497
Views
16
CrossRef citations to date
0
Altmetric
Review

Anticancer cellular immunotherapies derived from umbilical cord blood

&
Pages 121-134 | Received 17 Jun 2017, Accepted 03 Nov 2017, Published online: 09 Nov 2017

References

  • Rocha V, Gluckman E, Eurocord Netcord R, et al. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 2009 Oct;147(2):262–274. PubMed PMID: WOS:000270396900012.
  • Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001 May 15;97(10):2962–2971. PubMed PMID: WOS:000170301300006.
  • Brunstein CG, Gutman JA, Weisdorf DJ, et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood. 2010 Nov;116(22):4693–4699. PubMed PMID: WOS:000284599900043.
  • Lund TC, Boitano AE, Delaney CS, et al. Advances in umbilical cord blood manipulation-from niche to bedside. Nat Rev Clin Oncol. 2015 Mar;12(3):163–174. PubMed PMID: WOS:000350673000008.
  • Cairo MS, Tarek N, Lee DA, et al. Cellular engineering and therapy in combination with cord blood allografting in pediatric recipients. Bone Marrow Transplant. 2016 Jan;51(1):27–33. PubMed PMID: WOS:000368469800004.
  • Dahlberg A, Woo S, Delaney C, et al. Notch-mediated expansion of cord blood progenitors: maintenance of transcriptional and epigenetic fidelity. Leukemia. 2015 Sep;29(9):1948–1951. PubMed PMID: WOS:000360937800019.
  • Dahlberg A, Brashem-Stein C, Delaney C, et al. Enhanced generation of cord blood hematopoietic stem and progenitor cells by culture with StemRegenin1 and Delta1(Ext-IgG). Leukemia. 2014 Oct;28(10):2097–2101. PubMed PMID: WOS:000343671400021.
  • Delaney C, Milano F, Cicconi L, et al. Infusion of a non-HLA-matched ex-vivo expanded cord blood progenitor cell product after intensive acute myeloid leukaemia chemotherapy: a phase 1 trial. Lancet Haematol. 2016 Jul;3(7):E330–E339. PubMed PMID: WOS:000389069400008.
  • Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012 Jun;64(8):739–748. PubMed PMID: WOS:000304739200005.
  • Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med. 2013 Jul;28(4):387–402. PubMed PMID: WOS:000321538500001.
  • Hanley PJ, Cruz CR, Shpall EJ, et al. Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy. 2010 Oct;12(6):713–720. PubMed PMID: WOS:000282517400002.
  • Cany J, Dolstra H, Shah N. Umbilical cord blood-derived cellular products for cancer immunotherapy. Cytotherapy. 2015 Jun;17(6):739–748. PubMed PMID: WOS:000354142600007.
  • Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol. 2014 Feb 5. DOI:10.3389/fimmu.2014.00068. PubMed PMID: WOS:000354052100002.
  • Constantino J, Gomes C, Falcao A, et al. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Translational Res. 2016 Feb;168:74–95. PubMed PMID: WOS:000369040000008.
  • Sarvaria A, Basar R, Mehta RS, et al. IL-10(+) regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood. 2016 Sep;128(10):1346–1361. PubMed PMID: WOS:000383945100007.
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012 Apr;12(4):269–281. PubMed PMID: WOS:000302132700012.
  • Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012 Apr;12(4):239–252. PubMed PMID: WOS:000302132700010.
  • Chabannon C, Mfarrej B, Guia S, et al. Manufacturing natural killer cells as medicinal products. Front Immunol. 2016 Nov;7. DOI:10.3389/fimmu.2016.00504. PubMed PMID: WOS:000387924200001.
  • Hiwarkar P, Qasim W, Ricciardelli I, et al. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells. Blood. 2015 Dec;126(26):2882–2891. PubMed PMID: WOS:000368430000021.
  • Sarvaria A, Jawdat D, Madrigal JA, et al. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017 Mar;8. DOI:10.3389/fimmu.2017.00329. PubMed PMID: WOS:000397145600001.
