305
Views
15
CrossRef citations to date
0
Altmetric
Review

Selected application of peptide molecules as pharmaceutical agents and in cosmeceuticals

, , , , , , ORCID Icon & show all
Pages 1275-1287 | Received 09 Apr 2019, Accepted 02 Aug 2019, Published online: 13 Aug 2019

References

  • Reichert J, Pechon P, Tartat A, et al. Development trends for peptide therapeutics: A comprehensive quantitative analysis of peptide therapeutics in clinical development. San Diego (CA): Peptide Therapeutics Foundation; 2010. p. 1–11.
  • Ageitos J, Sánchez-Pérez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017;133:117–138.
  • Lupo MP, Cole AL. Cosmeceutical peptides. Dermatol Ther. 2007;20(5):343–349.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–128.
  • Hutchinson J, Burholt S, Hamley I. Peptide hormones and lipopeptides: from self‐assembly to therapeutic applications. J Pept Sci. 2017;23(2):82–94.
  • Grant M, Leone-Bay A. Peptide therapeutics: it’s all in the delivery. Ther Deliv. 2012;3(8):981–996.
  • Hamley IW. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117(24):14015–14041.
  • Craik DJ, Fairlie DP, Liras S, et al. The future of peptide‐based drugs. Chem Biol Drug Des. 2013;81(1):136–147.
  • Moyle PM. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv. 2017;35(3):375–389.
  • Negahdaripour M, Eslami M, Nezafat N, et al. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect Genet Evol. 2017;54:402–416.
  • Bobbala S, Hook S. Is There an optimal formulation and delivery strategy for subunit vaccines? Pharm Res. 2016;33(9):2078–2097.
  • Wen Y, Collier JH. Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol. 2015;35:73–79.
  • Moyle PM, Dai W, Liu TY, et al. Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorg Med Chem Lett. 2015;25(23):5570–5575.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. Chem Med Chem. 2013;8(3):360–376.
  • Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine. 2014;9(17):2657–2669.
  • Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol. 2016;120:1–14.
  • Negahdaripour M, Nezafat N, Eslami M, et al. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol. 2018;58:96–109.
  • Croft NP, Purcell AW. Peptidomimetics- modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines. 2011;10(2):211–226.
  • Nezafat N, Eslami M, Negahdaripour M, et al. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol Biosyst. 2017;13(4):699–713.
  • Yang H, Kim DS. Peptide immunotherapy in vaccine development: from epitope to adjuvant. Adv Protein Chem Struct Biol. 2015;99:1–14.
  • Obara W, Kanehira M, Katagiri T, et al. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci. 2018;109(3):550–559.
  • Melssen M, Slingluff CL Jr. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92.
  • Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol. 2014;349:121–134.
  • Mahmoodi S, Nezafat N, Barzegar A, et al. Harnessing bioinformatics for designing a novel multiepitope peptide vaccine against breast cancer. Curr Pharm Biotechnol. 2016;17(12):1100–1114.
  • Vakili B, Nezafat N, Hatam GR, et al. Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach. Comput Biol Chem. 2018;72:16–25.
  • Negahdaripour M, Golkar N, Hajighahramani N, et al. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv. 2017;35(5):575–596.
  • Rudra JS, Tian YF, Jung JP, et al. A self-assembling peptide acting as an immune adjuvant. Proc Nat Acad Sci. 2010;107(2):622–627.
  • Si Y, Wen Y, Kelly SH, et al. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8(+) T cell responses. J Control Release. 2018;282:120–130.
  • Sun T, Han H, Hudalla GA, et al. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater. 2016;30:62–71.
  • Hauptstein N, De Leon-Rodriguez LM, Mitra AK, et al. Supramolecular threading of peptide hydrogel fibrils. ACS Biomater Sci Eng. 2018;4(8):2733–2738.
  • Prickett S, Rolland J, O’hehir R. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy. 2015;45(6):1015–1026.
