74
Views
0
CrossRef citations to date
0
Altmetric
Review

The latest emerging drugs for the treatment of diabetic cardiomyopathy

, , , , , , , & show all
Received 05 Feb 2024, Accepted 22 Apr 2024, Published online: 30 Apr 2024

References

  • Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019 Apr;124(8):1160–1162. doi: 10.1161/CIRCRESAHA.118.314665
  • Pham I, Cosson E, Nguyen MT, et al. Evidence for a specific diabetic cardiomyopathy: an observational retrospective echocardiographic study in 656 asymptomatic type 2 diabetic patients. Int J Endocrinol. 2015 May;2015:743503. doi: 10.1155/2015/743503
  • Park JJ. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Metab J. 2021 Mar;45(2):146–157. doi: 10.4093/dmj.2020.0282
  • Arnold SV, Khunti K, Bonnet F, et al. Type 2 diabetes and heart failure: insights from the global DISCOVER study. ESC Heart Fail. 2021 Apr;8(2):1711–1716. doi: 10.1002/ehf2.13235
  • Dhar A, Venkadakrishnan J, Roy U, et al. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis. 2023 Jan;17539447231210170. doi: 10.1177/17539447231210170
  • Tan Y, Zhang Z, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020 Sep;17(9):585–607.
  • Jia G, Whaley-Connell A, Sowers JR, et al. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease Diabetologia. Diabetologia. 2018 Jan;61(1):21–28.
  • Gallo LA, Wright EM, Vallon V. Vallon V Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015 Mar;12(2):78–89. doi: 10.1177/1479164114561992
  • Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE(-/-) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 2021 Jan 15;22(2):818. doi: 10.3390/ijms22020818
  • Sun X, Han F, Lu Q, et al. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and Redox Homeostasis in high-fat diet-induced obese mice. Diabetes. 2020 Mar;69(6)1292–1305.
  • Kogot-Levin A, Riahi Y, Abramovich I, et al. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition. JCI Insight. 2023 Apr;8(7):e164296.
  • Arow M, Waldman M, Yadin D, et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020 Jan;19(1):7.
  • He L, Li Y, Zhang D, et al. Dapagliflozin improves endothelial cell dysfunction by regulating mitochondrial production via the SIRT1/PGC-1α pathway in obese mice. Biochem Biophys Res Commun. 2022 May;615:123–130. doi: 10.1016/j.bbrc.2022.05.022
  • Durak A, Olgar Y, Degirmenci S, et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. 2018 Nov;17(1):144.
  • Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018 May;15:335–346. doi: 10.1016/j.redox.2017.12.019
  • Lyu Y, Huo J, Jiang W, et al. Empagliflozin ameliorates cardiac dysfunction in heart failure mice via regulating mitochondrial dynamics. Eur J Pharmacol. 2023 Mar;942:175531. doi: 10.1016/j.ejphar.2023.175531
  • Zhou Y, Suo W, Zhang X, et al. Targeting mitochondrial quality control for diabetic cardiomyopathy: therapeutic potential of hypoglycemic drugs. Biomed Pharmacother. 2023 Dec;168:115669. doi: 10.1016/j.biopha.2023.115669
  • Byrne NJ, Matsumura N, Maayah ZH, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail. 2020 Jan;13(1):e006277.
  • Feng B, Yu P, Yu H, et al. Therapeutic effects on the development of heart failure with preserved ejection fraction by the sodium-glucose cotransporter 2 inhibitor dapagliflozin in type 2 diabetes. Diabetol Metab Syndr. 2023 Jun;15(1):141.
  • Yu YW, Zhao XM, Wang YH, et al. Effect of sodium-glucose cotransporter 2 inhibitors on cardiac structure and function in type 2 diabetes mellitus patients with or without chronic heart failure: a meta-analysis. Cardiovasc Diabetol. 2021 Jan;20(1):25.
  • Huang K, Luo X, Liao B, et al. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol. 2023 Apr;22(1):86.
  • Girerd N, Zannad F. SGLT2 inhibition in heart failure with reduced or preserved ejection fraction: finding the right patients to treat. J Intern Med. 2023 May;293(5):550–558. doi: 10.1111/joim.13620
  • Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved trial. Circulation. 2021 Oct;144(16):1284–1294.
  • Trang NN, Chung CC, Lee TW, et al. Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats. Int J Mol Sci. 2021 Jan;22(3):1177.