  • Zhang Z, Zhao XL, Zhang TF, et al. Phenotypic characterization and anti-tumor effects of cytokine-induced killer cells derived from cord blood. Cytotherapy. 2015 Jan;17(1):86–97. PubMed PMID: WOS:000348492200010.
  • Schmidt-Wolf IG, Negrin RS, Kiem HP, et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991 Jul;174(1):139–149. PubMed PMID: 1711560; PubMed Central PMCID: PMCPMC2118875. eng.
  • Ortaldo JR, Winklerpickett RT, Yagita H, et al. Comparative-studies of CD3- and CD3+ CD56+ cells - examination of morphology, functions, T-cell receptor rearrangement, and pore-forming protein expression. Cell Immunol. 1991 Sep;136(2):486–495. PubMed PMID: WOS:A1991GC07400019.
  • Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T-cells with potent in-vivo antitumor-activity in mice with severe combined immunodeficiency. J Immunol. 1994 Aug;153(4):1687–1696. PubMed PMID: WOS:A1994PB40600028.
  • Introna M, Franceschetti M, Ciocca A, et al. Rapid and massive expansion of cord blood-derived cytokine-induced killer cells: an innovative proposal for the treatment of leukemia relapse after cord blood transplantation. Bone Marrow Transplant. 2006 Nov;38(9):621–627. PubMed PMID: WOS:000241437000004.
  • Linn YC, Lau LC, Hui KM. Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol. 2002 Jan;116(1):78–86. PubMed PMID: WOS:000173824000008.
  • Mesiano G, Todorovic M, Gammaitoni L, et al. Cytokine-induced killer (CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert Opin Biol Ther. 2012 Jun;12(6):673–684. PubMed PMID: WOS:000304064900003.
  • Ochoa AC, Gromo G, Alter BJ, et al. Long-term growth of lymphokine-activated killer (LAK) cells - role of anti-CD3, beta-il-1, interferon-gamma and interferon-beta. J Immunol. 1987 Apr;138(8):2728–2733. PubMed PMID: WOS:A1987G768100053.
  • Lopez RD, Waller EK, Lu PH, et al. CD58/LFA-3 and IL-12 provided by activated monocytes are critical in the in vitro expansion of CD56(+) T cells. Cancer Immunol Immunother. 2001 Feb;49(12):629–640. PubMed PMID: WOS:000167181700001.
  • Alvarnas JC, Linn YC, Hope EG, et al. Expansion of cytotoxic CD3(+)CD56(+) cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2001;7(4):216–222. PubMed PMID: WOS:000168435400004.
  • Hoyle C, Bangs CD, Chang P, et al. Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood. 1998 Nov;92(9):3318–3327. PubMed PMID: WOS:000076692200037.
  • Niu Q, Wang W, Li Y, et al. Cord blood-derived cytokine-induced killer cells biotherapy combined with second-line chemotherapy in the treatment of advanced solid malignancies. Int Immunopharmacol. 2011 Apr;11(4):449–456. PubMed PMID: WOS:000289393600008.
  • Vu BT, Duong QTN, Le PM, et al. Culture and differentiation of cytokine-induced killer cells from umbilical cord blood-derived mononuclear cells. Biomed Res Ther. 2016 Feb;3(1):460–468. PubMed PMID: WOS:000371882500002.
  • Rettinger E, Kuci S, Naumann I, et al. The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy. 2012 Jan;14(1):91–103. PubMed PMID: WOS:000298105000011.
  • Li H, Yu JP, Cao S, et al. CD4+CD25+ regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. J Clin Immunol. 2007 May;27(3):317–326. PubMed PMID: WOS:000246584100010.
  • Tao QS, Chen TP, Tao LL, et al. IL-15 Improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3(+)CD56(+) cells and downregulating regulatory T cells as well as IL-35. J Immunotherapy. 2013 Nov-Dec;36(9):462–467. PubMed PMID: WOS:000326275000002.
  • Zoll B, Lefterova P, Csipai M, et al. Generation of cytokine-induced killer cells using exogenous interleukin-2, −7 or −12. Cancer Immunol Immunother. 1998 Dec;47(4):221–226. PubMed PMID: WOS:000077833500006.
