287
Views
3
CrossRef citations to date
0
Altmetric
Review

Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1181-1197 | Received 24 Nov 2020, Accepted 23 Feb 2021, Published online: 11 Mar 2021

References

  • Wenger DA, Luzi P, Rafi MA. Lysosomal storage diseases: heterogeneous group of disorders. BioImpacts. 2013;34:145.
  • Hollak CE, Wijburg FA. Treatment of lysosomal storage disorders: successes and challenges. J Inherit Metab Dis. 2014;37:587–598.
  • Mohamed FE, Al-Gazali L, Al-Jasmi F, et al. Pharmaceutical chaperones and proteostasis regulators in the therapy of lysosomal storage disorders: current perspective and future promises. Front Pharmacol. 2017;8:448.
  • Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseasesNat Rev Dis Primers. 2018;4:1–25.
  • Gaffke L, Pierzynowska K, Podlacha M, et al. Changes in cellular processes occurring in mucopolysaccharidoses as underestimated pathomechanisms of these diseases. Cell Biol Int. 2019. DOI:https://doi.org/10.1002/cbin.11275.
  • Gaffke L, Pierzynowska K, Podlacha M, et al. Underestimated aspect of mucopolysaccharidosis pathogenesis: global changes in cellular processes revealed by transcriptomic studies. Int J Mol Sci. 2020;21. DOI:https://doi.org/10.3390/ijms21041204.
  • Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology. 2011;50:v49–v59.
  • Schuh RS, Baldo G, Teixeira HF. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv. 2016;13(12):1709–1718.
  • Noh H, Lee J. Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Pharm Ther. 2014;39:215–224.
  • Peck SH, Casal ML, Malhotra NR, et al. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab. 2016;118:232–243.
  • Sawamoto K, Stapleton M, Alméciga-Díaz CJ, et al. Therapeutic options for mucopolysaccharidoses: current and emerging treatments. Drugs. 2019;1–32. DOI:https://doi.org/10.1007/s40265-019-01147-4.
  • Macauley SL. Combination therapies for lysosomal storage diseases: a complex answer to a simple problemPediatr Endocrinol Rev. 2016;13:639.
  • Rafi MA. Gene therapy for CNS diseases–Krabbe disease. Bioimpacts. 2016;6:69.
  • Fathi M, Barar J. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Bioimpacts. 2017;7:49.
  • Schuh RS, É P, Pasqualim G, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release. 2018;288:23–33.
  • Schuh RS, Gonzalez EA, Tavares AMV, et al. Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther. 2020;27:74–84.
  • Ou L, Przybilla MJ, Ahlat O, et al. A highly efficacious PS gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type I. Mol Ther. 2020. DOI:https://doi.org/10.1016/j.ymthe.2020.03.018.
  • Poletto E, Baldo G, Gomez-Ospina N. Genome editing for mucopolysaccharidoses. Int J Mol Sci. 2020;21:500.
  • Laoharawee K, DeKelver RC, Podetz-Pedersen KM, et al. Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther. 2018;26:1127–1136.
  • Ou L, DeKelver RC, Rohde M, et al. ZFN-mediated in vivo genome editing corrects murine Hurler syndrome. Mol Ther. 2019;27:178–187.
  • Taylor M, Khan S, Stapleton M, et al. Hematopoietic stem cell transplantation for mucopolysaccharidoses: past, present, and future. Biol Blood Marrow Transplant. 2019;25:e226–e46.
  • Parenti G, Pignata C, Vajro P, et al. New strategies for the treatment of lysosomal storage diseases. Int J Mol Med. 2013;31:11–20.
  • Chen HH, Sawamoto K, Mason RW, et al. Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet. 2019;64:1153–1171.
  • Tanaka A, Okuyama T, Suzuki Y, et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107:513–520.
  • Li M. Enzyme replacement therapy: a review and its role in treating lysosomal storage diseases. Pediatr Ann. 2018;47:e191–e7.
  • Safary A, Akbarzadeh Khiavi M, Mousavi R, et al. Enzyme replacement therapies: what is the best option? Bioimpacts. 2018;8:153–157.
  • Mikulka CR, Sands MS. Treatment for Krabbe’s disease: finding the combination. J Neurosci Res. 2016;94:1126–1137.
