577
Views
3
CrossRef citations to date
0
Altmetric
Review

Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review

, , , &
Pages 349-366 | Received 05 May 2021, Accepted 17 Sep 2021, Published online: 22 Oct 2021

References

  • Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–469.
  • Farag SS, Caligiuri MA. Human natural killer cell development and biology. Blood Rev. 2006 May 01;20(3):123–137.
  • Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol. 2008 May 01; 9(5):503–510.
  • Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol. 2006 Jan 01; 118(1):1–10.
  • Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–1799.
  • Melero I, Rouzaut A, Motz GT, et al. T-Cell and NK-Cell Infiltration into Solid Tumors: a Key Limiting Factor for Efficacious Cancer Immunotherapy. Cancer Discov. 2014;4(5):522.
  • Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016 Sep 01; 17(9):1025–1036.
  • Vitale M, Cantoni C, Pietra G, et al. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014 Jun 01; 44(6):1582–1592.
  • Mushtaq MU, Papadas A, Pagenkopf A, et al. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J Immunother Cancer. 2018;6(1):65.
  • Hu W, Wang G, Huang D, et al. Cancer Immunotherapy Based on Natural Killer Cells: current Progress and New Opportunities. Front Immunol. 2019;10:1205.
  • Kalaitsidou M, Kueberuwa G, Schütt A, et al. CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy. 2015 Jun 01;7(5):487–497.
  • Qasim W. Allogeneic CAR T cell therapies for leukemia. Am J Hematol. 2019 May 01; 94(S1):S50–S54.
  • Gilham DE, Debets R, Pule M, et al. CAR–T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med. 2012;18(7):377–384.
  • Kalos M, Nazimuddin F, Finklestein J, et al. Long-Term Functional Persistence, B Cell Aplasia and Anti-Leukemia Efficacy In Refractory B Cell Malignancies Following T Cell Immunotherapy Using CAR-Redirected T Cells Targeting CD19. Blood. 2013 Nov 15;122(21):163.
  • Couzin-Frankel J. Supply of promising T cell therapy is strained. Science. 2017;356(6343):1112.
  • Cooley S, Trachtenberg E, Bergemann TL, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009 January;113(3):726–732.
  • Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):720–724.https://doi.org/10.1073/pnas.90.2.720
  • Guedan S, Calderon H, Posey AD Jr., et al. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2018;12:145–156.
  • Alabanza L, Pegues M, Geldres C, et al. Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Mol Ther. 2017;25(11):2452–2465.
  • Dotti G, Gottschalk S, Savoldo B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014 Jan;257(1):107–126.
  • Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–724. https://doi.org/10.1073/pnas.90.2.720.
  • Lindner SE, Johnson SM, Brown CE, et al. Chimeric antigen receptor signaling: functional consequences and design implications. Sci Adv. 2020;6(21):eaaz3223–eaaz3223.
  • Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015 Aug 03; 15(8):1145–1154.
  • Moingeon P, Lucich JL, McConkey DJ, et al. CD3 zeta dependence of the CD2 pathway of activation in T lymphocytes and natural killer cells. Proceedings of the National Academy of Sciences. 1992;89(4):1492–1496.
  • Roberts MR, Cooke KS, Tran AC, et al. Antigen-specific cytolysis by neutrophils and NK cells expressing chimeric immune receptors bearing zeta or gamma signaling domains. J Immunol. 1998 Jul 1;161(1):375–384.
  • Tran AC, Zhang D, Byrn R, et al. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol. 1995 Jul 15;155(2):1000–1009.
  • Uherek C, Tonn T, Uherek B, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood. 2002 Aug 15;100(4):1265–1273.
  • Müller T, Uherek C, Maki G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother. 2008 Mar;57(3):411–423.
  • Uherek C, Müller T, Tonn T, et al. Genetically modified natural killer cells specifically recognizing the tumor-associated antigens ErbB2/HER2 and EpCAM. Cancer Cell Int. 2004 Jul 01; 4(1):S7.
  • Meier R, Golovko D, Tavri S, et al. Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med. 2011 Mar;65(3):756–763.