  • Li Y, Schmidt-Wolf IGH, Wu YF, et al. Optimized protocols for generation of cord blood-derived cytokine-induced killer/natural killer cells. Anticancer Res. 2010 Sep;30(9):3493–3499. PubMed PMID: WOS:000283009400038.
  • Schmeel LC, Schmeel FC, Coch C, et al. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol. 2015 May;141(5):839–849. PubMed PMID: WOS:000352859700007.
  • Baker J, Verneris MR, Ito M, et al. Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. Blood. 2001 May;97(10):2923–2931. PubMed PMID: WOS:000170301300001.
  • Sangiolo D, Martinuzzi E, Todorovic M, et al. Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol. 2008 Jul;20(7):841–848. PubMed PMID: WOS:000256978500005.
  • Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8(+) T cells. Blood. 2004 Apr;103(8):3065–3072. PubMed PMID: WOS:000222163500040.
  • Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood. 2003 Aug;102(4):1389–1396. PubMed PMID: WOS:000184651600041.
  • Pende D, Rivera P, Marcenaro S, et al. Major histocompatibility complex class I-related chain a and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 2002 Nov;62(21):6178–6186. PubMed PMID: WOS:000179062400029.
  • Karimi M, Cao TM, Baker JA, et al. Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8(+) T cells and NK cells. J Immunol. 2005 Dec;175(12):7819–7828. PubMed PMID: WOS:000234030400008.
  • Pievani A, Borleri G, Pende D, et al. Dual-functional capability of CD3(+)CD56(+) CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood. 2011 Sep;118(12):3301–3310. PubMed PMID: WOS:000295120900017.
  • Durrieu L, Lemieux W, Dieng MM, et al. Implication of different effector mechanisms by cord blood-derived and peripheral blood-derived cytokine-induced killer cells to kill precursor B acute lymphoblastic leukemia cell lines. Cytotherapy. 2014 Jun;16(6):845–856. PubMed PMID: WOS:000336339300013.
  • Kuci S, Rettinger E, Voss B, et al. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation. Haematologica-The Hematol J. 2010 Sep;95(9):1579–1586. PubMed PMID: WOS:000281933200022.
  • Verneris MR, Ito M, Baker E, et al. Engineering hematopoietic grafts: purified allogeneic hematopoietic stem cells plus expanded CD8(+) NK-T cells in the treatment of lymphoma. Biol Blood Marrow Transplant. 2001;7(10):532–542. PubMed PMID: WOS:000172275500002.
  • Durrieu L, Gregoire-Gauthier J, Dieng MM, et al. Human interferon-alpha increases the cytotoxic effect of CD56(+) cord blood-derived cytokine-induced killer cells on human B-acute lymphoblastic leukemia cell lines. Cytotherapy. 2012;14(10):1245–1257. PubMed PMID: WOS:000311182800011.
  • Bullok KF, Sippel C, Schmidt-Wolf IGH. Increased effect of IMiDs by addition of cytokine-induced killer cells in multiple myeloma. Hematol Oncol. 2016 Dec;34(4):208–216. PubMed PMID: WOS:000390595800005.
  • Edinger M, Cao YA, Verneris MR, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003 Jan;101(2):640–648. PubMed PMID: WOS:000180384800039.
  • Nishimura R, Baker J, Beilhack A, et al. In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood. 2008 Sep;112(6):2563–2574. PubMed PMID: WOS:000259088000053.
  • Introna M, Borleri G, Conti E, et al. Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica-The Hematol J. 2007 Jul;92(7):952–959. PubMed PMID: WOS:000247703300013.
  • Laport GG, Sheehan K, Baker J, et al. Adoptive immunotherapy with cytokine-induced killer cells for patients with relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011 Nov;17(11):1679–1687. PubMed PMID: WOS:000296829000016.
  • Linn YC, Niam M, Chu S, et al. The anti-tumour activity of allogeneic cytokine-induced killer cells in patients who relapse after allogeneic transplant for haematological malignancies. Bone Marrow Transplant. 2012 Jul;47(7):957–966. PubMed PMID: WOS:000306113100009.
