367
Views
41
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Excitotoxicity and ALS: What is unique about the AMPA receptors expressed on spinal motor neurons?

&
Pages 131-144 | Received 28 Oct 2004, Accepted 21 Mar 2005, Published online: 10 Jul 2009

References

  • Rosen D. R., Siddique T., Patterson D., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Hadano S., Hand C. K., Osuga H., et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001; 29: 166–73
  • Yang Y., Hentati A., Deng H. X., et al. The gene encoding alsin, a protein with three guanine‐nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001; 29: 160–5
  • Chen Y. Z., Bennett C. L., Huynh H. M., et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004; 74: 1128–35
  • Nishimura A. L., Mitne‐Neto M., Silva H. C., et al. A mutation in the vesicle‐trafficking protein VAPB causes late‐onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75: 822–31
  • Jackson M., Al‐Chalabi A., Enayat Z. E., Chioza B., Leigh P. N., Morrison K. E. Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 1997; 42: 803–7
  • Puls I., Jonnakuty C., LaMonte B. H., et al. Mutant dynactin in motor neuron disease. Nat Genet 2003; 33: 455–6
  • Munch C., Sedlmeier R., Meyer T., et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 2004; 63: 724–6
  • Oosthuyse B., Moons L., Storkebaum E., et al. Deletion of the hypoxia‐response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001; 28: 131–8
  • LaMonte B. H., Wallace K. E., Holloway B. A., et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late‐onset progressive degeneration. Neuron 2002; 34: 715–27
  • Hafezparast M., Klocke R., Ruhrberg C., et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 2003; 300: 808–12
  • Lambrechts D., Storkebaum E., Morimoto M., et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motor neurons against ischemic death. Nat Genet 2003; 34: 383–94
  • Ahmad‐Annuar A., Shah P., Hafezparast M., et al. No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph Lateral Scler Other Motor Neuron Disord 2003; 4: 150–7
  • Kwak S., Kawahara Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 2005; 83: 110–20
  • Furuyama T., Kiyama H., Sato K., et al. Region‐specific expression of subunits of ionotropic glutamate receptors (AMPA‐type, KA‐type and NMDA receptors) in the rat spinal cord with special reference to nociception. Brain Res Mol Brain Res 1993; 18: 141–51
  • Tölle T. R., Berthele A., Zieglgänsberger W., Seeburg P. H., Wisden W. The differential expression of 16 NMDA and non‐NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 1993; 13: 5009–28
  • Mennini T., Bigini P., Ravizza T., et al. Expression of glutamate receptor subtypes in the spinal cord of control and mnd mice, a model of motor neuron disorder. J Neurosci Res 2002; 70: 553–60
  • Allaoua H., Chaudieu I., Krieger C., Boksa P., Privat A., Quirion R. Alterations in spinal cord excitatory amino acid receptors in amyotrophic lateral sclerosis patients. Brain Res 1992; 579: 169–72
  • Choi D. W. Excitotoxic cell death. J Neurobiol 1992; 23: 1261–76
  • Rothstein J. D., Jin L., Dykes‐Hoberg M., Kuncl R. W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci. USA 1993; 90: 6591–5
  • Nakamura R., Kamakura K., Kwak S. Late‐onset selective neuronal damage in the rat spinal cord induced by continuous intrathecal administration of AMPA. Brain Res 1994; 654: 279–85
  • Carriedo S. G., Yin H. Z., Weiss J. H. Motor neurons are selectively vulnerable to AMPA/kainate receptor‐mediated injury in vitro. J Neurosci 1996; 16: 4069–79
  • Hirata A., Nakamura R., Kwak S., Nagata N., Kamakura K. AMPA receptor‐mediated slow neuronal death in the rat spinal cord induced by long‐term blockade of glutamate transporters with THA. Brain Res 1997; 771: 37–44
  • Carriedo S. G., Yin H. Z., Lamberta R., Weiss J. H. In vitro kainate injury to large, SMI‐32(+) spinal neurons is Ca2+ dependent. Neuroreport 1995; 6: 945–8
  • Carriedo S. G., Sensi S. L., Yin H. Z., Weiss J. H. AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. J Neurosci 2000; 20: 240–50
