, J. (2009). Sequence analysis and functional characterization of the promoter of the picea glauca cinnamyl alcohol dehydrogenase gene in transgenic white spruce plants. Plant Cell Reports, 28(5), 787–800. doi:10.1007/s00299-009-0688-0
  • Blee, K., Choi, J.W., O’Connell, A.P., Jupe, S.C., Schuch, W., Lewis, N.G., & Bolwell, G.P. (2001). Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry, 57(7), 1159–1166. doi:10.1016/S0031-9422(01)00150-9
  • Brenner, E.A., Salazar, A.M., Zabotina, O.A., & Lübberstedt, T. (2012). Characterization of European forage maize lines for stover composition and associations with polymorphisms within o-methyltransferase genes. Plant Science, 185–186, 281–287. doi:10.1016/j.plantsci.2011.11.016
  • Briggs, S.D., Xiao, T., Sun, Z.W., Caldwell, J.A., Shabanowitz, J., Hunt, D.F., … Strahl, B.D. (2002). Gene silencing: Trans-histone regulatory pathway in chromatin. Nature, 418(6897), 498. doi:10.1038/nature00970
  • Bulley, S., Wright, M., Rommens, C., Yan, H., Rassam, M., Lin-Wang, K., … Laing, W.A. (2012). Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnology Journal, 10(4), 390–397. doi:10.1111/j.1467-7652.2011.00668.x
  • Campbell, M.M., & Sederoff, R.R. (1996). Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiology, 110(1), 3–13. doi:10.1104/pp.110.1.3
  • Chen, Y., Li, F., Tian, L., Huang, M., Deng, R., Li, X., … Wu, G. (2017). The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in lotus japonicus-rhizobium symbioses. Molecular Plant-Microbe Interactions, 30(9), 739–753. doi:10.1094/MPMI-04-17-0080-R
  • Chen, Y.Y., Zhao, Z.H., Zhao, J., & Liu, M.J. (2016). Expression profiles of genes and enzymes related to ascorbic acid metabolism in fruits of Ziziphus jujuba Mill. ‘Jinsixiaozao’. Frontiers of Agricultural Science and Engineering, 3(2), 131–136. doi:10.15302/J-FASE-2016096
  • Coleman, H.D., Park, J.Y., Nair, R., Chapple, C., & Mansfield, S.D. (2008). RNAi-mediated suppression of p-coumaroyl-CoA 3’-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences, 105(11), 4501–4506. doi:10.1073/pnas.0706537105
  • Di Matteo, A., Sacco, A., Anacleria, M., Pezzotti, M., Delledonne, M., Ferrarini, A., … Barone, A. (2010). The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biology, 10(1), 163. doi:10.1186/1471-2229-10-163
  • Di Matteo, A., Sacco, A., De Stefano, R., Frusciante, L., & Barone, A. (2012). Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit. Biochemical Genetics, 50(11–12), 908–921. doi:10.1007/s10528-012-9531-3
  • Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., & Smirnoff, N. (2007). Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal, 52(4), 673–689. doi:10.1111/j.1365-313X.2007.03266.x
  • Elkind, Y., Edwards, R., Mavandad, M., Hedrick, S.A., Ribak, O., Dixon, R.A., & Lamb, C.J. (1990). Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene.. Proceedings of the National Academy of Sciences, 87(22), 9057–9061. doi:10.1073/pnas.87.22.9057
  • Ernesto, G.P., Elda, C.M., & Edmundo, L.G. (2004). Gene expression and enzyme activity of pepper (Capsicum annuum L.) ascorbate oxidase during elicitor and wounding stress. Plant Science, 166(1), 237–243. doi:10.1016/j.plantsci.2003.09.013
  • Fang, T., Zhen, Q., Liao, L., Owiti, A., Zhao, L., Korban, S.S., & Han, Y. (2017). Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chemistry, 225, 132–137. doi:10.1016/j.foodchem.2017.01.014