  • Rocha V, Wagner JE, Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. New England J Med. 2000 Jun;342(25):1846–1854. PubMed PMID: WOS:000087704700001.
  • Zhang Z, Wang LP, Luo ZZ, et al. Efficacy and safety of cord blood-derived cytokine-induced killer cells in treatment of patients with malignancies. Cytotherapy. 2015 Aug;17(8):1130–1138. PubMed PMID: WOS:000357842900011.
  • Introna M, Pievani A, Borleri G, et al. Feasibility and safety of adoptive immunotherapy with CIK cells after cord blood transplantation. Biol Blood Marrow Transplant. 2010 Nov;16(11):1603–1607. PubMed PMID: WOS:000283830800013.
  • Shah N, Li L, McCarty J, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017 May;177(3):457–466. PubMed PMID: WOS:000399957200015.
  • Dolstra H, Roeven MWH, Spanholtz J, et al. Successful transfer of umbilical cord blood CD34(+) hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res. 2017 Aug;23(15):4107–4118. PubMed PMID: WOS:000406680300015.
  • Ma Y, Zhang Z, Tang L, et al. Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis. Cytotherapy. 2012 Apr;14(4):483–493. PubMed PMID: WOS:000301533700012.
  • Hontscha C, Borck Y, Zhou H, et al. Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol. 2011 Feb;137(2):305–310. PubMed PMID: WOS:000286106000015.
  • Knorr DA, Bachanova V, Verneris MR, et al. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014 Apr;26(2):161–172. PubMed PMID: WOS:000334655700009.
  • Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005 Aug;436(7051):709–713. PubMed PMID: WOS:000230964500046.
  • Anfossi N, Andre P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006 Aug;25(2):331–342. PubMed PMID: WOS:000240047500018.
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001 Nov;22(11):633–640. PubMed PMID: WOS:000172124500010.
  • Cheng M, Chen YY, Xiao WH, et al. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013 May;10(3):230–252. PubMed PMID: WOS:000318618400009.
  • Verneris MR, Miller JS. The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol. 2009 Oct;147(2):185–191. PubMed PMID: WOS:000270396900004.
  • Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009 May;69(9):4010–4017. PubMed PMID: 19383914; PubMed Central PMCID: PMCPMC2716664. eng.
  • Lapteva N, Durett AG, Sun JL, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012 Oct;14(9):1131–1143. PubMed PMID: WOS:000308943200011.
  • Denman CJ, Senyukov VV, Somanchi SS, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. Plos One. 2012 Jan;7(1). PubMed PMID: WOS:000299771900053.
  • Dalle JH, Menezes J, Wagner E, et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr Res. 2005 May;57(5):649–655. PubMed PMID: WOS:000228645700007.
  • Spanholtz J, Preijers F, Tordoir M, et al. clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. Plos One. 2011 Jun;6(6). PubMed PMID: WOS:000291734100016.
  • Tanaka J, Sugita J, Shiratori S, et al. Expansion of NK cells from cord blood with antileukemic activity using GMP-compliant substances without feeder cells. Leukemia. 2012 May;26(5):1149–1152. PubMed PMID: WOS:000303883500046.
  • Shah N, Martin-Antonio B, Yang H, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One. 2013 Oct;8(10). DOI:10.1371/journal.pone.0076781. PubMed PMID: WOS:000326029300052.
  • Pittari G, Filippini P, Gentilcore G, et al. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies. Front Immunol. 2015 May;6. DOI:10.3389/fimmu.2015.00230. PubMed PMID: WOS:000355322400003.
  • Luevano M, Domogala A, Blundell M, et al. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells. PLoS One. 2014 Jan;9(1). DOI:10.1371/journal.pone.0087086. PubMed PMID: WOS:000330570000098.
  • Tanaka H, Kai S, Yamaguchi M, et al. Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur J Haematol. 2003 Jul;71(1):29–38. PubMed PMID: WOS:000183511000005.
  • Luevano M, Daryouzeh M, Alnabhan R, et al. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum Immunol. 2012 Mar;73(3):248–257. PubMed PMID: WOS:000300964400006.