  • Tavri S, Jha P, Meier R, et al. Optical Imaging of Cellular Immunotherapy against Prostate Cancer. Mol Imaging. 2009 Jan 01;8(1):7290.2009.00002.
  • Esser R, Müller T, Stefes D, et al. NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med. 2012 Mar;16(3):569–581.
  • Seidel D, Shibina A, Siebert N, et al. Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma. Cancer Immunol Immunother. 2015 May;64(5):621–634.
  • Shiozawa M, Chang CH, Huang YC, et al. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 2018 Aug 3;19(1):27.
  • Jiang H, Zhang W, Shang P, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014 Mar;8(2):297–310.
  • Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009 Sep;33(9):1255–1259.
  • Ravi D, Sarkar S, Purvey S, et al. Interaction kinetics with transcriptomic and secretory responses of CD19-CAR natural killer-cell therapy in CD20 resistant non-Hodgkin lymphoma. Leukemia. 2020;34(5):1291–1304.
  • Boissel L, Betancur M, Lu W, et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma. 2012 May;53(5):958–965.
  • Boissel L, Betancur-Boissel M, Lu W, et al. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology. 2013 Oct 1;2(10):e26527.
  • Romanski A, Uherek C, Bug G, et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016 Jul;20(7):1287–1294.
  • Schirrmann T, Pecher G. Specific targeting of CD33+ leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res. 2005 Apr 01;29(3):301–306.
  • Wang X, Jasinski DL, Medina JL, et al. Inducible MyD88/CD40 synergizes with IL-15 to enhance antitumor efficacy of CAR-NK cells. Blood Adv. 2020 May 12;4(9):1950–1964.
  • Campbell KS, Colonna M. DAP12: a key accessory protein for relaying signals by natural killer cell receptors. Int J Biochem Cell Biol. 1999 Jun;31(6):631–636.
  • Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. The Journal of Immunology. 2015 Apr 1;194(7):3201–3212.
  • Xiao L, Cen D, Gan H, et al. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol Ther. 2019 Jun 5;27(6):1114–1125.
  • Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227(1):150–160.
  • Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376–383.
  • Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013 Mar 15;73(6):1777–1786.
  • Wang J, Lupo KB, Chambers AM, et al. Purinergic targeting enhances immunotherapy of CD73(+) solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer. 2018 Dec 4;6(1):136.
  • Parihar R, Rivas C, Huynh M, et al. NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunol Res. 2019 Mar;7(3):363–375.
  • Fabian KP, Padget MR, Donahue RN, et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J Immunother Cancer. 2020 May;8(1):1.
  • Zhang T, Scott JM, Hwang I, et al. Cutting Edge: antibody-Dependent Memory-like NK Cells Distinguished by FcRγ Deficiency. Journal of immunology. 2013;190(4):1402–1406.
  • Esensten JH, Helou YA, Chopra G, et al. CD28 Costimulation: from Mechanism to Therapy. Immunity. 2016;44(5):973–988.
  • Kruschinski A, Moosmann A, Poschke I, et al. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci U S A. 2008;105(45):17481–17486.
  • Liu H, Yang B, Sun T, et al. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK-92 cells. Oncol Rep. [2015 Jan 01];33(1):95–102.
  • Yong CS, John LB, Devaud C, et al. A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget. 2016 Jun 7;7(23):34582–34598.
  • Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. JNCI: Journal of the National Cancer Institute. 2016 May;108(5):5.
  • Pegram HJ, Jackson JT, Smyth MJ, et al. Adoptive Transfer of Gene-Modified Primary NK Cells Can Specifically Inhibit Tumor Progression In Vivo. J Immunol. 2008;181(5):3449.
  • Wei HP, Yang N, Gu ZY, et al. [Application of Chimeric Antigen Receptor-Modified NK Cells in Multiple Myeloma]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018 Jun;26(3):796–801.
  • Chu J, Deng Y, Benson DM, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014 Apr;28(4):917–927.