  • Fotopoulos, V., Sanmartin, M., & Kanellis, A.K. (2006). Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. Journal of Experimental Botany, 57(14), 3933–3943. doi:10.1093/jxb/erl147
  • Franke, R., Humphreys, J.M., Hemm, M.R., Denault, J.W., Ruegger, M.O., Cusumano, J.C., & Chapple, C. (2002). The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. The Plant Journal, 30(1), 33–45. doi:10.1046/j.1365-313X.2002.01266.x
  • Giordano, A., Liu, Z., Panter, S.N., Dimech, A.M., Shang, Y., Wijesinghe, H., … Spangenberg, G.C. (2014). Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA reductase gene. Transgenic Research, 23(3), 503–517. doi:10.1007/s11248-014-9784-1
  • Goujon, T., Sibout, R., Pollet, B., Maba, B., Nussaume, L., Bechtold, N., … Jouanin, L. (2003). A new Arabidopsis thaliana mutant deficient in the expression of o-methyltransferase impacts lignins and sinapoyl esters. Plant Molecular Biology, 51(6), 973–989. doi:10.1023/A:1023022825098
  • Guo, D., Chen, F., Inoue, K., Blount, J.W., & Dixon, R.A. (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa impacts on lignin structure and implications for the biosynthesis of G and S lignin. The Plant Cell, 13(1), 73–88. doi:10.1105/tpc.13.1.73
  • Hamada, K., Nishida, T., Yamauchi, K., Fukushima, K., Kondo, R., & Tsutsumi, Y. (2004). 4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA. Journal of Plant Research, 117(4), 303–310. doi:10.1007/s10265-004-0159-1
  • Han, L., Gao, X., Xia, T., Zhang, X., Li, X., & Gao, W. (2019). Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO-1 signaling pathways against Dexamethasone. Journal of Food Biochemistry, 43(7), e12875. doi:10.1111/jfbc.12875
  • Hancock, R.D., McRae, D., Haupt, S., & Viola, R. (2003). Synthesis of l-ascorbic acid in the phloem. BMC Plant Biology, 3(1), 7. doi:10.1186/1471-2229-3-7
  • He, C., Zeng, S., Teixeira da Silva, J.A., Yu, Z., Tan, J., & Duan, J. (2017). Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination. Protoplasma, 254(4), 1693–1704. doi:10.1007/s00709-016-1044-1
  • Huang, W., Wang, G.L., Li, H., Wang, F., Xu, Z.S., & Xiong, A.S. (2016). Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Molecular Genetics and Genomics, 291(6), 2131–2143. doi:10.1007/s00438-016-1247-3
  • Imai, T., Ban, Y., Terakami, S., Yamamoto, T., & Moriguchi, T. (2009). l-Ascorbate biosynthesis in peach: Cloning of six l-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum, 136(2), 139–149. doi:10.1111/j.1399-3054.2009.01213.x
  • Ishikawa, T., Nishikawa, H., Gao, Y., Sawa, Y., Shibata, H., Yabuta, Y., … Shigeoka, S. (2008). The pathway via D-Galacturonate/L-Galactonate is significant for ascorbate biosynthesis in Euglena gracilis. Journal of Biological Chemistry, 283(45), 31133–31141. doi:10.1074/jbc.M803930200
  • Ito, Y., Akao, Y., Shimazawa, M., Seki, N., Nozawa, Y., & Hara, H. (2007). Lig-8, a highly bioactive lignophenol derivative from bamboo lignin, exhibits multifaceted neuroprotective activity. CNS Drug Reviews, 13(3), 296–307. doi:10.1111/j.1527-3458.2007.00017.x
  • Jiang, Z.Y., Zhong, Y., Zheng, J., Ali, M., Liu, G.D., & Zheng, X.L. (2018). l-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidia. Eriantha, Benth.) cv. ‘White’ during postharvest. Plant Physiology and Biochemistry, 124, 20–28. doi:10.1016/j.plaphy.2018.01.005
  • Kim, C.H., Kim, S.C., Jang, K.C., Song, E.Y., Kim, M., Moon, D.Y., … Song, K.J. (2007). A new kiwifruit cultivar, Jecy gold with yellow flesh. Korean Journal of Breeding Science, 39(2), 258–259.