  • Campana R, Huang H-J, Freidl R, et al., editors.Recombinant allergen and peptide-based approaches for allergy prevention by oral tolerance.Semin Immunol.2017;30:67–80.
  • Zare A, Pourfathollah AA, Pourpak Z, et al. Peptide-based vaccines derived from FcεRI beta subunit can reduce allergic response in mice model. Iran J Allergy Asthma Immunol. 2017;16(4):289.
  • Pfaar O, Bachert C, Bufe A, et al. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases. Allergo J Int. 2014;23(8):282–319.
  • Mackenzie KJ, Fitch PM, Leech MD, et al. Combination peptide immunotherapy based on T‐cell epitope mapping reduces allergen‐specific IgE and eosinophilia in allergic airway inflammation. Immunology. 2013;138(3):258–268.
  • Burks AW, Calderon MA, Casale T, et al. Update on allergy immunotherapy: American academy of allergy, asthma & immunology/European academy of allergy and clinical immunology/PRACTALL consensus report. J Allergy Clin Immunol. 2013;131(5):1288–1296. e3.
  • Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18(5):736.
  • Anzengruber J, Bublin M, Bönisch E, et al. Lactobacillus buchneri S-layer as carrier for an Ara h 2-derived peptide for peanut allergen-specific immunotherapy. Mol Immunol. 2017;85:81–88.
  • Focke-Tejkl M, Weber M, Niespodziana K, et al. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J Allergy Clin Immunol. 2015;135(5):1207–1217. e11.
  • O’Hehir RE, Prickett SR, Rolland JM. T cell epitope peptide therapy for allergic diseases. Curr Allergy Asthma Rep. 2016;16(2):14.
  • Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med. 2015;21(9):560–570.
  • Bechara C, Sagan S. Cell‐penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693–1702.
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–1193.
  • Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179–1188.
  • Derossi D, Joliot AH, Chassaing G, et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269(14):10444–10450.
  • Copolovici DM, Langel K, Eriste E, et al. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994.
  • Rádis-Baptista G, Campelo IS, Morlighem J-ÉR, et al. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol. 2017;252:15–26.
  • Guidotti G, Brambilla L, Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharm Sci. 2017;38(4):406–424.
  • Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem. 2008;6(13):2242–2255.
  • Aroui S, Brahim S, De Waard M, et al. Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett. 2009;285(1):28–38.
  • Kwon YM, Chung HS, Moon C, et al. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release. 2009;139(3):182–189.
  • Kwon HY, Eum WS, Jang HW, et al. Transduction of Cu, Zn‐superoxide dismutase mediated by an HIV‐1 Tat protein basic domain into mammalian cells. FEBS Lett. 2000;485(2–3):163–167.
  • Ma J, Xu J, Guan L, et al. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. Fish Shellfish Immunol. 2014;39(1):8–16.
  • Nigatu AS, Vupputuri S, Flynn N, et al. Evaluation of cell‐penetrating peptide/adenovirus particles for transduction of CAR‐negative cells. J Pharm Sci. 2013;102(6):1981–1993.
  • Chen H-Z, Wu CP, Chao Y-C, et al. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells. Biochem Biophys Res Commun. 2011;405(2):297–302.
  • Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv. 2017;14(2):245–255.
  • Johansson HJ, El-Andaloussi S, Holm T, et al. Characterization of a novel Cytotoxic cell‐penetrating Peptide Derived from p14ARF protein. Mol Ther. 2008;16(1):115–123.
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–16017.
  • Park J, Ryu J, Kim K-A, et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol. 2002;83(5):1173–1181.
  • Joliot A, Pernelle C, Deagostini-Bazin H, et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Nat Acad Sci. 1991;88(5):1864–1868.
  • Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–5840.
  • Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Nat Acad Sci. 2000;97(24):13003–13008.
  • De Coupade C, Fittipaldi A, Chagnas V, et al. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem J. 2005;390(2):407–418.
  • Nakase I, Hirose H, Tanaka G, et al. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Mol Ther. 2009;17(11):1868.
  • Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15):850–860.
  • Kilk K, Magzoub M, Pooga M, et al. Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconj Chem. 2001;12(6):911–916.
