96
Views
6
CrossRef citations to date
0
Altmetric
Review

Precursors of thymic peptides as stress sensors

, , , , &
Pages 1461-1475 | Received 31 Mar 2020, Accepted 21 Jul 2020, Published online: 04 Aug 2020

References

  • Lunin SM, Novoselova EG. Thymus hormones as prospective anti-inflammatory agents. Expert Opin Ther Targets. 2010;14(8):775–786.
  • Low TL, Goldstein AL. Thymic hormones: an overview. Methods Enzymol. 1985;116:213–219.
  • Karetsou Z, Martic G, Tavoulari S, et al. Prothymosin alpha associates with the oncoprotein SET and is involved in chromatin decondensation. FEBS Lett. 2004;577:496–500.
  • Subramanian C, Hasan S, Rowe M, et al. Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol. 2002;76:4699–4708.
  • Karetsou Z, Kretsovali A, Murphy C, et al. Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep. 2002;3:361–366.
  • Gomez-Marquez J. Function of prothymosin αin chromatin decondensation and expression of thymosin β-4 linked to angiogenesis and synaptic plasticity. Ann NY Acad Sci. 2007;1112:201–209.
  • Ueda H, Fujita R, Yoshida A, et al. Identification of prothymosin-alpha1, the necrosis-apoptosis switch molecule in cortical neuronal cultures. J Cell Biol. 2007;176:853–862.
  • Matsunaga H, Ueda H. Stress-induced non-vesicular release of prothymosin-α initiated by an interaction with S100A13, and its blockade by caspase-3 cleavage. Cell Death Differ. 2010;17(11):1760–1772.
  • Jiang X, Kim HE, Shu H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science. 2003;299:223–226.
  • Sarandeses CS, Covelo G, Díaz-Jullien C, et al. Prothymosin alpha is processed to thymosin alpha 1 and thymosin alpha 11 by a lysosomal asparaginyl endopeptidase. J Biol Chem. 2003;278(15):13286–13293.
  • Chen J-M, Dando PM, Rawlings ND, et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8098.
  • Franco FJ, Dı`az C, Barcia M, et al. Thymosin alpha 1 is a native peptide in several tissues. Biochim Biophys Acta. 1992;1120:43–48.
  • Manrow RE, Sburlati AR, Hanover JA, et al. Nuclear targeting of prothymosin alpha. J Biol Chem. 1991;266:3916–3924.
  • Eschenfeldt WH, Manrow RE, Krug MS, et al. Isolation and partial sequencing of the human prothymosin alpha gene family. Evidence against export of the gene products. J Biol Chem. 1989;264:7546–7555.
  • Kijogi CM, Khayeka-Wandabwa C, Sasaki K, et al. Subcellular dissemination of prothymosin alpha at normal physiology: immunohistochemical vis-a-vis western blotting perspective. BMC Physiol. 2016;16:2.
  • Mosoian A, Teixeira A, Burns CS, et al. Prothymosin-alpha inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci USA. 2010;107:10178–10183.
  • Baxevanis CN, Sfagos C, Anastasopoulos E, et al. Prothymosin-alpha enhances HLA-DR antigen expression on monocytes from patients with multiple sclerosis. J Neuroimmunol. 1990;27:141–147.
  • Skopeliti M, Kratzer U, Altenberend F, et al. Proteomic exploitation on prothymosin α-induced mononuclear cell activation. Proteomics. 2007;7:1814–1824.
  • Baxevanis CN, Frillingos S, Seferiadis K, et al. Enhancement of human T lymphocyte function by prothymosin α: increased production of interleukin-2 and expression of interleukin-2 receptors in normal human peripheral blood T lymphocytes. Immunopharmacol Immunotoxicol. 1990;12:595–617.
  • Cordero OJ, Sarandeses CS, López JL, et al. Prothymosin α enhances interleukin 2 receptor expression in normal human T-lymphocytes. Int J Immunopharmacol. 1991;13:1059–1065.
  • Samara P, Ioannou K, Neagu M, et al. The C-terminal decapeptide of prothymosin α is responsible for its stimulatory effect on the functions of human neutrophils in vitro. Int Immunopharmacol. 2013;15:50–57.
  • Skopeliti M, Iconomidou VA, Derhovanessian E, et al. Prothymosin α immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a β-sheet conformation in a sequence-specific manner. Mol Immunol. 2009;46:784–792.