  • Grewal SS, Wynn R, Abdenur JE, et al. Safety and efficacy of enzyme replacement therapy in combination with hematopoietic stem cell transplantation in Hurler syndrome. Genet Med. 2005;7:143–146.
  • Cox-Brinkman J, Boelens J, Wraith J, et al. Haematopoietic cell transplantation (HCT) in combination with enzyme replacement therapy (ERT) in patients with Hurler syndrome. Bone Marrow Transplant. 2006;38:17–21.
  • Tolar J, Grewal S, Bjoraker K, et al. Combination of enzyme replacement and hematopoietic stem cell transplantation as therapy for Hurler syndrome. Bone Marrow Transplant. 2008;41:531–535.
  • Kuehn SC, Koehne T, Cornils K, et al. Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I. Hum Mol Genet. 2015;24:7075–7086.
  • White KK, Sousa T. Mucopolysaccharide disorders in orthopaedic surgery. J Am Acad Orthop Surg. 2013;21:12–22.
  • Fecarotta S, Tarallo A, Damiano C, et al. Pathogenesis of mucopolysaccharidoses, an update. Int J Mol Sci. 2020;21:2515. .
  • Clarke LA. Pathogenesis of skeletal and connective tissue involvement in the mucopolysaccharidoses: glycosaminoglycan storage is merely the instigator. Rheumatology. 2011;50:v13–v8.
  • Nan H, Park C, Maeng S. Mucopolysaccharidoses I and II: brief review of therapeutic options and supportive/palliative therapies. BioMed Res Int. 2020;2020:240840.
  • Leone A, Rigante D, Amato DZ, et al. Spinal involvement in mucopolysaccharidoses: a review. Child’s Nerv Syst. 2015;31:203–212.
  • Tomatsu S, Alméciga-Díaz CJ, Montaño AM, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114:94–109.
  • Wang X, Zhang W, Shi H, et al. Mucopolysaccharidosis I mutations in Chinese patients: identification of 27 novel mutations and 6 cases involving prenatal diagnosis. Clin Genet. 2012;81:443–452.
  • Willoughby CE, Ponzin D, Ferrari S, et al. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clin Experiment Ophthalmol. 2010;38:2–11.
  • Summers CG, Ashworth JL. Ocular manifestations as key features for diagnosing mucopolysaccharidoses. Rheumatology. 2011;50:v34–v40.
  • Fenzl CR, Teramoto K, Moshirfar M. Ocular manifestations and management recommendations of lysosomal storage disorders I: mucopolysaccharidoses. Clin Ophthalmol. 2015;9:1633.
  • Summers CG, Fahnehjelm KT, Pitz S, et al. Systemic therapies for mucopolysaccharidosis: ocular changes following haematopoietic stem cell transplantation or enzyme replacement therapy–a review. Clin Experiment Ophthalmol. 2010;38:34–42.
  • Koseoglu ST, Harmatz P, Turbeville S, et al. Reversed papilledema in an MPS VI patient with galsulfase (Naglazyme®) therapy. Int Ophthalmol. 2009;29:267–269.
  • Braunlin EA, Harmatz PR, Scarpa M, et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34:1183–1197.
  • Brands MM, Frohn‐Mulder IM, Hagemans ML, et al. Mucopolysaccharidosis: cardiologic features and effects of enzyme‐replacement therapy in 24 children with MPS I, II and VI. J Inherit Metab Dis.2013;36:227–234.
  • Braunlin E, Rosenfeld H, Kampmann C, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: long-term cardiac effects of galsulfase (Naglazyme®) therapy. J Inherit Metab Dis. 2013;36:385–394.
  • Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology. 2011;50:v4–v12.
  • Shapiro EG, Jones SA, Escolar ML. Developmental and behavioral aspects of mucopolysaccharidoses with brain manifestations - Neurological signs and symptoms. Mol Genet Metab. 2017;122s:1–7.
  • Holt J, Poe MD, Escolar ML. Early clinical markers of central nervous system involvement in mucopolysaccharidosis type II. J Pediatr. 2011;159(320–6):e2.
  • Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020;12. DOI:https://doi.org/10.1126/scitranslmed.aay1163.
  • Saville JT, McDermott BK, Fuller M. Glycosaminoglycan fragments as a measure of disease burden in the mucopolysaccharidosis type I mouse. Mol Genet Metab. 2018;123:112–117.
