Publication Cover
Cochlear Implants International
An Interdisciplinary Journal for Implantable Hearing Devices
Volume 19, 2018 - Issue 4
108
Views
0
CrossRef citations to date
0
Altmetric
Original articles

A potential neurophysiological correlate of electric-acoustic pitch matching in adult cochlear implant users: Pilot data

ORCID Icon, &

References

  • Beynon, A.J., Snik, A.F., Stegeman, D.F., van den Broek, P. 2005. Discrimination of speech sound contrasts determined with behavioral tests and event-related potentials in cochlear implant recipients. Journal of the American Academy of Audiology, 16: 42–53. doi: 10.3766/jaaa.16.1.5
  • Billings, C.J., Tremblay, K.L., Miller, C.W. 2011. Aided cortical auditory evoked potentials in response to changes in hearing aid gain. International Journal of Audiology, 50(7): 459–467. doi: 10.3109/14992027.2011.568011
  • Byrne, D.J., Dillon, H.A. 1986. The national acoustic laboratories (NAL) new procedure for selecting the gain and frequency response of a hearing aid. Ear and Hearing, 7: 257–265. doi: 10.1097/00003446-198608000-00007
  • Byrne, D.J., Parkinson, A., Newall, P. 1990. Hearing aid gain and frequency response requirements for the severely/profoundly hearing impaired. Ear and Hearing, 11(1): 40–49. doi: 10.1097/00003446-199002000-00009
  • Carlyon, R.P., Macherey, O., Frijns, J.H., Axon, P.R., Kalkman, R.K., Boyle, P., et al. 2010. Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear. Journal of the Association for Research in Otolaryngology, 11: 625–640. doi: 10.1007/s10162-010-0222-7
  • Chun, I., Billings, C.J., Miller, C.W., Tremblay, K.L. 2016. Aided electrophysiology using direct audio input: effects of amplification and absolute signal level. American Journal of Audiology, 25(1): 14–24. doi: 10.1044/2015_AJA-15-0029
  • Dorman, M.F., Spahr, T., Gifford, R., Loiselle, L., McKarns, S., Holden, T., et al. 2007. An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear. Journal of the Association for Research in Otolaryngology, 8: 234–240. doi: 10.1007/s10162-007-0071-1
  • Eggermont, J.J., Ponton, C.W. 2003. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123(2): 249–252. doi: 10.1080/0036554021000028098
  • Firszt, J.B., Chambers, R.D., Kraus, N., Reeder, R.M. 2002. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear and Hearing, 23: 502–515. doi: 10.1097/00003446-200212000-00002
  • Francart, T., Jan, B., Wouters, J. 2008. Sensitivity to interaural level difference and loudness growth with bilateral bimodal stimulation. Audiology and Neurotology, 13: 309–319. doi: 10.1159/000124279
  • Hyde, M. 1997. The N1 response and its applications. Audiology and Neurotology, 2: 281–307. doi: 10.1159/000259253
  • Jiwani, S., Papsin, B.C., Gordon, K.A. 2013. Central auditory development after long-term cochlear implant use. Clinical Neurophysiology, 124(9): 1868–1880. doi: 10.1016/j.clinph.2013.03.023
  • Kelly, A.S., Purdy, S.C., Thorne, P.R. 2005. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clinical Neurophysiology, 116: 1235–1246. doi: 10.1016/j.clinph.2005.02.011
  • Lightfoot, G., Kennedy, V. 2006. Cortical electric response audiometry hearing threshold estimation: accuracy, speed, and the effects of stimulus presentation features. Ear and Hearing, 27: 443–456. doi: 10.1097/01.aud.0000233902.53432.48
  • Martin, B.A., Boothroyd, A. 1999. Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope. Ear and Hearing, 20(1): 33–44. doi: 10.1097/00003446-199902000-00004
  • Martin, B.A., Boothroyd, A. 2000. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude. The Journal of the Acoustical Society of America, 107(4): 2155–2161. doi: 10.1121/1.428556
  • Martin, B.A., Tremblay, K.L., Korczak, P. 2008. Speech evoked potentials: from the laboratory to the clinic. Ear and Hearing, 29(3): 285–313. doi: 10.1097/AUD.0b013e3181662c0e
  • McDermott, H., Sucher, C., Simpson, A. 2009. Electro-acoustic stimulation. Acoustic and electric pitch comparisons. Audiology and Neurotology, 14(Suppl. 1): 2–7. doi: 10.1159/000206489
  • McLaughlin, M., Lopez Valdes, A., Reilly, R.B., Zeng, F.G. 2013. Cochlear implant artifact attenuation in late auditory evoked potentials: a single channel approach. Hearing Research, 302: 84–95. doi: 10.1016/j.heares.2013.05.006
  • Moore, D.R. 1991. Anatomy and physiology of binaural hearing. International Journal of Audiology, 30: 125–134. doi: 10.3109/00206099109072878
  • Naatanen, R., Picton, T. 1987. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4): 375–425. doi: 10.1111/j.1469-8986.1987.tb00311.x
  • Naatanen, R., Sams, M., Alho, K., Paavilainen, P., Reinikainen, K., Sokolov, E.N. 1988. Frequency and location specificity of the human vertex N1 wave. Electroencephalography and Clinical Neurophysiology, 69(6): 523–531. doi: 10.1016/0013-4694(88)90164-2
  • Ostroff, J.M., Martin, B.A., Boothroyd, A. 1998. Cortical evoked response to acoustic change within a syllable. Ear and Hearing, 19: 290–297. doi: 10.1097/00003446-199808000-00004