  • Chevli PA, Freedman BI, Hsu FC, et al. Plasma metabolomic profiling in subclinical atherosclerosis: the diabetes heart study. Cardiovasc Diabetol. 2021 Dec;20(1):231.
  • Zhang L, Zhang H, Xie X, et al. Empagliflozin ameliorates diabetic cardiomyopathy via regulated branched-chain amino acid metabolism and mTOR/p-ULK1 signaling pathway-mediated autophagy. Diabetol Metab Syndr. 2023 May;15(1):93.
  • Scisciola L, Chianese U, Caponigro V, et al. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J Transl Med. 2023 Sep;21(1):662.
  • Scisciola L, Taktaz F, Fontanella RA, et al. Targeting high glucose-induced epigenetic modifications at cardiac level: the role of SGLT2 and SGLT2 inhibitors. Cardiovasc Diabetol. 2023 Feb;22(1):24.
  • Donniacuo M, De Angelis A, Telesca M, et al. Atrial fibrillation: epigenetic aspects and role of sodium-glucose cotransporter 2 inhibitors. Pharmacol Res. 2023 Feb;188:106591. doi: 10.1016/j.phrs.2022.106591
  • Kadosaka T, Watanabe M, Natsui H, et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca2+ handling in ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol. 2023 Mar;324(3):H341–H354.
  • Singh M, Kumar A. Risks associated with SGLT2 inhibitors: an overview. Curr Drug Saf. 2018 Feb;13(2):84–91. doi: 10.2174/1574886313666180226103408
  • Matharu K, Chana K, Ferro CJ, et al. Polypharmacology of clinical sodium glucose co-transport protein 2 inhibitors and relationship to suspected adverse drug reactions. Pharmacol Res Perspect. 2021 Oct;9(5):e00867. doi: 10.1002/prp2.867
  • Yang F, Qin Y, Wang Y, et al. Metformin inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci. 2019 Mar;15(5):1010–1019.
  • Dawood AF, Alzamil NM, Hewett PW, et al. Metformin protects against Diabetic Cardiomyopathy: an association between desmin-sarcomere injury and the iNOS/mTOR/TIMP-1 fibrosis axis. Biomedicines. 2022 Apr;10(5):984.
  • Abdelsamia EM, Khaleel SA, Balah A, et al. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother. 2019 Jan;109:2136–2144. doi: 10.1016/j.biopha.2018.11.064
  • Zou R, Nie C, Pan S, et al. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med. 2022 Apr;183:35–50. doi: 10.1016/j.freeradbiomed.2022.03.010
  • Eraky SM, Ramadan NM. Effects of omega-3 fatty acids and metformin combination on diabetic cardiomyopathy in rats through autophagic pathway. J Nutr Biochem. 2021 Nov;97:108798. doi: 10.1016/j.jnutbio.2021.108798
  • Jia W, Bai T, Zeng J, et al. Combined administration of metformin and atorvastatin attenuates diabetic cardiomyopathy by inhibiting inflammation, apoptosis, and oxidative stress in type 2 diabetic mice. Front Cell Dev Biol. 2021 Feb;9:634900. doi: 10.3389/fcell.2021.634900
  • Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020 May;19(1):62. doi: 10.1186/s12933-020-01041-4
  • Kuan IHS, Savage RL, Duffull SB, et al. The association between metformin therapy and lactic acidosis. Drug Saf. 2019 Dec;42(12):1449–1469.
  • Connelly PJ, Lonergan M, Soto-Pedre E, et al. Acute kidney injury, plasma lactate concentrations and lactic acidosis in metformin users: a GoDarts study. Diab Obes Metab. 2017 Nov;19(11):1579–1586.
  • Bell S, Farran B, McGurnaghan S, et al. Risk of acute kidney injury and survival in patients treated with metformin: an observational cohort study. BMC Nephrol. 2017 May;18(1):163.
  • Almutairi M, Gopal K, Greenwell AA, et al. The GLP-1 receptor agonist liraglutide increases myocardial glucose oxidation rates via indirect mechanisms and mitigates experimental diabetic cardiomyopathy. Can J Cardiol. 2021 Jan;37(1):140–150.
  • Ding W, Chang WG, Guo XC, et al. Exenatide protects against cardiac dysfunction by attenuating oxidative stress in the diabetic mouse heart. Front Endocrinol. 2019 Apr;10:202. doi: 10.3389/fendo.2019.00202
  • Giugliano D, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials. Diab Obes Metab. 2019 Nov;21(11):2576–2580.