  • Lehman TJ, Miller N, Norquist B, et al. Diagnosis of the mucopolysaccharidoses. Rheumatology. 2011;50:v41–v8.
  • Filocamo M, Tomanin R, Bertola F, et al. Biochemical and molecular analysis in mucopolysaccharidoses: what a paediatrician must know. Ital J Pediatr. 2018;44:129.
  • Khan SA, Mason RW, Giugliani R, et al. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab. 2018;125:44–52.
  • Erickson RP, Sandman R, Epstein CJ. Lack of relationship between blood and urine levels of glycosaminoglycans and lysomal enzymes. Biochem Med. 1975;12:331–339.
  • Kubaski F, De Oliveira Poswar F, Michelin-Tirelli K, et al. Diagnosis of Mucopolysaccharidoses. Diagnostics (Basel). 2020;10. DOI:https://doi.org/10.3390/diagnostics10030172.
  • Dierenfeld AD, McEntee MF, Vogler CA, et al. Replacing the enzyme α-l-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med. 2010;2:60ra89–60ra89.
  • Baldo G, Mayer FQ, Martinelli BZ, et al. Enzyme replacement therapy started at birth improves outcome in difficult-to-treat organs in mucopolysaccharidosis I mice. Mol Genet Metab. 2013;109:33–40.
  • Gabrielli O, Clarke LA, Bruni S, et al. Enzyme-replacement therapy in a 5-month-old boy with attenuated presymptomatic MPS I: 5-year follow-up. Pediatrics. 2010;125:e183–e7.
  • Fujitsuka H, Sawamoto K, Peracha H, et al. Biomarkers in patients with mucopolysaccharidosis type II and IV. Mol Genet Metab Rep. 2019;19:100455.
  • Bobillo Lobato J, Jiménez Hidalgo M, Jiménez Jiménez LM. Biomarkers in Lysosomal Storage Diseases. Diseases. 2016;4. DOI:https://doi.org/10.3390/diseases4040040.
  • Safary A, Moniri R, Hamzeh-Mivehroud M, et al. Molecular characterization of genes coding pharmaceutically important enzymes from halo-thermo tolerant bacillus. Adv Pharm Bull. 2016;6:551.
  • Safary A, Khiavi MA, Omidi Y, et al. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci. 2019;1–19. DOI:https://doi.org/10.1007/s00018-019-03135-z.
  • Desnick R, Schuchman E. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet. 2012;13:307–335.
  • Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36:1110–1122.
  • Grabowski GA. Treatment perspectives for the lysosomal storage diseases. Expert Opin Emerg Drugs. 2008;13:197–211.
  • Solomon M, Muro S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.05.004.
  • Jameson E, Jones S, Remmington T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Lib. 2016. https://doi.org/10.1002/14651858.CD009354.pub4.
  • Jung G, Pabst M, Neumann L, et al. Characterization of alpha-l-Iduronidase (Aldurazyme(R)) and its complexes. J Proteomics. 2013;80:26–33.
  • Dickson P, McEntee M, Vogler C, et al. Intrathecal enzyme replacement therapy: successful treatment of brain disease via the cerebrospinal fluid. Mol Genet Metab. 2007;91:61–68.
  • Kakkis E, McEntee M, Vogler C, et al. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I. Mol Genet Metab. 2004;83:163–174.
  • Dickson PI, Hanson S, McEntee MF, et al. Early versus late treatment of spinal cord compression with long-term intrathecal enzyme replacement therapy in canine mucopolysaccharidosis type I. Mol Genet Metab. 2010;101:115–122.
  • Dickson PI, Kaitila I, Harmatz P, et al. Safety of laronidase delivered into the spinal canal for treatment of cervical stenosis in mucopolysaccharidosis I. Mol Genet Metab. 2015;116:69–74.
  • Giugliani R, Giugliani L, De Oliveira Poswar F, et al. Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet J Rare Dis. 2018;13:110.
  • Preusser-Kunze A, Mariappan M, Schmidt B, et al. Molecular characterization of the human Calpha-formylglycine-generating enzyme. J Biol Chem. 2005;280:14900–14910.
