591
Views
13
CrossRef citations to date
0
Altmetric
Review

Universal influenza virus vaccines: what needs to happen next?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 671-683 | Received 23 Mar 2018, Accepted 05 Apr 2019, Published online: 22 Apr 2019

References

  • Immunization, vaccines and biologicals. influenza. [Internet]. WHO; [cited 2018 Aug 29]. Available from: www.who.int/immunization/topics/influenza/en/
  • Influenza. Data and statistics [Internet]. WHO; [cited 2018 Apr 29]. Available from: www.euro.who.int/en/healthtopics/communicable-diseases/influenza/data-and-statistics
  • Vasin AV, Temkina OA, Egorov VV, et al. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53–63.
  • Palese P. Influenza: old and new threats. Nat Med. 2004;10:S82–S87.
  • Berlanda Scorza F, Tsvetnitsky V, Donnelly JJ. Universal influenza vaccines: shifting to better vaccines. Vaccine. 2016;34(26):2926–2933.
  • Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J. 2018;15:17.
  • Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109:4269–4274.
  • Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657.
  • Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res. 2013;178:63–77.
  • White JM, Hoffman LR, Arevalo JH, et al. Attachment and entry of influenza virus into host cells. Pivotal roles of hemagglutinin. In: Chiu W, Burnett RM, Garcea RL editors. Structural biology of viruses. New York (NY): Oxford University Press; 1997. p. 80–104.
  • Matrosovich M, Matrosovich T, Gray T, et al. Neuraminidase is important for the initiation of influenza virus infection in human airway epitelium. J Virol. 2004;78:12665–12667.
  • Wagner R, Wolf T, Herwig A, et al. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza growth: a study by reverse genetics. J Virol. 2000;74:6316–6323.
  • Schulman JL, Khakpour M, Kilbourne ED. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J Virol. 1968;2(8):778–786.
  • McLaren C, Potter CW, Jennings R. Immunity to influenza in ferrets XIII. Protection against influenza infection by serum antibody to homologous haemagglutinin or neuraminidase antigens. Med Microbiol Immunol Infect Immun. 1974;160:33–45.
  • Ramilo O, Rodriguez-Fernandez R, Mejias A. One step forward in the road toward a universal influenza vaccine. J Infect Dis. 2017;217:1–2.
  • Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis. 2006;12:9–14.
  • Wohlbold TJ, Krammer F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses. 2014;6(6):2465–2494.
  • Cohen M, Zhang XQ, Senaati HP, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10:321.
  • Beigel JH, Farrar J, Han AM, et al. Avian influenza A (H5N1) infection in humans. N Engl J Med. 2005;353:1374–1385.
  • Tanner WD, Toth DJ, Gundlapalli AV. The pandemic potential of avian influenza A(H7N9) virus: a review. Epidemiol Infect. 2015;143:3359–3374.
  • Rota PA, Wallis TR, Harmon MW, et al. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology. 1990;175:59–68.
  • Biere B, Bauer B, Schweiger B. Differentiation of influenza B virus lineages Yamagata and Victoria by real-time PCR. J Clin Microbiol. 2010;48:1425–1427.
  • Hause BM, Collin EA, Liu R, et al. Characterization of a novel influenza virus in cattle and swine: proposal for a new genus in the Orthomyxoviridae family. MBio. 2014;5:e00031–14.
  • Webster RG, Govorkova EA. Continuing challenges in influenza. Ann NY Acad Sci. 2014;1323:115–139.
  • Fitch WM, Leiter JM, Li XQ, et al. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci U S A. 1991;88:4270–4274.
  • Koelle K, Cobey S, Grenfell B, et al. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science. 2006;314:1898–1903.
  • Treanor J. Influenza vaccine-outmaneuvering antigenic shift and drift. N Engl J Med. 2004;350:218–220.
  • Szewczyk B, Bieńkowska-Szewczyk K, Król E. Introduction to molecular biology of influenza a viruses. Acta Biochim Pol. 2014;61:397–401.
  • Smith DJ, Lapedes AS, de Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004;305:371–376.
  • Seasonal overviews of influenza in Europe [Internet]. ECDC; [cited 2018 Jun 15]. Available from: ecdc.europa.eu/en/seasonal-influenza/surveillance-and-disease-data/seasonal-overviews
  • Seasonal influenza. Flu activity & surveillance [Internet]. CDC; [cited 2018 Oct 15]. Available from: www.cdc.gov/flu/weekly/pastreports.htm
  • Recommendations on the composition of influenza virus vaccines [Internet]. WHO; [cited 2018 Jan 15]. Available from: www.who.int/influenza/vaccines/virus/recommendations/en/
  • Moa AM, Muscatello DJ, Turner RM, et al. Epidemiology of influenza B in Australia: 2001‐2014 influenza seasons. Influenza Other Respir Virus. 2017;11:102–109.