  • Han K, Jeon M-J, Kim K-A, et al. Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Mol Cells. 2000;10(6):728–732.
  • Balayssac S, Burlina F, Convert O, et al. Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochem. 2006;45(5):1408–1420.
  • Morris MC, Deshayes S, Heitz F, et al. Cell‐penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell. 2008;100(4):201–217.
  • Elmquist A, Hansen M, Langel Ü. Structure–activity relationship study of the cell-penetrating peptide pVEC. Biochim Biophys Acta. 2006;1758(6):721–729.
  • Liu H, Zeng F, Zhang M, et al. Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release. 2016;226:124–137.
  • Magzoub M, Sandgren S, Lundberg P, et al. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun. 2006;348(2):379–385.
  • Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta. 1998;1414(1–2):127–139.
  • Pooga M, Soomets U, Hällbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol. 1998;16(9):857–861.
  • Taylor BN, Mehta RR, Yamada T, et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res. 2009;69(2):537–546.
  • Yamada T, Christov K, Shilkaitis A, et al. p28, A first in class peptide inhibitor of cop1 binding to p53. Br J Cancer. 2013;108(12):2495–2504.
  • Oehlke J, Krause E, Wiesner B, et al. Extensive cellular uptake into endothelial cells of an amphipathic β‐sheet forming peptide. FEBS Lett. 1997;415(2):196–199.
  • Sadler K, Eom KD, Yang J-L, et al. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochem. 2002;41(48):14150–14157.
  • Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev. 2008;60(4):473–484.
  • Rhee M, Davis P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J Biol Chem. 2006;281(2):1233–1240.
  • Gao C, Mao S, Ditzel HJ, et al. A cell-penetrating peptide from a novel pVII–pIX phage-displayed random peptide library. Bioorg Med Chem. 2002;10(12):4057–4065.
  • Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543–1575.
  • Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med. 1939;70(1):1.
  • Esmatabadi MD, Bozorgmehr A, Hajjari S, et al. Review of new insights into antimicrobial agents. Cell Mol Biol (noisy Le Grand). 2017;63(2):40–48.
  • Diamond G, Beckloff N, Weinberg A, et al. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15(21):2377–2392.
  • Ganz T, Lehrer RI. Antimicrobial peptides of leukocytes. Curr Opin Hematol. 1997;4(1):53–58.
  • Zhang X-J, Wang P, Zhang N, et al. B Cell functions can be modulated by antimicrobial peptides in rainbow trout oncorhynchus mykiss: novel insights into the innate nature of B cells in fish. Front Immunol. 2017;8:388.
  • Zeya HI, Spitznagel JK. Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification. Science (New York, NY). 1963 Nov 22;142(3595):1085–1087.
  • Redwan EM, Uversky VN, El-Fakharany EM, et al. Potential lactoferrin activity against pathogenic viruses. C R Biol. 2014;337(10):581–595.
  • Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. 2017;8:2.
  • SIMMACO M, BARRA D, CHIARINI F, et al. A family of bombinin‐related peptides from the skin of Bombina variegata. Febs J. 1991;199(1):217–222.
  • Gibson BW, Tang D, Mandrell R, et al. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem. 1991;266(34):23103–23111.
  • Pérez-Cordero JJ, Lozano JM, Cortés J, et al. Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides. 2011;32(4):683–690.
  • Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, et al. Biologically active and antimicrobial peptides from plants. Biomed Res Int. 2015;25:102129.
  • Barbosa Pelegrini P, Del Sarto RP, Silva ON, et al. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011;2011.
  • Balls A, Hale W, Harris T. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 1942;19(19):279–288.
  • Bohlmann H, Thionins AK. Annual review of plant biology. Thionins Annual Review of Plant Physiology and Plant Molecular Biology. 1991;42(1):227–240.
  • Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol. 2014;5:97.
  • Segura A, Moreno M, García-Olmedo F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett. 1993;332(3):243–246.