  • Kim KS, Han JH, Park JH, et al. Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials. 2019 Nov;221:119418.
  • Han J, Chu J, Keung Chan W, et al. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Sci Rep. 2015 Jul 9;5(1):11483.
  • Genßler S, Burger MC, Zhang C, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology. 2016 Apr;5(4):e1119354.
  • Chen X, Han J, Chu J, et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget. 2016 May 10;7(19):27764–27777.
  • Yu M, Luo H, Fan M, et al. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Mol Ther. 2018 Feb 7;26(2):366–378.
  • Smagina AS, Kulemzin SV, Yusubalieva GM, et al. VAV1-overexpressing YT cells display improved cytotoxicity against malignant cells. Biotechnol Appl Biochem. 2020 Aug 7; 68(4):849–855.
  • Kim M, Pyo S, Kang CH, et al. Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PloS One. 2018;13(6):e0198347.
  • Reighard SD, Cranert SA, Rangel KM, et al. Therapeutic Targeting of Follicular T Cells with Chimeric Antigen Receptor-Expressing Natural Killer Cells. Cell reports Medicine. 2020 Apr 21;Vol. 1(1).
  • Müller S, Bexte T, Gebel V, et al. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front Immunol. 2019;10:3123.
  • Gurney M, Stikvoort A, Nolan E, et al. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica. 2020;12/30.
  • Oelsner S, Waldmann A, Billmeier A, et al. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer. 2019 Oct 1;145(7):1935–1945.
  • Mitwasi N, Feldmann A, Arndt C, et al. “UniCAR”-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci Rep. 2020 Feb 7;10(1):2141.
  • Liu B, Liu ZZ, Zhou ML, et al. Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Mol Med Rep. 2019 Sep;20(3):2823–2831.
  • Chu Y, Hochberg J, Yahr A, et al. Targeting CD20+ Aggressive B-cell Non-Hodgkin Lymphoma by Anti-CD20 CAR mRNA-Modified Expanded Natural Killer Cells In Vitro and in NSG Mice. Cancer Immunol Res. 2015 Apr;3(4):333–344.
  • Shimasaki N, Fujisaki H, Cho D, et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy. 2012 Aug;14(7):830–840.
  • Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020 Apr;34(4):1102–1115.
  • Wu X, Huang S. HER2-specific chimeric antigen receptor-engineered natural killer cells combined with apatinib for the treatment of gastric cancer. Bull Cancer. 2019 Nov;106(11):946–958.
  • Li L, Liu LN, Feller S, et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther. 2010 Mar;17(3):147–154.
  • Chu Y, Yahr A, Huang B, et al. Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphoma in vitro and in immunodeficient mice. Oncoimmunology. 2017;6(9):e1341031.
  • Yang S, Cao B, Zhou G, et al. Targeting B7-H3 Immune Checkpoint With Chimeric Antigen Receptor-Engineered Natural Killer Cells Exhibits Potent Cytotoxicity Against Non-Small Cell Lung Cancer. Front Pharmacol. 2020;11:1089.
  • Jamali A, Hadjati J, Madjd Z, et al. Highly Efficient Generation of Transgenically Augmented CAR NK Cells Overexpressing CXCR4. Front Immunol. 2020;11:2028.
  • Lee KY, Wong HY, Zeng Q, et al. Ectopic CD137 expression by rhabdomyosarcoma provides selection advantages but allows immunotherapeutic targeting. Oncoimmunology. 2021 Jan 01 10(1):1877459.
  • Suerth JD, Morgan MA, Kloess S, et al. Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors. J Mol Med (Berl). 2016 Jan;94(1):83–93.
  • Herrera L, Santos S, Vesga MA, et al. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci Rep. 2019 Dec 10;9(1):18729.
  • Gang M, Marin ND, Wong P, et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood. 2020 Nov 12;136(20):2308–2318.
  • Zhang Q, Zhang H, Ding J, et al. Combination Therapy with EpCAM-CAR-NK-92 Cells and Regorafenib against Human Colorectal Cancer Models. J Immunol Res. 2018;2018:4263520.