  • Paiman EHM, van Eyk HJ, van Aalst MMA, et al. Effect of Liraglutide on cardiovascular function and myocardial tissue characteristics in type 2 diabetes patients of south Asian descent living in the Netherlands: a double-blind, randomized, placebo-controlled trial. J Magn Reson Imaging. 2020 Jun;51(6):1679–1688.
  • Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017 Jan;19(1):69–77.
  • Wang Y, Cai F, Li G, et al. Novel dual glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide receptor agonist attenuates diabetes and myocardial injury through inhibiting hyperglycemia, inflammation and oxidative stress in rodent animals. Bioengineered. 2022 Apr;13(4):9184–9196.
  • Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud. 2015 Feb;11(3–4):202–230. doi: 10.1900/RDS.2014.11.202
  • Liu L, Chen J, Wang L, et al. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol. 2022 Dec;13:1043789. doi: 10.3389/fendo.2022.1043789
  • Wang L, Cai Y, Jian L, et al. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol. 2021 Jan;20(1):2.
  • Zhang J, Cheng Y, Gu J, et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin Sci (Lond). 2016 Apr;130(8):625–641.
  • Keech A, Simes RJ, Barter P, et al. FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005 Nov;366(9500):1849–1861.
  • Pradhan AD, Paynter NP, Everett BM, et al. Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am Heart J. 2018 Dec;206:80–93. doi: 10.1016/j.ahj.2018.09.011
  • Yamamoto K, Ohta Y, Taguchi A, et al. Effects of pemafibrate on left ventricular diastolic function in patients with type 2 diabetes mellitus: a pilot study. Diabetol Int. 2023 Jul;14(4):434–439.
  • Fruchart JC, Santos RD. SPPARM alpha: the lazarus effect. Curr Opin Lipidol. 2019 Dec;30(6):419–427. doi: 10.1097/MOL.0000000000000640
  • Yanai H, Katsuyama H, Hakoshima M. A significant increase of estimated glomerular filtration rate after switching from fenofibrate to pemafibrate in type 2 diabetic patients. Cardiol Res. 2021 Dec;12(6):358–362. doi: 10.14740/cr1333
  • Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019 Apr;18(1):45.
  • Wei D, Liao L, Wang H, et al. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 2020 Sep;247:117414. doi: 10.1016/j.lfs.2020.117414
  • Barreto-Torres G, Parodi-Rullán R, Javadov S. The role of PPARα in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sc. 2012 Jun;13(6):7694–7709. doi: 10.3390/ijms13067694
  • Bai F, Liu Y, Tu T, et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis. 2019 May;18(1):109.
  • Wu L, Wang K, Wang W, et al. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARα pathway. Aging Cell. 2018 Aug;17(4):e12763. doi: 10.1111/acel.12763.
  • Cai H, Zhou L, Liu J, et al. Independent and combined effects of liraglutide and aerobic interval training on glycemic control and cardiac protection in diabetic cardiomyopathy rats. Biochem Biophys Res Commun. 2022 Nov;629:112–120. doi: 10.1016/j.bbrc.2022.09.018
  • Xie SY, Liu SQ, Zhang T, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart. Circulation. 2024 Feb;149(9):684–706.
  • Xiong SP, Sun HJ, Cao X, et al. Polysulfide protects against diabetic cardiomyopathy through sulfhydration of peroxisome proliferator-activated receptor-γ and sirtuin 3. Antioxid Redox Signal. 2023 Jan;38(1–3):1–17.
  • Van Linthout S, Riad A, Dhayat N, et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia. 2007 Sep;50(9):1977–1986.
  • Abdel-Hamid AA, Ael-D F. Atorvastatin alleviates experimental diabetic cardiomyopathy by suppressing apoptosis and oxidative stress. J Mol Histol. 2015 Oct;46(4–5):337–345. doi: 10.1007/s10735-015-9625-4
  • Ren XM, Zuo GF, Wu W, et al. Atorvastatin alleviates experimental diabetic cardiomyopathy by regulating the GSK-3β-PP2Ac-NF-κB signaling axis. PLOS ONE. 2016 Nov;11(11):e0166740.
  • Carillion A, Feldman S, Na N, et al. Atorvastatin reduces β-adrenergic dysfunction in rats with diabetic cardiomyopathy. PLOS ONE. 2017 Jul;12(7):e0180103.
  • Luo B, Li B, Wang W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther. 2014 Feb;28(1):33–43.