  • van Den Bosch L., Vandenberghe W., Klaassen H., van Houtte E., Robberecht W. Ca(2+)‐permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 2000; 180: 29–34
  • van Den Bosch L., Robberecht W. Different receptors mediate motor neuron death induced by short and long exposures to excitotoxicity. Brain Res Bull 2000; 53: 383–8
  • van Den Bosch L., Schwaller B., Vleminckx V., et al. Protective effect of parvalbumin on excitotoxic motor neuron death. Exp Neurol 2002; 174: 150–61
  • Roy J., Minotti S., Dong L., Figlewicz D. A., Durham H. D. Glutamate potentiates the toxicity of mutant Cu/Zn‐superoxide dismutase in motor neurons by postsynaptic calcium‐dependent mechanisms. J Neurosci 1998; 18: 9673–84
  • Hugon J., Vallat J. M., Spencer P. S., Leboutet M. J., Barthe D. Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neurosci Lett 1989; 104: 258–62
  • Ikonomidou C., Qin Qin Y., Labruyere J., Olney J. W. Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD1 transgenic mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1996; 55: 211–24
  • Sun H., Kawahara Y., Ito K., Kanazawa I., Tsuji S., Kwak S. Selective death of rat spinal motor neurons in vivo by intrathecal kainate infusion: an ALS model by AMPA receptor‐mediated excitotoxicity. Amyotroph Lateral Scler Other Motor Neuron Disord, 5((Suppl 2))90
  • van Damme P., Callewaert G., Eggermont J., Robberecht W., van Den Bosch L. Chloride influx aggravates Ca2+‐dependent AMPA receptor‐mediated motor neuron death. J Neurosci 2003; 23: 4942–50
  • Couratier P., Hugon J., Sindou P., Vallat J. M., Dumas M. Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet 1993; 341: 265–8
  • Rothstein J., Tsai G., Kuncl R., et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 18–25
  • Wo Z. G., Oswald R. E. Unraveling the modular design of glutamate‐gated ion channels. Trends Neurosci 1995; 18: 161–8
  • Passafaro M., Nakagawa T., Sala C., Sheng M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 2003; 424: 677–81
  • Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of KA‐AMPA‐gated glutamate receptor channels depends on subunit composition. Science 1991; 252: 851–3
  • Verdoorn T., Burnashev N., Monye R. H., Seeburg P., Sakmann B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 1991; 252: 1715–8
  • Burnashev N., Khodorova A., Jonas P., et al. Calcium‐permeable AMPA‐kainate receptors in fusiform cerebellar glial cells. Science 1992; 256: 1566–70
  • Koh D. S., Burnashev N., Jonas P. Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol 1995; 486: 305–12
  • Lambolez B., Audinat E., Bochet P., Crepel F., Rossier J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 1992; 9: 247–58
  • Geiger J. R., Melcher T., Koh D. S., et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995; 15: 193–204
  • Burnashev N., Monyer H., Seeburg P., Sakmann B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992; 8: 189–98
  • Sommer B., Köhler M., Sprengel R., Seeberg P. RNA editing in brain controls a determinant of ion flow in glutamate‐gated channels. Cell 1991; 67: 11–9
  • Kim U., Garner T. L., Sanford T., Speicher D., Murray J. M., Nishikura K. Purification and characterization of double‐stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 1994; 269: 13480–9
  • Melcher T., Maas S., Herb A., Sprengel R., Seeburg P., Higuchi M. A mammalian RNA editing enzyme. Nature 1996; 460–4
  • Nutt S., Kamboj R. Differential RNA editing efficiency of AMPA receptor subunit GluR‐2 in human brain. Neuroreport 1994; 5: 1679–83
  • Paschen W., Djuricic B. Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 in rat brain. J Neurosci Meth 1995; 56: 21–9
  • Carlson N. G., Howard J., Gahring L. C., Rogers S. W. RNA editing (Q/R site) and flop/flip splicing of AMPA receptor transcripts in young and old brains. Neurobiol Aging 2000; 21: 599–606
  • Kawahara Y., Ito K., Sun H., Kanazawa I., Kwak S. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur J Neurosci 2003; 18: 23–33
  • Kawahara Y., Ito K., Sun H., Ito M., Kanazawa I., Kwak S. Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down's syndrome brains. Brain Res Dev Brain Res 2004; 148: 151–5