  • Barbault F, Landon C, Guenneugues M, et al. Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry. 2003 Dec 16;42(49):14434–14442.
  • Hultmark D, STEINER H, Rasmuson T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of hyalophora cecropia. Febs J. 1980;106(1):7–16.
  • Li W-F, Ma G-X, Zhou -X-X. Apidaecin-type peptides: biodiversity, structure–function relationships and mode of action. Peptides. 2006;27(9):2350–2359.
  • Michaut L, Fehlbaum P, Moniatte M, et al. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett. 1996;395(1):6–10.
  • Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Nat Acad Sci. 1996;93(3):1221–1225.
  • Thevissen K, Kristensen -H-H, Thomma BP, et al. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 2007;12(21):966–971.
  • Reddy K, Yedery R, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents. 2004;24(6):536–547.
  • Choi JH, Jang AY, Lin S, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep. 2015;12(5):6483–6490.
  • Avato P, Bucci R, Tava A, et al. Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res. 2006 Jun;20(6):454–457.
  • Saini SS, Chopra AK, Peterson JW. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon. 1999;37(11):1605–1619.
  • Felnagle EA, Jackson EE, Chan YA, et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 2008;5(2):191–211.
  • Martínez B, Rodríguez A, Suárez E. Antimicrobial peptides produced by bacteria: the bacteriocins. In: Vill TG, editor. New weapons to control bacterial growth. Cham: Springer; 2016. p. 15–38.
  • Li J, Koh -J-J, Liu S, et al. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci. 2017;11:73.
  • Yang S-C, Lin C-H, Sung CT, et al. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014;5:241.
  • Tabbene O, Kalai L, Ben Slimene I, et al. Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett. 2011;316(2):108–114.
  • Bensaci MF, Gurnev PA, Bezrukov SM, et al. Fungicidal activities and mechanisms of action of Pseudomonas syringae pv. syringae lipodepsipeptide syringopeptins 22A and 25A. Front Microbiol. 2011;2:216.
  • Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–125.
  • Hamley IW, Dehsorkhi A, Jauregi P, et al. Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter. 2013;9(40):9572–9578.
  • Zhang D, Miller MJ. Polyoxins and nikkomycins: progress in synthetic and biological studies. Curr Pharm Des. 1999 Feb;5(2):73–99.
  • Schagen SK. Topical peptide treatments with effective anti-aging results. Cosmetics. 2017;4(2):16.
  • Shah A, Simonnet J-T, Crissien C, et al. Meta-stable cosmetic or skin care composition. Google Patents;2015.
  • Lupo MP. Cosmeceutical peptides. Dermatol Surg. 2005;31(s1):832–836.
  • Husein El Hadmed H, Castillo RF. Cosmeceuticals: peptides, proteins, and growth factors. J Cosmet Dermatol. 2016;15(4):514–519.
  • Kim DH, Park JS, Yu SH, et al. Cosmetic compositoin containing a rubus coreanus extract for diminishing skin wrinkles. Google Patents;2015.
  • Prokopowicz M, Różycki KM. Innovation in cosmetics. World Sci News. 2017;72:448–456.
  • Gupta VK, Tuohy MG, O’Donovan A, et al. Biotechnology of bioactive compounds: sources and applications. West Sussex (UK): John Wiley & Sons; 2015.
  • Belsito DV, Hill RA, Klaassen CD, et al. Safety assessment of keratin and keratin-derived ingredients as used in cosmetics. safety. 2016;20036:8.
  • Kelly R, Ellis G, Macdonald R, et al. Keratin and soluble derivatives thereof for a nutraceutical and to reduce oxidative stress and to reduce inflammation and to promote skin health. Google Patents;2007.
  • Senior RM, Griffin GL, Mecham RP, et al. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol. 1984;99(3):870–874.
  • Gorouhi F, Maibach HI. Topical peptides and proteins for aging skin. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin, Heidelberg: Springer; 2010. p. 1089–1117.
  • Gruchlik A, Chodurek E, Dzierzewicz Z. Effect of gly-his-lys and its copper complex on TGF-β1 secretion in normal human dermal fibroblasts. Acta Poloniae Pharmaceutica—Drug Res. 2014;71(6):954–958.