  • Liberale L, Carbone F, Camici GG, et al. IL-1β and statin treatment in patients with myocardial infarction and diabetic cardiomyopathy. J Clin Med. 2019 Oct;8(11):1764.
  • Attardo S, Musumeci O, Velardo D, et al. Statins neuromuscular adverse effects. Int J Mol Sci. 2022 Jul;23(15):8364.
  • Cai T, Abel L, Langford O, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ. 2021 Jul;374:n1537. doi: 10.1136/bmj.n1537
  • Grewal AS, Thapa K, Kanojia N, et al. Natural compounds as source of Aldose Reductase (AR) inhibitors for the treatment of diabetic complications: a mini review. Curr Drug Metab. 2022;21(14):1091–1116. doi: 10.2174/1389200221666201016124125
  • Ramasamy R, Oates PJ, Schaefer S. Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes. 1997 Dec;46(2):292–300. doi: 10.2337/diab.46.2.292
  • Cameron NE, Cotter MA, Robertson S. Contractile properties of cardiac papillary muscle in streptozotocin-diabetic rats and the effects of aldose reductase inhibition. Diabetologia. 1989 Jun;32(6):365–370. doi: 10.1007/BF00277260
  • Gaztanaga J, Ramasamy R, Schmidt AM, et al. A pilot open-label study of aldose reductase inhibition with AT-001 (caficrestat) in patients hospitalized for COVID-19 infection: results from a registry-based matched-control analysis. Diabetes Metab Syndr. 2021 Nov;15(6):102328.
  • Gopal K, Karwi QG, Tabatabaei Dakhili SA, et al. Aldose reductase inhibition alleviates diabetic cardiomyopathy and is associated with a decrease in myocardial fatty acid oxidation. Cardiovasc Diabetol. 2023 Mar;22(1):73.
  • Haffar T, Bérubé-Simard F, Bousette N. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Biochem Biophys Res Commun. 2015 Dec;468(1–2):73–78. doi: 10.1016/j.bbrc.2015.10.162
  • Li X, Wu F, Günther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature. 2023 Oct;622(7983):619–626. doi: 10.1038/s41586-023-06585-5
  • Yong QC, Thomas CM, Seqqat R, et al. Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovasc Diabetol. 2013 Nov;12(1):169.
  • Marfella R, D’Onofrio N, Mansueto G, et al. Glycated ACE2 reduces anti-remodeling effects of renin-angiotensin system inhibition in human diabetic hearts. Cardiovasc Diabetol. 2022 Aug;21(1):146. doi: 10.1186/s12933-022-01573-x
  • Batista JPT, Faria AOV, Ribeiro TFS, et al. The role of renin-angiotensin system in diabetic cardiomyopathy: a narrative review. Life (Basel). 2023 Jul;13(7):1598.
  • Rydén L, Armstrong PW, Cleland JG, et al. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur Heart J. 2000 Dec;21(23):1967–1978.
  • Jin Q, Zhu Q, Wang K, et al. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NFκB signalling pathway in diabetic cardiomyopathy rats. Mol Med Rep. 2021 Mar;23(3):215.
  • Malek V, Gaikwad AB. Telmisartan and thiorphan combination treatment attenuates fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovasc Res. 2019 Feb;115(2):373–384. doi: 10.1093/cvr/cvy226
  • Ge Q, Zhao L, Ren XM, et al. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp Biol Med (Maywood). 2019 Sep;244(12):1028–1039.
  • Balmforth C, Simpson J, Shen L, et al. Outcomes and effect of treatment according to etiology in HFrEF: an analysis of PARADIGM-HF. JACC Heart Fail. 2019 Jun;7(6):457–465.
  • Balogh DB, Molnar A, Degi A, et al. Cardioprotective and antifibrotic effects of low-dose renin-angiotensin-aldosterone system inhibitors in type 1 diabetic rat Model. Int J Mol Sci. 2023 Dec;24(23):17043.
  • Blankenburg M, Fett AK, Eisenring S, et al. Patient characteristics and initiation of mineralocorticoid receptor antagonists in patients with chronic kidney disease in routine clinical practice in the US: a retrospective cohort study. BMC Nephrol. 2019 May;20(1):171.
  • Jin T, Fu X, Liu M, et al. Finerenone attenuates myocardial apoptosis, metabolic disturbance and myocardial fibrosis in type 2 diabetes mellitus. Diabetol Metab Syndr. 2023 Apr;15(1):87.
  • Agarwal R, Filippatos G, Pitt B, et al. FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb;43(6):474–484.