  • Koike, S.T., Smith, R.F., Schulbach, K.F., & Chaney, W.E. (1997). Association of the insecticide naled with celery petiole lesion damage. Crop Protection, 16(8), 753–758. doi:10.1016/S0261-2194(97)00057-4
  • Kong, J.Q., Lu, D., & Wang, Z.B. (2014). Molecular cloning and yeast expression of cinnamate 4-hydroxylase from Ornithogalum saundersiae baker. Molecules, 19(2), 1608–1621. doi:10.3390/molecules19021608
  • Latocha, P., Łata, B., & Stasiak, A. (2015). Phenolics, ascorbate and the antioxidant potential of kiwiberry vs. common kiwifruit: The effect of cultivar and tissue type. Journal of Functional Foods, 19, 155–163. doi:10.1016/j.jff.2015.09.024
  • Li, H., Liu, Z.W., Wu, Z.J., Wang, Y.X., Teng, R.M., & Zhuang, J. (2018). Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Horticulture Research, 5(1), 65. doi:10.1038/s41438-018-0070-x
  • Li, J.W., Ma, J., Feng, K., Liu, J.X., Que, F., & Xiong, A.S. (2018). Carotenoid accumulation and distinct transcript profiling of structural genes involved in carotenoid biosynthesis in celery. Plant Molecular Biology Reporter, 36, 663–674. doi:10.1007/s11105-018-1112-0
  • Li, L.L., Lu, M., & An, H.M. (2017). Expression profiles of the genes involved in l-ascorbic acid biosynthesis and recycling in Rosa roxburghii leaves of various ages. Acta Physiologiae Plantarum, 39(2), 44. doi:10.1007/s11738-016-2346-9
  • Li, M., Ma, F., Guo, C., & Liu, J. (2010). Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 48(4), 216–224. doi:10.1016/j.plaphy.2010.01.015
  • Li, M., Ma, F., Shang, P., Zhang, M., Hou, C., & Liang, D. (2009). Influence of light on ascorbate formation and metabolism in apple fruit. Planta, 230(1), 39–51. doi:10.1007/s00425-009-0925-3
  • Li, M.Y., Hou, X.L., Wang, F., Tan, G.F., Xu, Z.S., & Xiong, A.S. (2018). Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology, 38(2), 172–183. doi:10.1080/07388551.2017.1312275
  • Li, M.Y., Wang, F., Jiang, Q., Ma, J., & Xiong, A.S. (2014). Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Horticulture Research, 1(1), 10. doi:10.1038/hortres.2014.10
  • Li, M.Y., Wang, F., Jiang, Q., Wang, G.L., Tian, C., & Xiong, A.S. (2016). Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Frontiers in Plant Science, 7, 313.
  • Liu, J.X., Feng, K., Wang, G.L., Wu, X.J., Duan, A.Q., Yin, L., … Xiong, A.S. (2019). Effect of elevated CO2 on ascorbate accumulation and the expression levels of genes involved in ascorbate metabolism in celery. Journal of Plant Growth Regulation, 38, 1–15.
  • Liu, J.X., Feng, K., Wang, G.L., Xu, Z.S., Wang, F., & Xiong, A.S. (2018). Elevated CO2 induces alteration in lignin accumulation in celery (Apium graveolens L.). Plant Physiology and Biochemistry, 127, 310–319. doi:10.1016/j.plaphy.2018.04.003
  • Lu, H., Zhao, Y.L., & Jiang, X.N. (2004). Stable and specific expression of 4-coumarate: Coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CL1 promoter in the transgenic tobacco. Biotechnology Letters, 26(14), 1147–1152. doi:10.1023/B:BILE.0000035487.91628.9e
  • Ma, Q.H. (2010). Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. Journal of Experimental Botany, 61(10), 2735–2744. doi:10.1093/jxb/erq107
  • Maria, M., Antonio, D.M., Carmine, A., & Antonio, E. (2010). Ascorbic acid distribution in three introgression lines of tomato. J Agr Sci-cambridge, 2(3), 75–79.