  • Chung YK, Sohn YB, Sohn JM, et al. A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj J. 2014;31:309–315.
  • Okuyama T, Tanaka A, Suzuki Y, et al. Japan Elaprase® Treatment (JET) study: idursulfase enzyme replacement therapy in adult patients with attenuated Hunter syndrome (mucopolysaccharidosis II, MPS II). Mol Genet Metab. 2010;99:18–25.
  • Muenzer J, Gucsavas-Calikoglu M, McCandless SE, et al. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90:329–337.
  • Muenzer J, Wraith JE, Beck M, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8:465.
  • Muenzer J, Beck M, Eng CM, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13:95.
  • Okuyama T, Eto Y, Sakai N, et al. Iduronate-2-sulfatase with anti-human transferrin receptor antibody for neuropathic mucopolysaccharidosis II: a phase 1/2 trial. Mol Ther. 2019;27:456–464.
  • Harmatz P, Yu Z-F, Giugliani R, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: evaluation of long-term pulmonary function in patients treated with recombinant human N-acetylgalactosamine 4-sulfatase. J Inherit Metab Dis. 2010;33:51–60.
  • Harmatz P, Giugliani R, Schwartz I, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr. 2006;148(533–9):e6.
  • Harmatz P, Giugliani R, Schwartz IVD, et al. Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab. 2008;94:469–475.
  • Harmatz P, Ketteridge D, Giugliani R, et al. Direct comparison of measures of endurance, mobility, and joint function during enzyme-replacement therapy of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): results after 48 weeks in a phase 2 open-label clinical study of recombinant human N-acetylgalactosamine 4-sulfatase. Pediatrics. 2005;115:e681–e9.
  • Rivera-Colon Y, Schutsky EK, Kita AZ, et al. The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J Mol Biol. 2012;423:736–751.
  • Olarte-Avellaneda S, Rodriguez-Lopez A, Almeciga-Diaz CJ, et al. Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype-phenotype correlation for Morquio A. Mol Biol Rep. 2014;41:7073–7088.
  • Dung VC, Tomatsu S, Montano AM, et al. Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels. Mol Genet Metab. 2013;110:129–138.
  • Shimada T, Tomatsu S, Mason RW, et al. Di-sulfated keratan sulfate as a novel biomarker for mucopolysaccharidosis II, IVA, and IVB. JIMD Rep. 2015;21:1–13.
  • Ellsworth KA, Pollard LM, Cathey S, et al. Measurement of elevated concentrations of urine keratan sulfate by UPLC-MSMS in lysosomal storage disorders (LSDs): comparison of urine keratan sulfate levels in MPS IVA versus other LSDs. JIMD Rep. 2017;34:11–18.
  • Muenzer J. Early initiation of enzyme replacement therapy for the mucopolysaccharidoses. Mol Genet Metab. 2014;111:63–72.
  • Hendriksz CJ, Burton B, Fleming TR, et al. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study. J Inherit Metab Dis. 2014;37:979–990.
  • Qi Y, McKeever K, Taylor J, et al. Pharmacokinetic and pharmacodynamic modeling to optimize the dose of vestronidase alfa, an enzyme replacement therapy for treatment of patients with mucopolysaccharidosis type VII: results from three trials. Clin Pharmacokinet. 2018;1–11. https://doi.org/10.1007/s40262-018-0726-6.
  • McCafferty EH, Scott LJ. Vestronidase Alfa: a Review in Mucopolysaccharidosis VII. BioDrugs. 2019;33:233–240.
  • Harmatz P, Whitley CB, Wang RY, et al. A novel, randomized, placebo-controlled, blind-start, single-crossover phase 3 study to assess the efficacy and safety of UX003 (rhGUS) enzyme replacement therapy in patients with MPS VII. Mol Genet Metab. 2017;120:S63.
  • Yogalingam G, Luu AR, Prill H, et al. BMN 250, a fusion of lysosomal alpha-N-acetylglucosaminidase with IGF2, exhibits different patterns of cellular uptake into critical cell types of Sanfilippo syndrome B disease pathogenesis. PLoS One. 2019;14:e0207836.
  • Malm G, Månsson JE. Mucopolysaccharidosis type III (Sanfilippo disease) in Sweden: clinical presentation of 22 children diagnosed during a 30‐year period. Acta Paediatr. 2010;99:1253–1257.