  • Karachaliou CE, Triantis C, Liolios C, et al. In vivo biodistribution and imaging studies with a 99mTc-radiolabeled derivative of the C-terminus of prothymosin alpha in mice bearing experimentally-induced inflammation. Eur J Pharm Biopharm. 2017;113:188–197.
  • Samara P, Miriagou V, Zachariadis M, et al. A fragment of the alarmin prothymosin α as a novel biomarker in murine models of bacteria-induced sepsis. Oncotarget. 2017;8:48635–48649.
  • Schulof RS, Naylor PH, Sztein MB, et al. Thymic physiology and biochemistry. Adv Clin Chem. 1987;26:203–292.
  • Frasca D, Adorini L, Doria G. Enhanced frequency of mitogen-responsive T cell precursors in old mice injected with thymosin alpha 1. Eur J Immunol. 1987;17:727–730.
  • Serrate SA, Schulof RS, Leondaridis L, et al. Modulation of human natural killer cell cytotoxic activity, lymphokine production, and interleukin 2 receptor expression by thymic hormones. J Immunol. 1987;139:2338–2343.
  • Romani L, Bistoni F, Gaziano R, et al. Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood. 2004;103:4232–4239.
  • Zhang P, Chan J, Dragoi AM, et al. Activation of IKK by thymosin alpha1 requires the TRAF6 signalling pathway. EMBO Rep. 2005;6:531–537.
  • Romani L, Bistoni F, Montagnoli C, et al. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann NY Acad Sci. 2007;1112:326–338.
  • Romani L, Bistoni F, Perruccio K, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood. 2006;108:2265–2274.
  • Pierluigi B, D’Angelo C, Fallarino F, et al. Thymosin alpha1: the regulator of regulators? Ann N Y Acad Sci. 2010;1194:1–5.
  • Huang J, Jiang H, Pan M, et al. Immunopotentiator thymosin alpha-1 attenuates inflammatory pain by modulating the Wnt3a/β-catenin pathway in spinal cord. Neuroreport. 2020;31(1):69–75.
  • Pica F, Chimenti MS, Gaziano R, et al. Serum thymosin α 1 levels in patients with chronic inflammatory autoimmune diseases. Clin Exp Immunol. 2016;186:39–45.
  • Kharazmi-Khorassani J, Asoodeh A, Tanzadehpanah H. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activity of thymosin alpha-1 (Thα1) peptide. Bioorg Chem. 2019;87:743–752.
  • McGilles JP, Hall NR, Goldstein AL. Circadian rhythm of thymosin-alpha 1 in normal and thymectomized mice. J Immunol. 1983;131:148–151.
  • McClure JE, Lameris N, Wara DW, et al. Immunochemical studies on thymosin: radioimmunoassay of thymosin alpha 1. J Immunol. 1982;128:368–375.
  • Weller FE, Shah U, Cummings GD, et al. Serum levels of immunoreactive thymosin alpha 1 and thymosin beta 4 in large cohorts of healthy adults. Thymus. 1992;19:45–52.
  • Gao D, Zhang X, Zhang J, et al. Expression of thymosin alpha1-thymopentin fusion Peptide in Pichia pastoris and its characterization. Arch Pharm Res. 2008;31(11):1471–1476.
  • Milenkovic L, Lyson K, Aguila MC, et al. Effect of thymosin alpha 1 on hypothalamic hormone release. Neuroendocrinology. 1992;56:674–679.
  • Milenkovic L, McCann SM. Effects of thymosin alpha-1 on pituitary hormone release. Neuroendocrinology. 1992;55:14–19.
  • Naetar N, Ferraioli S, Foisner R. Lamins in the nuclear interior - life outside the lamina. J Cell Sci. 2017;130(13):2087–2096.
  • Dechat T, Gesson K, Foisner R Lamina-Independent lamins in the nuclear interior serve important functions. Proceedings of The Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor (NY); Volume 75: Cold Spring Harbor Laboratory Press; 2010. p. 533–543.
  • Theodor L, Shoham J, Berger R, et al. Ubiquitous expression of a cloned murine thymopoietin cDNA. Acta Haematol. 1997;97(3):153–163.
  • Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell. 1993;73:1267–1279.
  • Furukawa K, Pante N, Aebi U, et al. Cloning of a cDNA for lamina-associated polypeptide 2 n(LAP2) and identification of regions that specify targeting to the nuclear envelope. Embo J. 1995;14:1626–1636.