  • Lu C, Kim BM, Lee D, et al. Synthesis of lipoic acid–peptide conjugates and their effect on collagen and melanogenesis. Eur J Med Chem. 2013;69:449–454.
  • Maibach FGHI 101 Topical Peptides and Proteins for Aging Skin. 2010;p1089–1117.
  • Hipkiss AR. Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol. 1998;30(8):863–868.
  • Nino M, Iovine B, Santoianni P. Carnosine and N-Acetylcarnosine induce inhibition of UVB Erythema in human skin. J Cosmet Dermatological Sci Appl. 2011;1(04):177.
  • Gorouhi F, Maibach H. Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci. 2009;31(5):327–345.
  • Dilallo N, Galderisi A Skin care compositions including hexapeptide complexes and methods of their manufacture. Google Patents;2008.
  • Castelletto V, Hamley IW, Whitehouse C, et al. Self-assembly of palmitoyl lipopeptides used in skin care products. Langmuir. 2013;29(29):9149–9155.
  • Herndon JH Jr, Jiang L, Kononov T, et al. An open label clinical trial of a multi-ingredient anti-aging moisturizer designed to improve the appearance of facial skin. J Drugs Dermatol. 2015;14(7):699–704.
  • Reddy B, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: Part I. Exp Dermatol. 2012;21(8):563–568.
  • Jones RR, Castelletto V, Connon CJ, et al. Collagen stimulating effect of peptide amphiphile C16–KTTKS on human fibroblasts. Mol Pharm. 2013;10(3):1063–1069.
  • Fields K, Falla T, Rodan K, et al. Bioactive peptides: signaling the future. J Cosmet Dermatol. 2009;8(1):8–13.
  • Pai VV, Bhandari P, Shukla P. Topical peptides as cosmeceuticals. Indian J Dermatol Venereol Leprol. 2017;83(1):9.
  • Olejnik A, Schroeder G, Nowak I. The tetrapeptide N-acetyl-Pro-Pro-Tyr-Leu in skin care formulations—physicochemical and release studies. Int J Pharm. 2015;492(1–2):161–168.
  • Mentel M, Schild J, Maczkiewitz U, et al. Innovative peptide technologies for even, young and healthy looking skin. SOFW JSeifen Ole Fette Wachse. 2012;138(3):22.
  • Farwick M, Maczkiewitz U, Lersch P, et al. Facial skin‐lightening benefits of the tetrapeptide Pro‐Lys‐Glu‐Lys on subjects with skin types V–VI living in South Africa. J Cosmet Dermatol. 2011;10(3):217–223.
  • Sklirou AD, Ralli M, Dominguez M, et al. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts. Redox Biol. 2015;5:205–215.
  • Daly SM, Declorcq L Use of anogeissus extract for fibrillin production in skin. Google Patents;2012.
  • Rawlings AV. Biotechnology in skin care (III): skin aging. Biotechnol Pers Care. 2006;7:163.
  • Hussain M, Goldberg DJ. Topical manganese peptide in the treatment of photodamaged skin. J Cosmet Laser Ther. 2007;9(4):232–236.
  • Zhang S, Qiu Y, Gao Y. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment. Acta Pharm Sin B. 2014;4(1):100–104.
  • Metaferia BB, Rittler M, Gheeya JS, et al. Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry. Bioorg Med Chem Lett. 2010;20(24):7337–7340.
  • Amagase H Formulations and methods for improving skin conditions. Google Patents;2016.
  • Riley PA Integument cell regeneration formulation. Google Patents;2016.
  • LU W, REN G-P, SONG J-M. Determination of content of peptides in protein hydrolysates [J]. Food Sci. 2005;7:039.
  • Kim DW, Hwang HS, Kim D-S, et al. Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model. proteins. 2011;12:13.
  • Msika P, Naaïmi D Use of a rice protein hydrolysate as pigmenting active principle. Google Patents;2012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.