  • Melino, V.J., Soole, K.L., & Ford, C.M. (2009). Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biology, 9(1), 145. doi:10.1186/1471-2229-9-145
  • Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., … Boerjan, W. (2000). Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme a O-Methyltransferase, an enzyme involved in lignin biosynthesis. Journal of Biological Chemistry, 275(47), 36899–36909. doi:10.1074/jbc.M006915200
  • Mohr, P.G., & Cahill, D.M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with pseudomonas syringae pv. tomato. Functional & Integrative Genomics, 7(3), 181–191. doi:10.1007/s10142-006-0041-4
  • Mounet-Gilbert, L., Dumont, M., Ferrand, C., Bournonville, C., Monier, A., Jorly, J., … Baldet, P. (2016). Two tomato GDP-d-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development. Journal of Experimental Botany, 67(15), 4767–4777. doi:10.1093/jxb/erw260
  • Narnoliya, L.K., Sangwan, R.S., & Singh, S.P. (2018). Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium. Molecular Biology Reports, 45(3), 315–326. doi:10.1007/s11033-018-4164-1
  • Ohta, Y., & Nishikimi, M. (1999). Random nucleotide substitutions in primate nonfunctional gene for l-gulono-gamma-lactone oxidase, the missing enzyme in l-ascorbic acid biosynthesis. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1472(1–2), 408–411. doi:10.1016/S0304-4165(99)00123-3
  • Özparpucu, M., Gierlinger, N., Burgert, I., Van Acker, R., Vanholme, R., Boerjan, W., … Rüggeberg, M. (2018). The effect of altered lignin composition on mechanical properties of cinnamyl alcohol dehydrogenase (CAD) deficient poplars. Planta, 247(4), 887–897. doi:10.1007/s00425-017-2828-z
  • Park, J.J., Yoo, C.G., Flanagan, A., Pu, Y., Debnath, S., Ge, Y., … Wang, Z.Y. (2017). Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels, 10(1), 284. doi:10.1186/s13068-017-0972-0
  • Petti, C., Harman-Ware, A.E., Tateno, M., Kushwaha, R., Shearer, A., Downie, A.B., … Debolt, S. (2013). Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties. Biotechnology for Biofuels, 6(1), 146. doi:10.1186/1754-6834-6-146
  • Prashant, S., Srilakshmi Sunita, M., Pramod, S., Gupta, R.K., Anil Kumar, S., Rao Karumanchi, S., … Kavi Kishor, P.B. (2011). Down-regulation of leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Reports, 30(12), 2215–2231. doi:10.1007/s00299-011-1127-6
  • Qian, W., Yu, C., Qin, H., Liu, X., Zhang, A., Johansen, I.E., & Wang, D. (2007). Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. The Plant Journal, 49(3), 399–413. doi:10.1111/j.1365-313X.2006.02967.x
  • Ralph, J., Akiyama, T., Kim, H., Lu, F., Schatz, P.F., Marita, J.M., … Dixon, R.A. (2006). Effects of coumarate 3-hydroxylase down-regulation on lignin structure. Journal of Biological Chemistry, 281(13), 8843–8853. doi:10.1074/jbc.M511598200
  • Ralph, J., Lapierre, C., Marita, J.M., Kim, H., Lu, F., Hatfield, R.D., … Boerjan, W. (2001). Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry, 57(6), 993–1003. doi:10.1016/S0031-9422(01)00109-1
  • Ren, J., Chen, Z., Duan, W., Song, X., Liu, T., Wang, J., … Li, Y. (2013). Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiology and Biochemistry, 73, 229–236. doi:10.1016/j.plaphy.2013.10.005
  • Sabella, E., Luvisi, A., Aprile, A., Negro, C., Vergine, M., Nicolì, F., … De Bellis, L. (2018). Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. Journal of Plant Physiology, 220, 60–68. doi:10.1016/j.jplph.2017.10.007
  • Sanahuja, G., Farré, G., Bassie, L., Zhu, C., Christou, P., & Capell, T. (2013). Ascorbic acid synthesis and metabolism in maize are subject to complex and genotype-dependent feedback regulation during endosperm development.. Biotechnology Journal, 8(10), 1221–1230. doi:10.1002/biot.201300064
  • Schmittgen, T.D., & Livak, K.J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101–1108. doi:10.1038/nprot.2008.73
  • Scullin, C., Cruz, A.G., Chuang, Y.D., Simmons, B.A., Loque, D., & Singh, S. (2015). Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 8(1), 95. doi:10.1186/s13068-015-0275-2
  • Senn, M.E., Gergoff Grozeff, G.E., Alegre, M.L., Barrile, F., De Tullio, M.C., & Bartoli, C.G. (2016). Effect of mitochondrial ascorbic acid synthesis on photosynthesis. Plant Physiology and Biochemistry, 104, 29–35. doi:10.1016/j.plaphy.2016.03.012
  • Smirnoff, N. (2011). Chapter 4 - Vitamin C: The metabolism and functions of ascorbic acid in plants. Advances in Botanical Research, 59, 109–177.