  • Birrane G, Dassier A-L, Romashko A, et al. Structural characterization of the α-N-acetylglucosaminidase, a key enzyme in the pathogenesis of Sanfilippo syndrome B. J Struct Biol. 2019;205:65–71.
  • Prill H, Luu A, Yip B, et al. Differential uptake of NAGLU-IGF2 and unmodified NAGLU in cellular models of Sanfilippo syndrome Type B.Mol Ther Methods Clin Dev. 2019;14:56-63.
  • Aoyagi-Scharber M, Crippen-Harmon D, Lawrence R, et al. Clearance of heparan sulfate and attenuation of CNS pathology by intracerebroventricular BMN 250 in Sanfilippo type B mice. Mol Ther Methods Clin Dev. 2017;6:43–53.
  • Muschol N, Cleary M, Couce ML, et al. ICV-administered BMN 250 (NAGLU-IGF2) is well tolerated and reduces heparan sulfate accumulation in the CNS of subjects with Sanfilippo syndrome type B (MPS IIIB). Mol Genet Metab. 2018;123(2):S102.
  • Rossomando A, Chen LL, Ciatto C, et al. SBC-103, A recombinant human alpha-N-acetylglucosaminidase, demonstrates mannose-6-phosphate receptor dependent transport in an in vitro blood-brain barrier model. Mol Genet Metab. 2014;2:S91.
  • Vogler C, Levy B, Grubb JH, et al. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA. 2005;102:14777–14782.
  • Salvalaio M, Rigon L, Belletti D, et al. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS One. 2016;11:e0156452.
  • Jafari B, Pourseif MM, Barar J, et al. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv. 2019;16:583–605.
  • Omidi Y, Blood-Brain Barrier BJ. Effectiveness of Therapy Against Brain Tumors. In: Farassati F, editor. Novel Therapeutic Concepts in Targeting Glioma. London: IntechOpen Limited; 2012. p. 111–40.
  • Mucopolysacccharidoses GR. From understanding to treatment, a century of discoveries. Genet Mol Biol. 2012;35:924–931.
  • Urayama A, Grubb JH, Sly WS, et al. Mannose 6-phosphate receptor–mediated transport of sulfamidase across the blood–brain barrier in the newborn mouse. Mol Ther. 2008;16:1261–1266.
  • Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 2015;23:1138–1148.
  • Pan D. Cell-and gene-based therapeutic approaches for neurological deficits in mucopolysaccharidoses. Curr Pharm Biotechnol. 2011;12:884–896.
  • Sato Y, Okuyama T. Novel enzyme replacement therapies for neuropathic mucopolysaccharidoses. Int J Mol Sci. 2020;21:400.
  • Pierzynowska K, Kamińska T, Węgrzyn G. One drug to treat many diseases: unlocking the economic trap of rare diseases. Metab Brain Dis. 2020;35:1237–1240.
  • Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet. 2019;64:127–137.
  • Kirkegaard T. Emerging therapies and therapeutic concepts for lysosomal storage diseases. Expert Opin Orphan Drugs. 2013;1:385–404.
  • Montaño AM, Lock-Hock N, Steiner RD, et al. Clinical course of sly syndrome (mucopolysaccharidosis type VII). J Med Genet. 2016. jmedgenet-2015-103322. https://doi.org/10.1136/jmedgenet-2015-103322.
  • Stapleton M, Kubaski F, Mason RW, et al. Presentation and treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs. 2017;5:295–307.
  • Yabe H, Tanaka A, Chinen Y, et al. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab. 2016;117:84–94.
  • Turbeville S, Nicely H, Rizzo JD, et al. Clinical outcomes following hematopoietic stem cell transplantation for the treatment of mucopolysaccharidosis VI. Mol Genet Metab. 2011;102:111–115.
  • Wang J, Luan Z, Jiang H, et al. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis—a ten-year report from the China children transplant group. Biol Blood Marrow Transplant. 2016;22:2104–2108.
  • Prasad VK, Kurtzberg J. Transplant outcomes in mucopolysaccharidoses. Semin Hematol. 2010;47:59–69.