  • Agarwal R, Kolkhof P, Bakris G, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021 Jan;42(2):152–161.
  • Ben Salem C, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. Drug Saf. 2014 Sep;37(9):677–692.
  • Dubrall D, Schmid M, Stingl JC, et al. Angioedemas associated with renin-angiotensin system blocking drugs: comparative analysis of spontaneous adverse drug reaction reports. PLOS ONE. 2020 Mar;15(3):e0230632.
  • Jubaidi FF, Zainalabidin S, Taib IS, et al. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci. 2021 May;22(10):5094.
  • Zhang J, Qiu H, Huang J, et al. Naringenin exhibits the protective effect on cardiac hypertrophy via EETs-PPARs activation in streptozocin-induced diabetic mice. Biochem Biophys Res Commun. 2018 May;502(1):55–61.
  • He Y, Wang S, Sun H, et al. Naringenin ameliorates myocardial injury in STZ-induced diabetic mice by reducing oxidative stress, inflammation and apoptosis via regulating the Nrf2 and NF-κB signaling pathways. Front Cardiovasc Med. 2022 Aug;9:946766. doi: 10.3389/fcvm.2022.946766
  • Wu X, Zhou X, Lai S, et al. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J. 2022 Sep;36(9):e22505.
  • Ren BC, Zhang YF, Liu SS, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020 Nov;24(21):12355–12367.
  • Wei Z, Pinfang K, Jing Z, et al. Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway. Mediators Inflamm. 2023 Apr;2023:1–20. doi: 10.1155/2023/3906043
  • Shafabakhsh R, Mobini M, Raygan F, et al. Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin Nutr ESPEN. 2020 Dec;40:77–82. doi: 10.1016/j.clnesp.2020.09.029
  • Dastani M, Rahimi HR, Askari VR, et al. Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: evidence of a randomized, double-blinded, placebo-controlled clinical trial. BioFactors. 2023 Jan;49(1):108–118.
  • Lekshmi RK, Divya BT, Mini S. Cissus quadrangularis extract attenuates hyperglycaemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2014 Sep;19(5):214–220. doi: 10.1179/1351000214Y.0000000096
  • Syed AA, Reza MI, Shafiq M, et al. Cissus quadrangularis extract mitigates diabetic cardiomyopathy by inhibiting RAAS activation, inflammation and oxidative stress. Biomarkers. 2022 Dec;27(8):743–752.
  • Wei Z, Jing Z, Pinfang K, et al. Quercetin inhibits pyroptosis in diabetic cardiomyopathy through the Nrf2 pathway. J Diabetes Res. 2022 Dec;2022:1–11. doi: 10.1155/2022/9723632
  • Jiang C, Li D, Chen L, et al. Quercetin ameliorated cardiac injury via reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model. Food Funct. 2022 Jul;13(14):7847–7856.
  • Bartosova L, Horvath C, Galis P, et al. Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats. Front Endocrinol. 2022 Dec;13:1029750. doi: 10.3389/fendo.2022.1029750
  • Fang WJ, Wang CJ, He Y, et al. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin. 2018 Jan;39(1):59–73.
  • Wang G, Song X, Zhao L, et al. Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity. Biomed Res Int. 2018 Mar;2018:2150218. doi: 10.1155/2018/2150218
  • Mohammed Yusof NL, Zainalabidin S, Mohd Fauzi N, et al. Hibiscus sabdariffa (roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Appl Physiol Nutr Metab. 2018 Dec;43(12):1224–1232.
  • Ding Y, Zhang B, Zhou K, et al. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol. 2014 Aug;175(3):508–514.
  • Zhu N, Huang B, Zhu L, et al. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res. 2021 Dec;2021:9944589. doi: 10.1155/2021/9944589
  • Wen HL, Liang ZS, Zhang R, et al. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2013 Mar;12:50. doi: 10.1186/1475-2840-12-50
  • Liang Z, Leo S, Wen H, et al. Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats. BMC Cardiovasc Disord. 2015 May;15(1):42.
  • Huang K, Luo X, Zhong Y, et al. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect. 2022 Feb;10(1):e00904.