  • Smirnoff, N., & Wheeler, G.L. (2000). Ascorbic acid in plants: Biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 291–314. doi:10.1080/10409230008984166
  • Talla, S., Riazunnisa, K., Padmavathi, L., Sunil, B., Rajsheel, P., & Raghavendra, A.S. (2011). Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. Journal of Biosciences, 36(1), 163–173. doi:10.1007/s12038-011-9000-x
  • Torabinejad, J., Donahue, J.L., Gunesekera, B.N., Allen-Daniels, M.J., & Gillaspy, G.E. (2009). VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 150(2), 951–961. doi:10.1104/pp.108.135129
  • Valpuesta, V., & Botella, M.A. (2004). Biosynthesis of l-ascorbic acid in plants: New pathways for an old antioxidant. Trends in Plant Science, 9(12), 573–577. doi:10.1016/j.tplants.2004.10.002
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 0034.
  • Wang, J., Zhang, Z., & Huang, R. (2013). Regulation of ascorbic acid synthesis in plants. Plant Signaling & Behavior, 8(6), e24536. doi:10.4161/psb.24536
  • Wang, Z., Xiao, Y., Chen, W., Tang, K., & Zhang, L. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. Journal of Integrative Plant Biology, 52(4), 400–409. doi:10.1111/j.1744-7909.2010.00921.x
  • Wu, X.J., Sun, S., Xing, G.M., Wang, G.L., Wang, F., Xu, Z.S., … Xiong, A.S. (2017). Elevated carbon dioxide altered morphological and anatomical characteristics, Ascorbic acid accumulation, and related gene expression during taproot development in carrots. Frontiers in Plant Science, 7, 2026. doi:10.3389/fpls.2016.02026
  • Yamamoto, A., Bhuiyan, M.N., Waditee, R., Tanaka, Y., Esaka, M., Oba, K., … Takabe, T. (2005). Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. Journal of Experimental Botany, 56(417), 1785–1796. doi:10.1093/jxb/eri167
  • Yan, J., Yu, L., Xu, S., Gu, W.H., & Zhu, W. (2014). Apigenin accumulation and expression analysis of apigenin biosynthesis relative genes in celery. Scientia Horticulturae, 165, 218–224. doi:10.1016/j.scienta.2013.11.018
  • Zhang, H., Lang, Z., & Zhu, J.K. (2018). Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19(8), 489–506. doi:10.1038/s41580-018-0016-z
  • Zhang, J.Y., Pan, D.L., Jia, Z.H., Wang, T., Wang, G., & Guo, Z.R. (2018). Chlorophyll, carotenoid and Vitamin C metabolism regulation in Actinidia chinensis ‘Hongyang’ outer pericarp during fruit development. PloS One, 166(6), e0194835. doi:10.1371/journal.pone.0194835
  • Zhang, W., Lorence, A., Gruszewski, H.A., Chevone, B.I., & Nessler, C.L. (2009). AMR1, an arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiology, 150(2), 942–950. doi:10.1104/pp.109.138453
  • Zhao, Q., Wang, H., Yin, Y., Xu, Y., Chen, F., & Dixon, R.A. (2010). Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proceedings of the National Academy of Sciences, 107(32), 14496–14501. doi:10.1073/pnas.1009170107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.