  • Trucchi C, Alicino C, Orsi A, et al. Fifteen years of epidemiologic, virologic and syndromic influenza surveillance: A focus on type B virus and the effects of vaccine mismatch in Liguria region, Italy. Hum Vaccin Immunother. 2017;13:456–463.
  • Webster RG, Laver WG, Air GM, et al. Molecular mechanisms of variation in influenza viruses. Nature. 1982;296:115–121.
  • Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med. 2000;51:407–421.
  • Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A viruses. Microbiol Rev. 1994;56:152–179.
  • Burnet FM, Lind PE. A genetic approach to variation in influenza viruses; recombination of characters in influenza virus strains used in mixed infections. J Gen Microbiol. 1951;5:59–66.
  • Hirst GK, Gotlieb T. The experimental production of combination forms of virus. I. Occurrence of combination forms after simultaneous inoculation of the allantoic sac with two distinct strains of influenza virus. J Exp Med. 1953;98:41–52.
  • Parrish CR, Murcia PR, Holmes EC. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J Virol. 2015;89:2990–2994.
  • Ma W, Kahn RE, Richt JA. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med. 2008;3:158–166.
  • Garten RJ. Antigenic and genetic characteristics of swineorigin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325:197–201.
  • Ilyushina NA, Kim JK, Negovetich NJ, et al. Extensive mammalian ancestry of pandemic (H1N1) 2009 virus. Emerg Infect Dis. 2010;16:314–317.
  • Ambrose CS, Levin MJ. The rationale for quadrivalent influenza vaccines. Hum Vaccin Immunother. 2012;8:81–88.
  • Gasparini R, Amicizia D, Lai PL, et al. Live attenuated influenza vaccine – a review. J Prev Med Hyg. 2011;52(3):95–101. 13. Fiore AE, Bridges CB, Cox NJ. Seasonal influenza vaccines. Curr Top Microbiol Immunol 2009;333:43–82.
  • Manini I, Domnich A, Amicizia D, et al. Flucelvax (Optaflu) for seasonal influenza. Expert Rev Vaccines. 2015;14:789–804.
  • Cox MM, Izikson R, Post P, et al. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther Adv Vaccines. 2015;3:97–108.
  • Ampofo WK, Bachtiar NS, Bakamutumaho B, et al. Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza Other Respir Viruses. 2012;6:142–152.
  • Robertson JS, Naeve CW, Webster RG, et al. Alternations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology. 1985;143:166–174.
  • Katz JM, Naeve CW, Webster RG. Host cell-mediated variation in H3N2 influenza viruses. Virology. 1987;156:386–395.
  • Robertson JS, Bootman JS, Newman R, et al. Structural changes in the hemagglutinin which accompany egg adaptation of an influenza A (H1N1) virus. Virology. 1987;160:31–37.
  • Wang ML, Katz JM, Webster RG. Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. Virology. 1989;171:275–279.
  • Katz JM, Webster RG. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J Gen Virol. 1992;73 (Pt 5):1159–1165.
  • Parker L, Wharton SA, Martin SR, et al. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses. J Gen Virol. 2016;97(6):1333–1344.
  • Zost SJ, Parkhouse K, Gumina ME, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A. 2017;114:12578–12583.
  • Wu NC, Zost SJ, Thompson AJ, et al. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog. 2017;13:e1006682.
  • Manini I, Trombetta CM, Lazzeri G, et al. Egg independent influenza vaccines and vaccine candidates. Vaccines (Basel). 2017;5:18.
  • Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:123.
  • Lambert ND, Ovsyannikova IG, Pankratz VS, et al. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines. 2012;11:985–994.
  • Gostic KM, Ambrose M, Worobey M, et al. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science. 2016;354(6313):722–726.
  • Hayward AC, Wang L, Goonetilleke N, et al. Natural T cell-mediated protection against seasonal and pandemic influenza. Results of the Flu Watch cohort study. Am J Respir Crit Care Med. 2015;191(12):1422–1431.
  • Van de Sandt CE, Hillaire ML, Geelhoed-Mieras MM, et al. Human influenza A virus-specific CD8+ T-cell response is long-lived. J Infect Dis. 2015;212(1):81–85.