  • Kharbanda S, Panoskaltsis-Mortari A, Haddad IY, et al. Inflammatory cytokines and the development of pulmonary complications after allogeneic hematopoietic cell transplantation in patients with inherited metabolic storage disorders. Biol Blood Marrow Transplant. 2006;12:430–437.
  • Gassas A, Sung L, Doyle J, et al. Life-threatening pulmonary hemorrhages post bone marrow transplantation in Hurler syndrome. Report of three cases and review of the literature Bone marrow transplantation. Bone Marrow Transplant. 2003;32:213–215.
  • Soni S, Hente M, Breslin N, et al. Pre‐stem cell transplantation enzyme replacement therapy in Hurler syndrome does not lead to significant antibody formation or delayed recovery of the endogenous enzyme post‐transplant: a case report. Pediatr Transplant. 2007;11:563–567.
  • Bijarnia S, Shaw P, Vimpani A, et al. Combined enzyme replacement and haematopoietic stem cell transplantation in Hurler syndrome. J Paediatr Child Health. 2009;45:469–472.
  • Wynn RF, Mercer J, Page J, et al. Use of enzyme replacement therapy (Laronidase) before hematopoietic stem cell transplantation for mucopolysaccharidosis I: experience in 18 patients. J Pediatr. 2009;154:135–139.
  • De Ru MH, Boelens JJ, Das AM, et al. Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis. 2011;6:55.
  • Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123:19–29.
  • Ghosh A, Miller W, Orchard PJ, et al. Enzyme replacement therapy prior to haematopoietic stem cell transplantation in Mucopolysaccharidosis Type I: 10year combined experience of 2 centres. Mol Genet Metab. 2016;117:373–377.
  • Eisengart JB, Rudser KD, Tolar J, et al. Enzyme replacement is associated with better cognitive outcomes after transplant in Hurler syndrome. J Pediatr. 2013;162(375–80):e1.
  • Santi L, De Ponti G, Dina G, et al. Neonatal combination therapy improves some of the clinical manifestations in the Mucopolysaccharidosis type I murine model. Mol Genet Metab. 2020;130:197–208.
  • Ghosh A, Liao A, O’Leary C, et al. Strategies for the Induction of Immune Tolerance to Enzyme Replacement Therapy in Mucopolysaccharidosis Type I. Mol Ther Methods Clin Dev. 2019;13:321–333.
  • Patel P, Suzuki Y, Tanaka A, et al. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol Gene Metabol Rep. 2014;1:184–196.
  • Akiyama K, Shimada Y, Higuchi T, et al. Enzyme augmentation therapy enhances the therapeutic efficacy of bone marrow transplantation in mucopolysaccharidosis type II mice. Mol Genet Metab. 2014;111:139–146.
  • Sillence D, Waters K, Donaldson S, et al. Combined enzyme replacement therapy and hematopoietic stem cell transplantation in mucopolysacharidosis type VI. 2011;2011/2(Springer):103–6. JIMD Reports-Case and Research Reports.
  • Sands MS, Vogler C, Torrey A, et al. Murine mucopolysaccharidosis type VII: long term therapeutic effects of enzyme replacement and enzyme replacement followed by bone marrow transplantation. J Clin Invest. 1997;99:1596–1605.
  • Simonaro CM, Gea Y, Eliyahua E, et al. Involvement of the Toll-like receptor 4 pathway and use of TNF-α antagonists for treatment of the mucopolysaccharidoses. PNAS. 2010;107:222–227.
  • Ausseil J, Desmaris N, Bigou S, et al. Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One. 2008;3:e2296.
  • Simonaro CM, D’Angelo M, He X, et al. Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol. 2008;172:112–122.
  • Schuchman EH, Ge Y, Lai A, et al. Pentosan polysulfate: a novel therapy for the mucopolysaccharidoses. PLoS One. 2013;8:e54459.
  • Hennermann JB, Gökce S, Solyom A, et al. Treatment with pentosan polysulphate in patients with MPS I: results from an open label, randomized, monocentric phase II study. J Inherit Metab Dis. 2016;39:831–837.
  • Eliyahu E, Wolfson T, Ge Y, et al. Anti-TNF-alpha therapy enhances the effects of enzyme replacement therapy in rats with mucopolysaccharidosis type VI. PLoS One. 2011;6:e22447. .
  • Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood–brain barrier. Mol Genet Metab. 2015;114:83–93.