  • Pantev, C., Hoke, M., Lehnertz, K., Lütkenhöner, B., Anogianakis, G., Wittkowski, W. 1988. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalography and Clinical Neurophysiology, 69(2): 160–170. doi: 10.1016/0013-4694(88)90211-8
  • Pantev, C., Hoke, M., Lehnertz, K., Lutkenhoner, B. 1989. Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. Electroencephalography and Clinical Neurophysiology, 72: 225–231. doi: 10.1016/0013-4694(89)90247-2
  • Pantev, C., Dinnesen, A., Ross, B., Wollbrink, A., Knief, A. 2006. Dynamics of auditory plasticity after cochlear implantation: a longitudinal study. Cerebral Cortex, 16(1): 31–36. doi: 10.1093/cercor/bhi081
  • Picton, T.W., Woods, D.L., Proulx, G.B. 1978. Human auditory sustained potentials. II. Stimulus relationships. Electroencephalography and Clinical Neurophysiology, 45(2): 198–210. doi: 10.1016/0013-4694(78)90004-4
  • Ponton, C.W., Don, M., Eggermont, J.J., Waring, M.D., Masuda, A. 1996. Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear and Hearing, 17(5): 430–437. doi: 10.1097/00003446-199610000-00009
  • Reiss, L.A., Turner, C.W., Erenberg, S.R., Gantz, B.J. 2007. Changes in pitch with a cochlear implant over time. Journal of the Association for Research in Otolaryngology, 8: 241–257. doi: 10.1007/s10162-007-0077-8
  • Reiss, L.A., Gantz, B.J., Turner, C.W. 2008. Cochlear implant speech processor frequency allocations may influence pitch perception. Otology & Neurotology, 29(2): 160–167. doi: 10.1097/mao.0b013e31815aedf4
  • Reiss, L.A., Turner, C.W., Karsten, S.A., Gantz, B.J. 2014. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience, 256: 43–52. doi: 10.1016/j.neuroscience.2013.10.024
  • Reiss, L.A., Ito, R.A., Eggleston, J.L., Liao, S., Becker, J.J., Lakin, C.E., et al. 2015. Pitch adaptation patterns in bimodal cochlear implant users: over time and after experience. Ear and Hearing, 36(2): e23–e34. doi: 10.1097/AUD.0000000000000114
  • Sharma, M., Johnson, P.K., Purdy, S.C., Norman, F. 2014. Effect of interstimulus interval and age on cortical auditory evoked potentials in 10–22-week-old infants. Neuroreport, 25: 248–254. doi: 10.1097/WNR.0000000000000078
  • Stapells, D.R. 2002. Cortical event-related potentials to auditory stimuli. In: Katz J., Burkard R.F., Medwetsky L., (eds.) Handbook of clinical audiology, 5th ed. Philadelphia, PA: Lippincott, Williams, and Wilkins, p. 378–406.
  • Steinschneider, M., Dunn, M. 2002. Electrophysiology in developmental neuropsychology. In: Segalowitz S., Rapin I., (eds.) Handbook of neuropsychology, 2nd ed., Vol. 8, Part 1, Chap. 5. Amsterdam: Elsevier, p. 91–146.
  • Svirsky, M.A., Fitzgerald, M.B., Neuman, A., Sagi, E., Tan, C.-T., Ketten, D., et al. 2012. Current and planned cochlear implant research at New York University Laboratory for Translational Auditory Research. Journal of the American Academy of Audiology, 23(6): 422–437.
  • Tan, C.-T., Guo, B., Martin, B.A., Svirsky, M. 2012. Behavioral and physiological measure for pitch matching between electrical and acoustical stimulation in cochlear implant patients. Proceedings of Meetings on Acoustics, 15: 050003. doi:10.1121/1.4829557.
  • Tan, C.-T., Martin, B.A., Svirsky, M. 2017. Pitch matching between electrical stimulation of a cochlear implant and acoustic stimuli presented to a contralateral ear with residual hearing. Journal of the American Academy of Audiology, 28: 187–199. doi: 10.3766/jaaa.15063
  • Thai-Van, H., Veuillet, E., Norena, A., Guiraud, J., Collet, L. 2010. Plasticity of tonotopic maps in humans: influence of hearing loss, hearing aids and cochlear implants. Acta Oto-Laryngologica, 130(3): 333–337. doi: 10.3109/00016480903258024
  • Tremblay, K.L., Friesen, L., Martin, B.A., Wright, R. 2003. Test-retest reliability of cortical evoked potentials using naturally produced speech sounds. Ear and Hearing, 24(3): 225–232. doi: 10.1097/01.AUD.0000069229.84883.03
  • Tremblay, K.L., Miller, C.W. 2014. How neuroscience relates to hearing aid amplification. International Journal of Otolaryngology, 2014: 641–652.
  • Vermeire, K., Landsberger, D.M., Van de Heyning, P.H., Voormolen, M., Kleine Punte, A., Schatzer, R., et al. 2015. Frequency-place map for electrical stimulation in cochlear implants: change over time. Hearing Research, 326: 8–14. doi: 10.1016/j.heares.2015.03.011
  • Woods, D.L. 1995. The component structure of the N1 wave of the human auditory evoked potential. Electroencephalography and Clinical Neurophysiology, 44: 102–109.
  • Woods, D.L., Alain, C., Covarrubias, D., Zaidel, O. 1993. Frequency-related differences in the speed of human auditory processing. Hearing Research, 66(1): 46–52. doi: 10.1016/0378-5955(93)90258-3
  • Zhang, F., Samy, R.N., Anderson, J.M., Houston, L. 2009. Recovery function of the late auditory evoked potential in cochlear implant users and normal-hearing listeners. Journal of the American Academy of Audiology, 20: 397–408. doi: 10.3766/jaaa.20.7.2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.