  • Kawahara Y., Ito K., Sun H., Aizawa H., Kanazawa I., Kwak S. Glutamate receptors: RNA editing and death of motor neurons. Nature 2004; 427: 801
  • Wang Q., Khillan J., Gadue P., Nishikura K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 2000; 290: 1765–8
  • Higuchi M., Maas S., Single F., et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA‐editing enzyme ADAR2. Nature 2000; 406: 78–81
  • Hume R. I., Dingledine R., Heinemann S. F., et al. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 1991; 253: 1028–31
  • Burnashev N., Zhou Z., Neher E., Sakmann B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 1995; 485: 403–18
  • Kuner T., Beck C., Sakmann B., Seeburg P. H., et al. Channel‐lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter. J Neurosci 2001; 21: 4162–72
  • Sommer B., Keinänen K., Verdoorn T. A., et al. Flip and flop: a cell‐specific functional switch in glutamate‐operated channels of the CNS. Science 1990; 249: 1580–5
  • Lambolez B., Ropert N., Perrais D., Rossier J., Hestrin S. Correlation between kinetics and RNA splicing of alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptors in neocortical neurons. Proc Natl Acad Sci. USA 1996; 93: 1797–1802
  • Mosbacher J., Schoepfer R., Monyer H., Burnashev N., Seeburg P. H., Ruppersberg J. P. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 1994; 266: 1059–62
  • Lomeli H., Mosbacher J., Melcher T., et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994; 266: 1709–13
  • Brorson J. R., Manzolillo P. A., Gibbons S. J., Miller R. J. AMPA receptor desensitization predicts the selective vulnerability of cerebellar Purkinje cells to excitotoxicity. J Neurosci 1995; 15: 4515–24
  • Tomiyama M., Rodriguez‐Puertas R., Cortes R., et al. Differential regional distribution of AMPA receptor subunit messenger RNAs in the human spinal cord as visualized by in situ hybridization. Neuroscience 1996; 901–15
  • Kawahara Y., Ito K., Sun H., Ito M., Kanazawa I., Kwak S. GluR4c, an alternative splicing isoform of GluR4, is abundantly expressed in the adult human brain. Brain Res Mol Brain Res 2004; 127: 150–5
  • Köhler M., Kornau H. C., Seeburg P. H. The organization of the gene for the functionally dominant alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptor subunit GluR‐B. J Biol Chem 1994; 269: 17367–70
  • Kolleker A., Zhu J. J., Schupp B. J., et al. Glutamatergic plasticity by synaptic delivery of GluR‐B(long)‐containing AMPA receptors. Neuron 2003; 40: 1199–1212
  • Gallo V., Upson L. M., Hayes W. P., Vyklicky L., Winters C. A., Buonanno A. Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 1992; 12: 1010–23
  • Zhu J. J., Esteban J. A., Hayashi Y., Malinow R. Postnatal synaptic potentiation: delivery of GluR4‐containing AMPA receptors by spontaneous activity. Nat Neurosci 2000; 3: 1098–1106
  • Wenthold R. J., Petralia R. S., Blahos J., Niedzielski A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 1996; 16: 1982–9
  • Hayashi Y., Shi S. H., Esteban J. A., Piccini A., Poncer J. C., Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000; 287: 2262–7
  • Shi S., Hayashi Y., Esteban J. A., Malinow R. Subunit‐specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 2001; 105: 331–43
  • Passafaro M., Piech V., Sheng M. Subunit‐specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001; 4: 917–26
  • Malinow R., Malenka R. C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103–26
  • Leonard A. S., Davare M. A., Horne M. C., Garner C. C., Hell J. W. SAP97 is associated with the alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptor GluR1 subunit. J Biol Chem 1998; 273: 19518–24
  • Dev K. K., Nishimune A., Henley J. M., Nakanishi S. The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 1999; 38: 635–44
  • Dong H., O'Brien R. J., Fung E. T., Lanahan A. A., Worley P. F., Huganir R. L. GRIP: a synaptic PDZ domain‐containing protein that interacts with AMPA receptors. Nature 1997; 386: 279–84
  • Dong H., Zhang P., Liao D., Huganir R. L. Characterization, expression, and distribution of GRIP protein. Ann N Y Acad Sci 1999; 868: 535–40