  • Furukawa K. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2- chromatin interaction. J Cell Sci. 1999;112:2485–2492.
  • Yang L, Guan T, Gerace L. Lamin-binding fragment of LAP2inhibits increase in nuclear volume during the cell cycle and progressioninto S phase. J Cell Biol. 1997;139:1077–1087.
  • Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteinsin nuclear assembly and DNA replication: truncated LAP2beta proteinsalter lamina assembly, envelope formation, nuclear size, and DNAreplication efficiency in xenopus laevisextracts. J Cell Biol. 1999;144:1083–1096.
  • Harris CA, Andryuk PJ, Cline S, et al. Three distinct human thymopoietins are derived from alternatively spliced mRNAs. Proc Natl Acad Sci USA. 1994;91:6283–6287.
  • Dechat T, Korbei B, Vaughan OA, et al. Lamina-associated polypeptide 2α binds intranuclear A-type lamins. J Cell Sci. 2000;113:3473–3484.
  • Naetar N, Korbei B, Kozlov S, et al. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol. 2008;10:1341–1348.
  • Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. Febs J. 2007;274(6):1362–1373.
  • Gotzmann J, Vlcek S, Foisner R. Caspase-mediated cleavage of the chromosome-binding domain of lamina-associated polypeptide 2 alpha. J Cell Sci. 2000;113(21):3769–3780.
  • Buendia B, Santa-Maria A, Courvalin JC. Caspase dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci. 1999;112:1743–1753.
  • Duband-Goulet I, Courvalin JC, Buendia B. LBR, a chromatin and lamin binding protein from the inner nuclear membrane, is proteolyzed at late stages of apoptosis. J Cell Sci. 1998;111:1441–1451.
  • Goldstein G, Scheid MP, Boyse EA, et al. A synthetic pentapeptide with biological activity characteristic of the thymic hormone thymopoietin. Science. 1979;204:1309–1310.
  • Malaise MG, Bastings M, Reuter AM, et al. In vitro effects of thymopentin on the gamma-interferon production by peripheral blood mononuclear cells from normal subjects and from patients with rheumatoid arthritis. Immunol Lett. 1987;15(4):323–327.
  • Novoselova EG, Lunin SM, Khrenov MO, et al. Effect of thymopentin on production of cytokines, heat shock proteins, and NF-kB signaling proteins. Izv Akad Nauk Ser Biol. 2008;4:422–428.
  • Lunin SM, Glushkova OV, Khrenov MO, et al. Thymus peptides regulate activity of RAW 264.7 macrophage cells: inhibitory analysis and a role of signal cascades. Expert Opin Ther Targets. 2011;15(12):1337–1346.
  • Novoselova EG, Lunin SM, Khrenov MO, et al. Involvement of NF-kB transcription factor in the antiinflammatory activity of thymic peptides. Dokl Biol Sci. 2009;428:484–486.
  • Cao Q, Gao X, Lin Y, et al. Thymopentin ameliorates dextran sulfate sodium-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. Theranostics. 2019;9(25):7490–7505.
  • He W, Zhang Z, Jiang X, et al. Stability evaluation of thymopentin in preparation process. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(2):292–294.
  • Twomey JJ, Goldstein G, Lewis VM, et al. Bioassay determinations of thymopoietin and thymic hormone levels in human plasma. Proc Natl Acad Sci U S A. 1977;74(6):2541–2545.
  • Malaise MG, Hazee-Hagelstein MT, Reuter AM, et al. Thymopoietin and thymopentin enhance the levels of ACTH, beta-endorphin and beta-lipotropin from rat pituitary cells in vitro. Acta Endocrinol. 1987;115(4):455–460.
  • Angioni S, Iori G, Cellini M, et al. Acute beta-interferon or thymopentin administration increases plasma growth hormone and cortisol levels in children. Acta Endocrinol (Copenh). 1992;127:237–241.
  • Low TL, Hu SK, Goldstein AL. Complete amino acid sequence of bovine thymosin b4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 1981;78:1162–1166.
  • Cavasin M, Rhaleb N, Yang X, et al. Prolyloligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension. 2004;43:1140–1145.
  • Goldstein AL, Hannappel E, Sosne G, et al. Thymosin β4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12(1):37–51.
  • Pollard TD, Cooper JA. Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035.
  • Carlier MF, Pantaloni D. Actin assembly in response to extracellular signals: role of capping proteins, thymosin b4 and profilin. Semin Cell Biol. 1994;5:183–191.