  • Lin SJ, Yan DC. ICAM-1 (CD54) expression on T lymphocytes and natural killer cells from umbilical cord blood: regulation with interleukin-12 and interleukin-15. Cytokines Cell Mol Ther. 2000 Dec;6(4):161–164. PubMed PMID: WOS:000171012700001.
  • Wang YY, Xu H, Zheng XD, et al. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol. 2007 Oct;4(5):377–382. PubMed PMID: WOS:000251044100008.
  • Velardi A, Ruggeri L, Moretta A, et al. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol. 2002 Sep;23(9):438–444. PubMed PMID: WOS:000177740200003.
  • Raffaghello L, Prigione I, Airoldi I, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia. 2004 Sep-Oct;6(5):558–568. PubMed PMID: WOS:000224657800016.
  • Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002 Oct;419(6908):734–738. PubMed PMID: WOS:000178615200044.
  • Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002 Mar;295(5562):2097–2100. PubMed PMID: WOS:000174450500056.
  • Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007 Jul;110(1):433–440. PubMed PMID: WOS:000247611000062.
  • Wu S, Zeng YJ, Zhang C, et al. The role of the killer cell immunoglobulin-like receptor (KIR) “missing self” model in unrelated donor HSCT: a meta-analysis. Transplant Proc. 2015 Mar;47(2):558–565. PubMed PMID: WOS:000351480600054.
  • Garfall A, Kim HT, Sun L, et al. KIR ligand incompatibility is not associated with relapse reduction after double umbilical cord blood transplantation. Bone Marrow Transplant. 2013 Jul;48(7):1000–1002. PubMed PMID: WOS:000321302300023.
  • Sekine T, Marin D, Cao K, et al. Specific combinations of donor and recipient KIR-HLA genotypes predict for large differences in outcome after cord blood transplantation. Blood. 2016 Jul;128(2):297–312. PubMed PMID: WOS:000383830000022.
  • Brunstein CG, Wagner JE, Weisdorf DJ, et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood. 2009 May;113(22):5628–5634. PubMed PMID: WOS:000266634700035.
  • Willemze R, Rodrigues CA, Labopin M, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009 Mar;23(3):492–500. PubMed PMID: WOS:000264032600009.
  • Rocha V, Ruggeri A, Spellman S, et al. Killer cell immunoglobulin-like receptor ligand matching and outcomes after unrelated cord blood transplantation in acute myeloid leukemia. Biol Blood Marrow Transplant. 2016 Jul;22(7):1284–1289. PubMed PMID: WOS:000378462700020.
  • Shevtsov M, Multhoff G. Immunological and translational aspects of NK cell-based antitumor immunotherapies. Front Immunol. 2016 Nov;7. DOI:10.3389/fimmu.2016.00492. PubMed PMID: WOS:000387494200001.
  • Iliopoulou EG, Kountourakis P, Karamouzis MV, et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010 Dec;59(12):1781–1789. PubMed PMID: WOS:000282184700003.
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005 Apr;105(8):3051–3057. PubMed PMID: WOS:000228344500017.
  • Overwijk WW. The making of a killer (T cell). Oncotarget. 2017 Feb 14;8(7):10767–10768. PubMed PMID: WOS:000394187400004.
  • Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013 May;10(5):267–276. PubMed PMID: WOS:000318157200005.
  • Pegram HJ, Purdon TJ, Van Leeuwen DG, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015 Feb;29(2):415–422. PubMed PMID: WOS:000349445000018.
  • Lorentzen CL, Straten PT. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015 Oct;82(4):307–319. PubMed PMID: WOS:000361142600002.
  • Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev. 2016 May;30(3):157–167. PubMed PMID: WOS:000378670200001.
  • Geyer MB, Brentjens RJ. Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy. 2016 Nov;18(11):1393–1409 PubMed PMID: WOS:000386316200006.
  • Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4(+): CD8(+) composition in adult B cell ALL patients. J Clin Investig. 2016 Jun;126(6):2123–2138. PubMed PMID: WOS:000377027500012.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015 Feb;385(9967):517–528. PubMed PMID: WOS:000349213600030.
  • Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013 Mar;5(177). DOI:10.1126/scitranslmed.3005930. PubMed PMID: WOS:000316454100007.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New England J Med. 2014 Oct;371(16):1507–1517. PubMed PMID: WOS:000342994700007.
  • Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010 Apr;18(4):843–851. PubMed PMID: WOS:000276636800024.
  • Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013 Dec;122(25):4129–4139. PubMed PMID: WOS:000329739100022.
  • Brudno JN, Somerville RPT, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016 Apr;34(10):1112-+. PubMed PMID: WOS:000374334200018.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. New England J Med. 2013 Apr;368(16):1509–1518. PubMed PMID: WOS:000317603300008.
  • Serrano LM, Pfeiffer T, Olivares S, et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood. 2006 Apr;107(7):2643–2652. PubMed PMID: WOS:000236656900020.
  • Dolnikov A, Shen S, Klamer G, et al. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia. Exp Hematol. 2015 Dec;43(12):1001–1014. PubMed PMID: WOS:000366145900004.
  • Huang X, Guo HF, Kang J, et al. Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19(+) lymphoid malignancies. Mol Ther. 2008 Mar;16(3):580–589. PubMed PMID: WOS:000253548100021.
  • Tammana S, Huang X, Wong M, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Human Gene Therapy. 2010 Jan;21(1):75–86. PubMed PMID: WOS:000273713000009.
  • Berglund S, Gertow J, Uhlin M, et al. Expanded umbilical cord blood T cells used as donor lymphocyte infusions after umbilical cord blood transplantation. Cytotherapy. 2014 Nov;16(11):1528–1536. PubMed PMID: WOS:000343356100009.
  • Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014 Apr;123(15):2343–2354. PubMed PMID: WOS:000335893700013.
  • Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013 Oct;122(18):3138–3148. PubMed PMID: WOS:000326503200013.
  • Bonifant CL, Szoor A, Torres D, et al. CD123-engager T cells as a novel immunotherapeutic for acute myeloid leukemia. Mol Ther. 2016 Sep;24(9):1615–1626. PubMed PMID: WOS:000384962300013.
  • Hubner J, Hoseini SS, Suerth JD, et al. Generation of genetically engineered precursor T-cells from human umbilical cord blood using an optimized alpharetroviral vector platform. Mol Ther. 2016 Jul;24(7):1216–1226. PubMed PMID: WOS:000381418300008.
  • Gill S, Tasian SK, Ruella M, et al. Anti-CD123 chimeric antigen receptor T cells (CART-123) provide a novel myeloablative conditioning regimen that eradicates human acute myeloid leukemia in preclinical models. Blood. 2013 Nov;122(21):143. PubMed PMID: WOS:000331385000170.
  • Micklethwaite KP, Savoldo B, Hanley PJ, et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood. 2010 Apr;115(13):2695–2703. PubMed PMID: WOS:000276201000020.
  • Rossig C, Pule M, Altvater B, et al. Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia. 2017 May;31(5):1087–1095. PubMed PMID: WOS:000400464800007.
  • Torikai H, Reik A, Liu PQ, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012 Jun;119(24):5697–5705. PubMed PMID: WOS:000307396500021.
  • Ren JT, Liu XJ, Fang CY, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017 May;23(9):2255–2266. PubMed PMID: WOS:000400270900015.
  • Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017 Jan;9(374). DOI:10.1126/scitranslmed.aaj2013. PubMed PMID: WOS:000394448100005.
  • Germenis AE, Karanikas V. Cord blood as a source of non-senescent lymphocytes for tumor immunotherapy. J Reprod Immunol. 2010 May;85(1):47–50. PubMed PMID: WOS:000278648200008.
  • Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004 Feb;5(2):133–139. PubMed PMID: WOS:000188512000008.
  • Burgio GR, Gluckman E, Locatelli F. Ethical reappraisal of 15 years of cord-blood transplantation. Lancet. 2003 Jan;361(9353):250–252. PubMed PMID: WOS:000180535400028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.