  • Schuh RS, De Carvalho TG, Giugliani R, et al. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm. 2018;122:158–166.
  • Belur LR, Temme A, Podetz-Pedersen KM, et al. Intranasal adeno-associated virus mediated gene delivery and expression of human iduronidase in the central nervous system: a noninvasive and effective approach for prevention of neurologic disease in mucopolysaccharidosis type I. Hum Gene Ther. 2017;28:576–587.
  • Janson CG, Romanova LG, Leone P, et al. Comparison of endovascular and intraventricular gene therapy with adeno-associated virus–α-l-iduronidase for hurler disease. Neurosurgery. 2013;74:99–111.
  • McIntyre C, Derrick‐Roberts AL, Byers S, et al. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral‐mediated gene delivery. J Gene Med. 2014;16:374–387.
  • Gurda BL, Adg DL, Bell P, et al. Evaluation of AAV-mediated gene therapy for central nervous system disease in canine mucopolysaccharidosis VII. Mol Ther. 2016;24:206–216.
  • Wolf DA, Banerjee S, Hackett PB, et al. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin Drug Deliv. 2015;12:283–296.
  • Sawamoto K, Chen -H-H, Alméciga-Díaz CJ, et al. Gene therapy for Mucopolysaccharidoses. Mol Genet Metab. 2018;123:59–68.
  • Alliegro M, Ferla R, Nusco E, et al. Therapy reduces the frequency of enzyme replacement therapy in a mouse model of lysosomal storage disease. Mol Ther. 2016;24:2054–2063.
  • Lamanna WC, Lawrence R, Sarrazin S, et al. A genetic model of substrate reduction therapy for mucopolysaccharidosis. J Biol Chem. 2012;287:36283–36290.
  • Ceravolo F, Grisolia M, Sestito S, et al. Combination therapy in a patient with chronic neuronopathic Gaucher disease: a case report. J Med Case Rep. 2017;11:19.
  • Macauley SL, Roberts MS, Wong AM, et al. Synergistic effects of central nervous system‐directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol. 2012;71:797–804.
  • Rafi MA, Rao HZ, Luzi P, et al. Long-term improvements in lifespan and pathology in CNS and PNS after BMT plus one intravenous injection of AAVrh10-GALC in twitcher mice. Mol Ther. 2015;23:1681–1690.
  • Boyd RE, Lee G, Rybczynski P, et al. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem. 2013;56:2705–2725.
  • Chang HH, Asano N, Ishii S, et al. Hydrophilic iminosugar active‐site‐specific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients. Febs J. 2006;273:4082–4092.
  • Porto C, Cardone M, Fontana F, et al. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther. 2009;17:964–971.
  • Porto C, Pisani A, Rosa M, et al. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. J Inherit Metab Dis. 2012;35:513–520.
  • Coutinho MF, Santos JI, Alves S. Less is more: substrate reduction therapy for lysosomal storage disorders. Int J Mol Sci. 2016;17:1065.
  • Hawkins-Salsbury JA, Shea L, Jiang X, et al. Mechanism-based combination treatment dramatically increases therapeutic efficacy in murine globoid cell leukodystrophy. J Neurosci. 2015;35:6495–6505.
  • Galbiati F, Givogri M, Cantuti L, et al. Combined hematopoietic and lentiviral gene‐transfer therapies in newborn Twitcher mice reveal contemporaneous neurodegeneration and demyelination in Krabbe disease. J Neurosci Res. 2009;87:1748–1759.
  • Rafi MA. Gene and stem cell therapy: alone or in combination? Bioimpacts. 2011;1:213.
  • Heldermon CD, Ohlemiller KK, Herzog ED, et al. Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther. 2010;18:873–880.
  • Strazza M, Luddi A, Carbone M, et al. Significant correction of pathology in brains of twitcher mice following injection of genetically modified mouse neural progenitor cells. Mol Genet Metab. 2009;97:27–34.
  • Lotfi P, Tse DY, Di Ronza A, et al. Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency. Autophagy. 2018;14:1419–1434.
  • Pierzynowska K, Gaffke L, Podlacha M, et al. Autophagy: controversies on the Contribution of the Process to the Pathogenesis and Possible Therapeutic Applications. Neuromolecular Med. 2020;22:25–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.