  • Hannappel E, Wartenberg F. Actin-sequestering ability of thymosin b4, thymosin b4 fragments, and thymosin b4-like peptides as assessed by the DNase I inhibition assay. Biol Chem Hoppe-Seyler. 1993;374:117–122.
  • Heintz D, Reichert A, Mihelic M, et al. Use of bimanyl actin derivative (TMB-actin) for studying complexation of b-thymosins. Inhibition of actin polymerization by thymosin b9. FEBS Lett. 1993;329:9–12.
  • Yu FX, Lin SC, Morrison-Bogoradn M, et al. Thymosin b10 and thymosin b4 are both actin monomer sequestering proteins. J Biol Chem. 1993;268:502–509.
  • Huff T, Zerzawy D, Hannappel E. Interactions of b-thymosins, thymosin b4-sulfoxide, and N-terminally truncated thymosin b4 with actin studied by equilibrium centrifugation, chemical cross-linking and viscometry. Eur J Biochem. 1995;230:650–657.
  • Rando OJ, Zhao K, Crabtree GR. Searching for a function for nuclear actin. Trends Cell Biol. 2000;10:92–97.
  • Huff T, Rosorius O, Otto AM, et al. Nuclear localization of the G-actin sequestering peptide thymosin b4. J Cell Sci. 2004;117:5333–5343.
  • Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics. 2001;17:721–728.
  • Cho KS, Kim DJ, Shim B, et al. An investigation on the therapeutic effect of thymosin β4 and its expression levels in streptozotocin-induced diabetic mice. Biomed Res Int. 2018;27:3421568.
  • Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009;8:935–948.
  • Hannappel E, van Kampen M. Determination of thymosin b4 in human blood cells and serum. J Chromatogr. 1987;397:279–285.
  • Frohm M, Gunne H, Bergman AC, et al. Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem. 1996;237:86–92.
  • Paulussen M, Landuyt B, Schoofs L, et al. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 2009;30(10):182218–182232.
  • Huff T, Otto AM, Muller CS, et al. Thymosin b4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. Faseb J. 2002;16:691–696.
  • Malinda KM, Goldstein AL, Kleinman HK. Thymosin b4 stimulates directional migration of human umbilical vein endothelial cells. Faseb J. 1997;11:474–481.
  • Sosne G, Christopherson PL, Barrett RP, et al. Thymosin b4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci. 2005;46:2388–2395.
  • Sosne G, Qiu P, Christopherson PL, et al. Thymosin b4 suppression of corneal NFkB: A potential anti-inflammatory pathway. Exp Eye Res. 2007;84:663–669.
  • Jiang Y, Han T, Zhang ZG, et al. Serum thymosin beta4 as a noninvasive biomarker in patients with nonalcoholic steatohepatitis. Rev Esp Enferm Dig. 2018;110:19–24.
  • Grillon C, Rieger K, Bakala J, et al. Involvement of thymosin b4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett. 1990;274:30–34.
  • Liu JM, Lawrence F, Kovacevic M, et al. The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood. 2003;101:3014–3020.
  • Rieger KJ, Saez-Servent N, Papet MP, et al. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J. 1993;296:373–378.
  • Junot C, Nicolet L, Ezan E, et al. Effect of angiotensin-converting enzyme inhibition on plasma, urine, and tissue concentrations of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro in rats. J Pharmacol Exp Ther. 1999;291:982–987.
  • Sharma U, Rhaleb NE, Pokharel S, et al. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol. 2008;294(3):H1226–1232.
  • Goldstein AL, Hannappel E, Kleinman HK. Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 2005;11(9):421–429.
  • Musaya J, Matovu E, Senga E, et al. AcSDKP is down-regulated in anaemia induced by Trypanosoma brucei infection in mice. Malawi Med J. 2017;29(3):259–264.
  • Naylor PH, Friedman-Kien A, Hersh E, et al. Thymosin α1 and thymosin β4 in serum: comparison of normal, cord, homosexual and AIDS serum. Int J Immunopharmacol. 1986;8:667–676.
  • Weller FE, Mutchnick MG, Goldstein AL, et al. Enzyme immunoassay measurement of thymosin β4 in human serum. J Biol Response Mod. 1988;7:91–96.
  • Rebar RW, Miyake A, Low TLK, et al. Thymosin stimulates secretion of luteinizing hormone. Science. 1981;214:669–671.