  • Osten P., Khatri L., Perez J. L., et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 2000; 27: 313–25
  • Perez J. L., Khatri L., Chang C., Srivastava S., Osten P., Ziff E. B. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA‐type glutamate receptor subunit 2. J Neurosci 2001; 21: 5417–28
  • Osten P., Srivastava S., Inman G. J., et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP‐dependent interaction with NSF and alpha‐ and beta‐SNAPs. Neuron 1998; 21: 99–110
  • Song I., Kamboj S., Xia J., Dong H., Liao D., Huganir R. L. Interaction of the N‐ethylmaleimide‐sensitive factor with AMPA receptors. Neuron 1998; 21: 393–400
  • Noel J., Ralph G. S., Pickard L., et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF‐dependent mechanism. Neuron 1999; 23: 365–76
  • Luthi A., Chittajallu R., Duprat F., et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF‐GluR2 interaction. Neuron 1999; 24: 389–99
  • Shen L., Liang F., Walensky L. D., Huganir R. L. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N‐linked actin cytoskeletal association. J Neurosci 2000; 20: 7932–40
  • Coleman S. K., Cai C., Mottershead D. G., Haapalahti J. P., Keinänen K. Surface expression of GluR‐D AMPA receptor is dependent on an interaction between its C‐terminal domain and a 4.1 protein. J Neurosci 2003; 23: 798–806
  • Chen L., Chetkovich D. M., Petralia R. S., et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408: 936–43
  • Schnell E., Sizemore M., Karimzadegan S., Chen L., Bredt D. S., Nicoll R. A. Direct interactions between PSD‐95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci. USA 2002; 99: 13902–7
  • Tomita S., Fukata M., Nicoll R. A., Bredt D. S. Dynamic interaction of stargazin‐like TARPs with cycling AMPA receptors at synapses. Science 2004; 303: 1508–11
  • Carvalho A. L., Kameyama K., Huganir R. L. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J Neurosci 1999; 19: 4748–54
  • Esteban J. A., Shi S. H., Wilson C., Nuriya M., Huganir R. L., Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003; 6: 136–43
  • O'Brien R., Xu D., Mi R., Tang X., Hopf C., Worley P. Synaptically targeted Narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J Neurosci 2002; 22: 4487–98
  • Brorson J. R., Li D., Suzuki T. Selective expression of heteromeric AMPA receptors driven by flip‐flop differences. J Neurosci 2004; 24: 3461–70
  • Greger I. H., Khatri L., Ziff E. B. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 2002; 34: 759–72
  • Greger I. H., Khatri L., Kong X., Ziff E. B. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 2003; 40: 763–74
  • Sans N., Vissel B., Petralia R. S., et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J Neurosci 2003; 23: 9367–73
  • Lu Y. M., Yin H. Z., Chiang J., Weiss J. H. Ca2+‐permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 1996; 16: 5457–65
  • Pellegrini‐Giampietro D. E., Gorter J. A., Bennett M. V., Zukin R. S. The GluR2 (GluR‐B) hypothesis: Ca(2+)‐permeable AMPA receptors in neurological disorders. Trends Neurosci 1997; 20: 464–70
  • Pellegrini‐Giampietro D., Zukin R., Bennett M., Cho S., Pulsinelli W. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci. USA 1992; 89: 10499–503
  • Pellegrini‐Giampietro D. E., Pulsinelli W. A., Zukin R. S. NMDA and non‐NMDA receptor gene expression following global brain ischemia in rats: effect of NMDA and non‐NMDA receptor antagonists. J Neurochem 1994; 62: 1067–73
  • Gorter J. A., Petrozzino J. J., Aronica E. M., et al. Global ischemia induces down‐regulation of GluR2 mRNA and increases AMPA receptor‐mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 1997; 17: 6179–88
  • Pollard H., Heron A., Moreau J., Ben‐Ari Y., Khrestchatisky M. Alterations of the GluR‐B AMPA receptor subunit flip/flop expression in kainate‐induced epilepsy and ischemia. Neuroscience 1993; 57: 545–54
  • Friedman L. K., Pellegrini‐Giampietro D. E., Sperber E. F., Bennett M. V., Moshe S. L., Zukin R. S. Kainate‐induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci 1994; 14: 2697–707