  • Young B, Zhao X, Cook AR, et al. Do antibody responses to the influenza vaccine persist year-round in the elderly? A systematic review and meta-analysis. Vaccine. 2017;35(2):212–221.
  • Paules CI, Marston HD, Eisinger RW, et al. The pathway to a universal influenza vaccine. Immunity. 2017;47:599–603.
  • Li CK, Rappuoli R, Xu XN. Correlates of protection against influenza infection in humans on the path to a universal vaccine? Curr Opin Immunol. 2013;25(4):470–476.
  • Sui J, Hwang WC, Perez S, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009;16(3):265–273.
  • Margine I, Krammer F, Hai R, et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J Virol. 2013;87(19):10435–10446.
  • Margine I, Hai R, Albrecht RA, et al. H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J Virol. 2013;87(8):4728–4737.
  • Van der Lubbe JEM, Huizingh J, Verspuij JWA, et al. Mini-hemagglutinin vaccination induces cross-reactive antibodies in pre-exposed NHP that protect mice against lethal influenza challenge. NPJ Vaccines. 2018;3:25.
  • Ermler ME, Kirkpatrick E, Sun W, et al. Chimeric hemagglutinin constructs induce broad protection against influenza b virus challenge in the mouse model. J Virol. 2017;91(12):e00286–17.
  • Holzer B, Morgan SB, Matsuoka Y, et al. Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J Immunol. 2018;200(12):4068–4077.
  • Mc Cullough KC, Bassi I, Milona P, et al. Self-replicating replicon-rna delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol Ther Nucleic Acids. 2014 Jul;8(3):e173.
  • Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):E4133–E4142. Erratumin: Proc Natl Acad Sci U S A. 2016;113(35):E5250.
  • Vogel AB, Lambert L, Kinnear E, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26(2):446–455.
  • Wanitchang A, Wongthida P, Jongkaewwattana A. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication. Virology. 2016;498:99–108.
  • Lutz J, Lazzaro S, Habbeddine M, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines. 2017;2:29.
  • Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–2647.
  • Steel J, Lowen AC, Wang TT, et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010;1(1):pii: e00018–10.
  • Pica N, Hai R, Krammer F, et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci U S A. 2012;109:2573–2578.
  • Kirchenbaum GA, Carter DM, Ross TM. Sequential infection in ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts hemagglutinin stalk-specific antibodies. J Virol. 2015 Nov 11;90(2):1116–1128.
  • Wei CJ, Boyington JC, McTamney PM, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science. 2010;329(5995):1060–1064.
  • Whittle JR, Wheatley AK, Wu L, et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J Virol. 2014;88:4047–4057.
  • Neu KE, Henry Dunand CJ, Wilson PC. Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease? Curr Opin Immunol. 2016;42:48–55.
  • Nachbagauer R, Liu WC, Choi A, et al. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines. 2017;2:26.
  • Ellebedy AH, Ahmed R. Re-engaging cross-reactive memory B cells: the influenza puzzle. Front Immunol. 2012;3:53.
  • Valkenburg SA, Mallajosyula VV, Li OT, et al. Stalking influenza by vaccination with pre fusion headless HA mini-stem. Sci Rep. 2016;6:22666.
  • Impagliazzo A, Milder F, Kuipers H, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349(6254):1301–1306.
  • Liu W-C, Jan J-T, Huang Y-J, et al. Unmasking stem-specific neutralizing epitopes by abolishing n-linked glycosylation sites of influenza virus hemagglutinin proteins for vaccine design. J Virol. 2016;90(19):8496–8508.
  • Yassine HM, Boyington JC, McTamney PM, et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med. 2015;21:1065–1070.
  • Sutton TC, Chakraborty S, Mallajosyula VVA, et al. Protective efficacy of influenza group 2 hemagglutinin stem-fragment immunogen vaccines. NPJ Vaccines. 2017;2:35.
  • Rajendran M, Sun W, Comella P, et al. An immuno-assay to quantify influenza virus hemagglutinin with correctly folded stalk domains in vaccine preparations. PLoS One. 2018;13(4):e0194830.
  • Jacobsen H, Rajendran M, Choi A, et al. Influenza virus hemagglutinin stalk-specific antibodies in human serum are a surrogate marker for in vivo protection in a serum transfer mouse challenge model. mBio. 2017;8(5):e01463–17.
  • Pavlova S, D‘Alessio F, Houard S, et al. Immunoassay standardisation for “universal” influenza vaccines. Influenza Other Respir Viruses. 2017;11(3):194–201.
  • Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect. 2017;23:222–228.
  • Krammer F, Pica N, Hai R, et al. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol. 2013;87:6542–6550.
  • Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14:167–182.
  • Mancini N, Solforosi L, Clementi N, et al. A potential role for monoclonal antibodies in prophylactic and therapeutic treatment of influenza. Antiviral Res. 2011;92:15–26.
  • Hiroi S, Kuhara M, Kishi Y, et al. Human monoclonal antibodies neutralizing influenza virus A/H1N1pdm09 and seasonal A/H1N1 strains - Distinct Ig gene repertoires with a similar action mechanism. Immunobiology. 2018;223:319–326.
  • Ekiert DC, Kashyap AK, Steel J, et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature. 2012;489:526–532.
  • Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337:1343–1348.
  • Yoon A, Yi KS, Chang SY, et al. An anti-influenza virus antibody inhibits viral infection by reducing nucleus entry of influenza nucleoprotein. PLoS One. 2015;10:e0141312.
  • Carter DM, Darby CA, Lefoley BC, et al. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J Virol. 2016;90:4720–4734.
  • Doyle TM, Hashem AM, Li C, et al. Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Res. 2013;100(2):567–574.
  • Eichelberger MC, Wan H. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol. 2015;386:275–299.
  • Couch RB, Atmar RL, Franco LM, et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis. 2013;207:974–981.
  • Couch RB, Kasel JA, Gerin JL, et al. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis. 1974;129(4):411–420.
  • Murphy BR, Kasel JA, Chanock RM. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N Engl J Med. 1972;286(25):1329–1332.
  • Monto AS, Petrie JG, Cross RT, et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J Infect Dis. 2015;212(8):1191–1199.
  • Strauch EM, Bernard SM, La D, et al. Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site. Nat Biotechnol. 2017;35:667–671.
  • Wan H, Gao J, Xu K, et al. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol. 2013;87(16):9290–9300.
  • Eichelberger MC, Morens DM, Taubenberger JK. Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness. Curr Opin Immunol. 2018;53:38–44.
  • Fritz R, Sabarth N, Kiermayr S, et al. A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase- inhibiting antibodies. J Infect Dis. 2012;205(28–34):21.
  • Cate TR, Rayford Y, Nino D, et al. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine. 2010;28:2076–2079.
  • Couzens L, Gao J, Westgeest K, et al. An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. J Virol Methods. 2014;210:7–14.
  • Eichelberger MC, Couzens L, Gao Y, et al. Comparability of neuraminidase inhibition antibody titers measured by enzyme-linked lectin assay (ELLA) for the analysis of influenza vaccine immunogenicity. Vaccine. 2016;34(4):458–465.
  • El Bakkouri K, Descamps F, De Filette M, et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J Immunol. 2011;186:1022–1031.
  • Neirynck S, Deroo T, Saelens X, et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999;5:1157–1163.
  • Schotsaert M, De Filette M, Fiers W, et al. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines. 2009;8:499–508.
  • Kim MC, Song JM, Eunju O, et al. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther. 2013;21:485–492.
  • Turley CB, Rupp RE, Johnson C, et al. Safety and immunogenicity of a recombinant M2e flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine. 2011;29:5145–5152.
  • Kolpe A, Schepens B, Fiers W, et al. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines. 2017;16:123–136.
  • Kim EH, Han GY, Nguyen H. An adenovirus-vectored influenza vaccine induces durable cross-protective hemagglutinin stalk antibody responses in mice. Viruses. 2017 Aug 21;9(8):pii: E234.
  • Soboleski MR, Gabbard JD, Price GE, et al. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice. PLoS One. 2011;6(7):e21937.
  • López-Sagaseta J, Malito E, Rappuoli R, et al. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J. 2016;14:58–68.
  • Feshchenko E, Rhodes DG, Felberbaum R, et al. Pandemic influenza vaccine: characterization of A/California/07/2009 (H1N1) recombinant hemagglutinin protein and insights into H1N1 antigen stability. BMC Biotechnol. 2012;12:77.
  • Mosafer J, Badiee A, Mohammadamini Z, et al. Immunization against PR8 influenza virus with chitosan-coated ISCOMATRIX nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup2):587-593.
  • Yap KL, Ada GL. The recovery of mice from influenza A virus infection: adoptive transfer of immunity with influenza virus-specific cytotoxic T lymphocytes recognizing a common virion antigen. Scand J Immunol. 1978;8(5):413–420.
  • Flynn KJ, Belz GT, Altman JD, et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity. 1998;8(6):683–691.
  • Kumar A, Meldgaard TS, Bertholet S. Novel platforms for the development of a universal influenza vaccine. Front Immunol. 2018;9:600.