  • Dardenne M, Pleau JM, Nabarra B, et al. Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA. 1982;79:5370–5373.
  • Lunin SM, Khrenov MO, Glushkova OV, et al. Extrathymic production of thymulin induced by oxidative stress, heat shock, apoptosis, or necrosis. Int J Immunopathol Pharmacol. 2017;30(1):58–69.
  • Bach JF, Dardenne M, Clot J. Evaluation of serum thymic hormone and of circulating T cells in rheumatoid arthritis and in systemic lupus erythematosus. Rheumatology. 1975;6:242–250.
  • Zhu CH, Kim J, Shay JW, et al. SGNP: an essential stress granule/nucleolar protein potentially involved in 5.8s rRNA processing/transport. PLoS One. 2008;3(11):e3716.
  • Mangel WF, McGrath WJ, Toledo DL, et al. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 1993;361:274–275.
  • Kedersha N, Chen S, Gilks N, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 2002;13:195–210.
  • Kedersha NL, Gupta M, Li W, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147:1431–1442.
  • Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–332.
  • Folch H, Villegas JV, Leyan V, et al. Immunohistochemical evidences showing the presence of thymulin containing cells located in involuted thymus and in peripheral lymphoid organs. Biol Res. 2010;43(3):291–298.
  • Schuessler H, Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;45:267–281.
  • Kato Y, Uchida K, Kawakishi S. Oxidative fragmentation of collagen and prolyl peptide by Cu(II)/H2O2. Conversion of proline residue to 2-pyrrolidone. J Biol Chem. 1992;267:23646–23651.
  • Bateman RC, Youngblood WW, Busby WH, et al. Nonenzymatic peptide alpha-amidation. Implications for a novel enzyme mechanism. J Biol Chem. 1985;260:9088–9091.
  • Dean RT, Wolff SP, McElligott MA. Histidine and proline are important sites of free radical damage to proteins. Free Radic Res Commun. 1989;7:97–103.
  • Yang Y, Chemical and physical instability of monoclonal antibodies induced by metal-catalyzed carbonylation [dissertation]. Department of Pharmaceutical Chemistry and the Faculty of the Graduate School of the University of Kansas; 2019.
  • Safieh-Garabedian B, Ahmed K, Khamashta MA, et al. Thymulin modulates cytokine release by peripheral blood mononuclear cells: a comparison between healthy volunteers and patients with systemic lupus erythematosus. Int Arch Allergy Immunol. 1993;101:126–131.
  • Safieh-Garabedian B, Dardenne M, Pleau JM, et al. Potent analgesic and anti-inflammatory actions of a novel thymulin-related peptide in the rat. Br J Pharmacol. 2002;136(6):947–955.
  • Dardenne M, Saade N, Safieh-Garabedian B. Role of thymulin or its analogue as a new analgesic molecule. Ann NY Acad Sci. 2006;1088:153–163.
  • Lunin SM, Khrenov MO, Novoselova TV, et al. Thymulin, a thymic peptide, prevents the overproduction of pro-inflammatory cytokines and heat shock protein Hsp70 in inflammation-bearing mice. Immunol Invest. 2008;37:858–870.
  • Davis SL, Safieh-Garabedian B, Khosraviani M. Concentrations of thymulin in unextracted serum from pigs, sheep and cattle as measured by ELISA. J Immunoassay. 1994;15:191–211.
  • Molinero P, Soutto M, Benot S, et al. Melatonin is responsible for the nocturnal increase observed in serum and thymus of thymosin alpha1 and thymulin concentrations: observations and rat and humans. J Neuroimmunol. 2000;103:180–189.
  • Safieh B, Kendall MD, Norman JC, et al. A new radioimmunoassay for the thymic peptide thymulin, and its application for measuring thymulin in blood samples. J Immunol Methods. 1990;127:255–262.
  • Hadley AJ, Rantle CM, Buckinham JC. Thymulin stimulates corticotropin release and cyclic nucleotide formation in the rat anterior pituitary gland. Neuroimmunomodulation. 1997;4:62–69.
  • Goya RG, Sosa YE, Brown OA, et al. In vitro studies on the thymus-pituitary axis in young and old rats. Ann NY Acad Sci. 1994;741:108–114.
  • Safieh-Garabedian B, Oz M, Bey RM, et al. Involvement of the α7-nicotinic acetylcholine receptors in the anti-inflammatory action of the thymulin-related peptide (PAT). Neuroscience. 2013;250:455–466.