  • Jia Z., Agopyan N., Miu P., et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 1996; 17: 945–56
  • Meng Y., Zhang Y., Jia Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 2003; 39: 163–76
  • Iihara K., Joo D. T., Henderson J., et al. The influence of glutamate receptor 2 expression on excitotoxicity in GluR2 null mutant mice. J Neurosci 2001; 21: 2224–39
  • Liu S., Lau L., Wei J., et al. Expression of Ca(2+)‐permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 2004; 43: 43–55
  • Anzai T., Tsuzuki K., Yamada N., et al. Overexpression of Ca2+‐permeable AMPA receptor promotes delayed cell death of hippocampal CA1 neurons following transient forebrain ischemia. Neurosci Res 2003; 46: 41–51
  • Kask K., Zamanillo D., Rozov A., Burnashev N., Sprengel R., Seeburg P. H. The AMPA receptor subunit GluR‐B in its Q/R site‐unedited form is not essential for brain development and function. Proc Natl Acad Sci. USA 1998; 95: 13777–82
  • Seeburg P. H., Single F., Kuner T., Higuchi M., Sprengel R. Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse. Brain Res 2001; 907: 233–43
  • Brusa R., Zimmermann F., Koh D., et al. Early‐onset epilepsy and postnatal lethality associated with an editing‐deficient GluR‐B allele in mice. Science 1995; 270: 1677–80
  • Feldmeyer D., Kask K., Brusa R., et al. Neurological dysfunctions in mice expressing different levels of the Q/R site‐unedited AMPAR subunit GluR‐B. Nat Neurosci 1999; 2: 57–64
  • Kamphuis W., Lopes da Silva F. Editing status at the Q/R site of glutamate receptor−A, −B, −5 and −6 subunit mRNA in the hippocampal kindling model of epilepsy. Brain Res Mol Brain Res 1995; 29: 35–42
  • Kamphuis W., de Leeuw F., Lopes da Silva F. Ischemia does not alter the editing status at the Q/R site of glutamate receptor−A, −B, −5 and −6 subunit mRNA. Neuroreport 1995; 6: 1133–6
  • Paschen W., Schmitt J A., Uto A. RNA editing of glutamate receptor subunits GluR2, GluR5 and GluR6 in transient cerebral ischemia in the rat. J Cereb Blood Flow Metab 1996; 16: 548–56
  • Akbarian S., Smith M., Jones E. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia. Brain Res 1995; 699: 297–304
  • Paschen W., Hedreen J., Ross C. RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J Neurochem 1994; 63: 1596–1602
  • Grigorenko E. V., Bell W. L., Glazier S., Pons T., Deadwyler S. Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy. Neuroreport 1998; 9: 2219–24
  • Kortenbruck G., Berger E., Speckmann E. J., Musshoff U. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 2001; 8: 459–68
  • Takuma H., Kwak S., Yoshizawa T., Kanazawa I. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 1999; 46: 806–15
  • Zorumski C. F., Thio L. L., Clark G. D., Clifford D. B. Blockade of desensitization augments quisqualate excitotoxicity in hippocampal neurons. Neuron 1990; 5: 61–6
  • Ballerini L., Bracci E., Nistri A. Desensitization of AMPA receptors limits the amplitude of EPSPs and the excitability of motor neurons of the rat isolated spinal cord. Eur J Neurosci 1995; 7: 1229–34
  • Vollmar W., Gloger J., Berger E., et al. RNA editing (R/G site) and flip‐flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 2004; 15: 371–9
  • van Damme P., van Den Bosch L., van Houtte E., Callewaert G., Robberecht W. GluR2‐dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol 2002; 88: 1279–87
  • Vandenberghe W., Robberecht W., Brorson J. AMPA receptor calcium permeability, GluR2 expression, and selective motor neuron vulnerability. J Neurosci 2000; 20: 123–32
  • Greig A., Donevan S. D., Mujtaba T. J., Parks T. N., Rao M. S. Characterization of the AMPA‐activated receptors present on motor neurons. J Neurochem 2000; 74: 179–91
  • Virgo L., Samarasinghe S., de Belleroche J. Analysis of AMPA receptor subunit mRNA expression in control and ALS spinal cord. Neuroreport 1996; 7: 2507–11
  • Pellegrini‐Giampietro D. E., Fan S., Ault B., Miller B. E., Zukin R. S. Glutamate receptor gene expression in spinal cord of arthritic rats. J Neurosci 1994; 14: 1576–83
  • Jakowec M. W., Fox A. J., Martin L. J., Kalb R. G. Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience 1995; 67: 893–907