  • Duvvuri VR, Moghadas SM, Guo H, et al. Highly conserved cross-reactive CD4+ T-cell HA-epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza Other Respir Viruses. 2010;4(5):249–258.
  • Sridhar S, Begom S, Bermingham A, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–1312.
  • Steinhoff MC, Fries LF, Karron RA, et al. Effect of heterosubtypic immunity on infection with attenuated influenza A virus vaccines in young children. J Clin Microbiol. 1993;31(4):836–838.
  • Belshe R, Lee MS, Walker RE, et al. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines. 2004;3(6):643–654.
  • Nogales A, Baker SF, Domm W, et al. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res. 2016;216:26–40.
  • Si L, Xu H, Zhou X, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science. 2016;354(6316):1170–1173.
  • Broadbent AJ, Santos CP, Anafu A, et al. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine. 2016;34(4):563–570.
  • Cox A, Baker SF, Nogales A, et al. Development of a mouse-adapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine. J Virol. 2015;89(6):3421–3426.
  • Morgan SB, Hemmink JD, Porter E, et al. Aerosol delivery of a candidate universal influenza vaccine reduces viral load in pigs challenged with pandemic H1N1 virus. J Immunol. 2016;196(12):5014–5023.
  • Lillie PJ, Berthoud TK, Powell TJ, et al. Preliminary assessment of the efficacy of a T-cell based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis. 2012;55:19–25.
  • Tully CM, Chinnakannan S, Mullarkey CE, et al. Novel bivalent viral-vectored vaccines induce potent humoral and cellular immune responses conferring protection against stringent influenza A virus challenge. J Immunol. 2017 Jul 19;199(4):1333–1341.
  • Antrobus RD, Berthoud TK, Mullarkey CE, et al. Coadministration of seasonal influenza vaccine and MVA-NP+M1 simultaneously achieves potent humoral and cell-mediated responses. Mol Ther. 2014;22(1):233–238.
  • Fries LF, Smith GE, Glenn GM. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med. 2013 Dec 26;369(26):2564–2566.
  • Magnusson SE, Altenburg AF, Bengtsson KL, et al. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res. 2018;66(2):224–233.
  • Antrobus RD, Coughlan L, Berthoud TK, et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved influenza A antigens. Mol Ther. 2014;22(3):668–674.
  • Florek NW, Weinfurter JT, Jegaskanda S, et al. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques. J Virol. 2014;88(22):13418–13428.
  • Florek NW, Kamlangdee A, Mutschler JP, et al. A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques. PLoS One. 2017;12(8):e0181738.
  • Pleguezuelos O, Robinson S, Stoloff GA, et al. Synthetic influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomised, placebo-controlled phase I trial. Vaccine. 2012;30:4655–4660.
  • Atsmon J, Caraco Y, Ziv-Sefer S, et al. Priming by a novel universal influenza vaccine (Multimeric-001)-a gateway for improving immune response in the elderly population. Vaccine. 2014;32(44):5816–5823.
  • Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30(12):1210–1216.
  • Hekele A, Bertholet S, Archer J, et al. Rapidly produced SAM(®) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect. 2013;2(8):e52.
  • Magini D, Giovani C, Mangiavacchi S, et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge. PLoS One. 2016;11(8):e0161193.
  • Brazzoli M, Magini D, Bonci A, et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J Virol. 2016;90(1):332–344.
  • Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–1327.
  • Valkenburg SA, Leung NHL, Bull MB, et al. The hurdles from bench to bedside in the realization and implementation of a universal influenza vaccine. Front Immunol. 2018;9:1479.
  • WHO preferred product characteristics for next-generation influenza vaccines [Internet]. WHO; [cited 2018 Feb 11]. Available from: http://www.who.int/immunization/documents/ISBN_978-92-4-151246-6/en
  • Potter CW, Oxford JS. Determinants of immunity to influenza infection in man. Br Med Bull. 1979;35(1):69–75.
  • Hobson D, Curry RL, Beare AS, et al. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg. 1972;70(4):767–777.
  • Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines. 2013;12(5):519–536.
  • European medicines agency. Guidelines on influenza vaccines; [cited 2018 Feb 11]. Available from: https://www.ema.europa.eu/documents/scientific-guideline/influenza-vaccines-non-clinical-clinical-module_en.pdf
  • Meiklejohn G, Kempe CH, Thalman WG, et al. Evaluation of monovalent influenza vaccines. II. Observations during an influenza a-prime epidemic. Am J Hyg. 1952;55(1):12–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.