  • Snape N, Li D, Wei T, et al. The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virol J. 2018;15(1):182.
  • Mateyak MK, Kinzy TG. eEF1A: thinking outside the ribosome. J Biol Chem. 2010;285:21209–21213.
  • Liu G, Grant WM, Persky D, et al. Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell. 2002;13:579–592.
  • Ejiri S. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem. 2002;66:1–21.
  • Bohnsack MT, Regener K, Schwappach B, et al. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. Embo J. 2002;21:6205–6215.
  • Calado A, Treichel N, Muller EC, et al. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. Embo J. 2002;21:6216–6224.
  • Mingot JM, Vega S, Cano A, et al. eEF1A mediates the nuclear export of SNAG-containing proteins via the exportin5-aminoacyl-tRNA complex. Cell Rep. 2013;5:727–737.
  • Khacho M, Mekhail K, Pilon-Larose K, et al. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol Biol Cell. 2008;19(12):5296–5308.
  • Shamovsky I, Ivannikov M, Kandel ES, et al. RNA-mediated response to heat shock in mammalian cells. Nature. 2006;440:556–560.
  • Vera M, Pani B, Griffiths LA, et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife. 2014;3:e03164.
  • Slobin LI. The role of eucaryotic factor Tu in protein synthesis. The measurement of the elongation factor Tu content of rabbit reticulocytes and other mammalian cells by a sensitive radioimmunoassay. Eur J Biochem. 1980;110:555–563.
  • Morimoto RI, Kline MP, Bimston DN, et al. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem. 1997;32:17–29.
  • Shang Y, Zhang Z, Ba H, et al. S100A4: a novel partner for heat shock protein 47 in antler stem cells and insight into the calcium ion-induced conformational changes. J Biomol Struct Dyn. 2020;38:2068–2079.
  • Helfman DM, Kim EJ, Lukanidin E, et al. The metastasis-associated protein s100a4: role in tumour progression and metastasis. Br J Cancer. 2005;92(11):1955–1958.
  • Kim EJ, Helfman DM. Characterization of the metastasis-associated protein, s100a4. roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem. 2003;78(32):30063–30073.
  • Schmidt-Hansen B, Klingelhofer J, Grum-Schwensen B, et al. Functional significance of metastasis-inducing s100a4(mts1) in tumor-stroma interplay. J Biol Chem. 2004;279(23):24498–24504.
  • Tarabykina S, Griffiths TR, Tulchinsky E, et al. Metastasis-associated protein s100a4: spotlight on its role in cell migration. Curr Cancer Drug Targets. 2007;7(3):217–228.
  • Panniers R. Translational control during heat shock. Biochimie. 1994;76:737–747.
  • Welch WJ, Suhan JP. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol. 1985;101:1198–1211.
  • van Bekkum DW, Betel I, Blankwater MJ, et al. Biologic activities of various thymus preparations. Transplant Proc. 1977;9:1197–1199.
  • Rotter V, Trainin N. Effect of thymic hormone on the response of different lymphoid cell populations to T mitogens. Isr J Med Sci. 1977;13:363–370.
  • Caso LV. Some endocrine aspects of the thymus gland. Jpn J Med Sci Biol. 1976;29:289–321.
  • Goso C, Frasca D, Doria G. Effect of synthetic humoral factor (THF-gamma 2) on T cell activities in immunodeficient ageing mice. Clin Exp Immunol. 1992;87:346–351.
  • Rosina F, Conoscitore P, Smedile A, et al. Treatment of chronic hepatitis D with thymus-derived polypeptide thymic humoral factor-gamma 2: a pilot study. Dig Liver Dis. 2002;34(4):285–289.
  • Beuth J, Schierholz JM, Mayer G, et al. Thymic humoral factor-gamma 2 augments immune cell response and exerts antitumor activity in murine model systems. Anticancer Res. 2000;20(6B):4473–4476.
  • Bramucci M, Miano A, Quassinti L, et al. Degradation of thymic humoral factor gamma2 by human plasma: involvement of angiotensin converting enzyme. Regul Pept. 2003;111(1–3):199–205.
  • Kidron D, Saphier D, Ovadia H, et al. Central administration of immunomodulatory factors alters neural activity and adrenocortical secretion. Brain Behav Immun. 1989;3(1):15–27.
  • Rider P, Voronov E, Dinarello CA, et al. Alarmins: feel the stress. J Immunol. 2017;198(4):1395–1402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.