  • Grossman S. D., Wolfe B. B., Yasuda R. P., Wrathall J. R. Alterations in AMPA receptor subunit expression after experimental spinal cord contusion injury. J Neurosci 1999; 19: 5711–20
  • Laslo P., Lipski J., Nicholson L. F., Miles G. B., Funk G. D. GluR2 AMPA receptor subunit expression in motor neurons at low and high risk for degeneration in amyotrophic lateral sclerosis. Exp Neurol 2001; 169: 461–71
  • Nagy G. G., Al‐Ayyan M., Andrew D., Fukaya M., Watanabe M., Todd A. J. Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen‐unmasking method. J Neurosci 2004; 24: 5766–77
  • Williams T., Day N., Ince P., Kamboj R., Shaw P. Calcium‐permeable alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 200–7
  • Shaw P. J., Williams T. L., Slade J. Y., Eggett C. J., Ince P. G. Low expression of GluR2 AMPA receptor subunit protein by human motor neurons. Neuroreport 1999; 10: 261–5
  • Bar‐Peled O., O'Brien R. J., Morrison J. H., Rothstein J. D. Cultured motor neurons possess calcium‐permeable AMPA/kainate receptors. Neuroreport 1999; 10: 855–9
  • Brorson J. R., Zhang Z., Vandenberghe W. Ca(2+) permeation of AMPA receptors in cerebellar neurons expressing glu receptor 2. J Neurosci 1999; 19: 9149–59
  • Jonas P., Racca C., Sakmann B., Seeburg P. H., Monyer H. Differences in Ca2+ permeability of AMPA‐type glutamate receptor channels in neocortical neurons caused by differential GluR‐B subunit expression. Neuron 1994; 12: 1281–9
  • Tsuzuki K., Lambolez B., Rossier J., Ozawa S. Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 2001; 77: 1650–9
  • Spalloni A., Albo F., Ferrari F., et al. Cu/Zn‐superoxide dismutase (GLY93–>ALA) mutation alters AMPA receptor subunit expression and function and potentiates kainate‐mediated toxicity in motor neurons in culture. Neurobiol Dis 2004; 15: 340–50
  • Dai W. M., Egebjerg J., Lambert J. D. Characteristics of AMPA receptor‐mediated responses of cultured cortical and spinal cord neurons and their correlation to the expression of glutamate receptor subunits, GluR1‐4. Br J Pharmacol 2001; 132: 1859–75
  • Kawahara Y., Kwak S., Sun H., et al. Human spinal motor neurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 2003; 85: 680–9
  • Heath P. R., Tomkins J., Ince P. G., Shaw P. J. Quantitative assessment of AMPA receptor mRNA in human spinal motor neurons isolated by laser capture microdissection. Neuroreport 2002; 13: 1753–7
  • Morrison B. M., Janssen W. G., Gordon J. W., Morrison J. H. Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J Comp Neurol 1998; 395: 523–34
  • Pieri M., Gaetti C., Spalloni A., et al. Alpha‐amino‐3‐hydroxy‐5‐methyl‐isoxazole‐4‐propionate receptors in spinal cord motor neurons are altered in transgenic mice overexpressing human Cu/Zn superoxide dismutase (Gly93–>Ala) mutation. Neuroscience 2003; 122: 47–58
  • Rembach A., Turner B. J., Bruce S., et al. Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS. J Neurosci Res 2004; 77: 573–82
  • Tateno M., Sadakata H., Tanaka M., et al. Calcium‐permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet 2004; 13: 2183–96
  • Suzuki T., Tsuzuki K., Kameyama K., Kwak S. Recent advances in the study of AMPA receptors. Nippon Yakurigaku Zasshi 2003; 122: 515–26
  • Tomiyama M., Rodriguez‐Puertas R., Cortes R., Pazos A., Palacios J. M., Mengod G. Flip and flop splice variants of AMPA receptor subunits in the spinal cord of amyotrophic lateral sclerosis. Synapse 2002; 45: 245–9
  • Vandenberghe W., Ihle E. C., Patneau D. K., Robberecht W., Brorson J. R. AMPA receptor current density, not desensitization, predicts selective motor neuron vulnerability. J Neurosci 2000; 20: 7158–66
  • Garry E. M., Moss A., Rosie R., Delaney A., Mitchell R., Fleetwood‐Walker S. M. Specific involvement in neuropathic pain of AMPA receptors and adapter proteins for the GluR2 subunit. Mol Cell Neurosci 2003; 24: 10–22
  • Inglis F. M., Crockett R., Korada S., Abraham W. C., Hollmann M., Kalb R. G. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons. J Neurosci 2002; 22: 8042–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.