  • Hung YC, Yang HT, Yin MC. Asiatic acid and maslinic acid protected heart via anti-glycative and anti-coagulatory activities in diabetic mice. Food Funct. 2015 Sep;6(9):2967–2974. doi: 10.1039/C5FO00549C
  • Qin X, Qiu C, Zhao L. Maslinic acid protects vascular smooth muscle cells from oxidative stress through Akt/Nrf2/HO-1 pathway. Mol Cell Biochem. 2014 May;390(1–2):61–67. doi: 10.1007/s11010-013-1956-4
  • Zhang C, Yu H, Ye J, et al. Ginsenoside Rg3 protects against diabetic cardiomyopathy and promotes adiponectin signaling via activation of PPAR-γ. Int J Mol Sci. 2023 Nov;24(23):16736.
  • Yu HT, Zhen J, Pang B, et al. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J Zhejiang Univ Sci B. 2015 May;16(5):344–354.
  • Farrag EAE, Hammad MO, Safwat SM, et al. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep. 2023 Jul;13(1):11043.
  • Xu Z, Wang S, Ji H, et al. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep. 2016 Jul;6(1):30252.
  • Gu J, Cheng Y, Wu H, et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes. 2017 Feb;66(2):529–542.
  • Sanganalmath SK, Dubey S, Veeranki S, et al. The interplay of inflammation, exosomes and Ca dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol. 2023 Feb;22(1):37.
  • Zheng YL, Wang WD, Cai PY, et al. Stem cell-derived exosomes in the treatment of acute myocardial infarction in preclinical animal models: a meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2022 Apr;13(1):151.
  • Bitirim CV, Ozer ZB, Aydos D, et al. Cardioprotective effect of extracellular vesicles derived from ticagrelor-pretreated cardiomyocyte on hyperglycemic cardiomyocytes through alleviation of oxidative and endoplasmic reticulum stress. Sci Rep. 2022 Apr;12(1):5651.
  • Nunez Lopez YO, Casu A, Kovacova Z, et al. Coordinated regulation of gene expression and microRNA changes in adipose tissue and circulating extracellular vesicles in response to pioglitazone treatment in humans with type 2 diabetes. Front Endocrinol. 2022 Aug;13:955593. doi: 10.3389/fendo.2022.955593
  • Huang G, Cheng Z, Hildebrand A, et al. Diabetes impairs cardioprotective function of endothelial progenitor cell-derived extracellular vesicles via H3K9Ac inhibition. Theranostics. 2022 May;12(9):4415–4430.
  • Veitch S, Njock MS, Chandy M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022 Feb;21(1):31.
  • Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014 Sep;74:139–150. doi: 10.1016/j.yjmcc.2014.05.001
  • Liu S, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020 Feb;115(2):22.
  • Jankauskas SS, Gambardella J, Sardu C, et al. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications. Noncoding RNA. 2021 Jul;7(3):39.
  • Groot M, Lee H. Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells. 2020 Apr;9(4):1044. doi: 10.3390/cells9041044
  • Zhan J, Jin K, Xie R, et al. Ago2 protects against diabetic cardiomyopathy by activating mitochondrial gene translation. Circulation. 2024 Apr;149(14):1102–1120.
  • Yu LM, Dong X, Xue XD, et al. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6. J Pineal Res. 2021 Jan;70(1):e12698.
  • Ding M, Feng N, Tang D, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res. 2018 Sep;65(2):e12491.
  • Wang S, Zhao Z, Feng X, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018 Oct;22(10):5132–5144.
  • Zhang M, Lin J, Wang S, et al. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res. 2017 Sep;63(2). doi: 10.1111/jpi.12418
  • Che H, Wang Y, Li H, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy. FASEB J. 2020 Apr;34(4):5282–5298.
  • Raygan F, Ostadmohammadi V, Bahmani F, et al. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019 Feb;38(1):191–196.
  • Hoseini SG, Heshmat-Ghahdarijani K, Khosrawi S, et al. Effect of melatonin supplementation on endothelial function in heart failure with reduced ejection fraction: a randomized, double-blinded clinical trial. Clin Cardiol. 2021 Sep;44(9):1263–1271.
  • Foley HM, Steel AE. Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med. 2019 Feb;42:65–81. doi: 10.1016/j.ctim.2018.11.003
  • Zhao M, Wang S, Zuo A, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett. 2021 Sep;26(1):40.
  • Vásquez-Trincado C, García-Carvajal I, Pennanen C, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016 Feb;594(3):509–525.
  • Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018 Feb;122(4):624–638. doi: 10.1161/CIRCRESAHA.117.311586
  • Ji Z, Liu GH, Qu J. Mitochondrial sirtuins, metabolism, and aging. J Genet Genomics. 2022 Apr;49(4):287–298. doi: 10.1016/j.jgg.2021.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.