  • Bari R, Granzin M, Tsang KS, et al. A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy. Front Immunol. 2019;10:2001.
  • Tassev DV, Cheng M, Cheung NK. Retargeting NK92 cells using an HLA-A2-restricted, EBNA3C-specific chimeric antigen receptor. Cancer Gene Ther. 2012 Feb;19(2):84–100.
  • Ingegnere T, Mariotti FR, Pelosi A, et al. Human CAR NK Cells: a New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front Immunol. 2019;10:957.
  • Vinay DS, Kwon BS. 4-1BB signaling beyond T cells. Cell Mol Immunol. 2011 Jul 01; 8(4):281–284.
  • Guo C, Wang X, Zhang H, et al. Structure-based rational design of a novel chimeric PD1-NKG2D receptor for natural killer cells. Mol Immunol. 2019 Oct;114:108–113.
  • Lu C, Guo C, Chen H, et al. A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Mol Immunol. 2020 May 6;122:200–206.
  • Agresta L, Hoebe KHN, Janssen EM. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Front Immunol. 2018;9:2809.
  • Altvater B, Landmeier S, Pscherer S, et al. 2B4 (CD244) Signaling by Recombinant Antigen-specific Chimeric Receptors Costimulates Natural Killer Cell Activation to Leukemia and Neuroblastoma Cells. Clin Cancer Res. 2009;15(15):4857.
  • Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018 Aug 2;23(2):181–192.e5.
  • Mir MA. Chapter 5 - Costimulation in Lymphomas and Cancers. In: Mir MA, editor. Developing Costimulatory Molecules for Immunotherapy of Diseases. Academic Press; 2015. p. 185–254.
  • Lee YE, Ju A, Choi HW, et al. Rationally designed redirection of natural killer cells anchoring a cytotoxic ligand for pancreatic cancer treatment. J Control Release. 2020 Oct 10;326:310–323.
  • Song D-G, Ye Q, Poussin M, et al. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood. 2012;119(3):696–706.
  • Schönfeld K, Sahm C, Zhang C, et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther. 2015 Feb;23(2):330–338.
  • Oelsner S, Friede ME, Zhang C, et al. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 2017 Feb;19(2):235–249.
  • Xu Y, Liu Q, Zhong M, et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J Hematol Oncol. 2019 May 16;12(1):49.
  • Huang Y, Zeng J, Liu T, et al. DNAM1 and 2B4 Costimulatory Domains Enhance the Cytotoxicity of Anti-GPC3 Chimeric Antigen Receptor-Modified Natural Killer Cells Against Hepatocellular Cancer Cells in vitro. Cancer Manag Res. 2020;12:3247–3255.
  • Zhang Q, Xu J, Ding J, et al. Bortezomib improves adoptive carbonic anhydrase IX‑specific chimeric antigen receptor‑modified NK92 cell therapy in mouse models of human renal cell carcinoma. Oncol Rep. 2018 Dec;40(6):3714–3724.
  • Klapdor R, Wang S, Morgan M, et al. Characterization of a Novel Third-Generation Anti-CD24-CAR against Ovarian Cancer. Int J Mol Sci. 2019 Feb 3;20(3):3.
  • Kobayashi E, Kishi H, Ozawa T, et al. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells. Biochem Biophys Res Commun. 2014 Oct 31;453(4):798–803.
  • Siegler EL, Kim YJ, Chen X, et al. Combination Cancer Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells as Drug Carriers. Mol Ther. 2017 Dec 6;25(12):2607–2619.
  • Oberschmidt O, Morgan M, Huppert V, et al. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering. Hum Gene Ther Methods. 2019 Jun;30(3):102–120.
  • Zhang P, Zhao S, Wu C, et al. Effects of CSF1R-targeted chimeric antigen receptor-modified NK92MI & T cells on tumor-associated macrophages. Immunotherapy. 2018 Aug;10(11):935–949.
  • Batchu RB, Gruzdyn OV, Tavva PS, et al. Engraftment of mesothelin chimeric antigen receptor using a hybrid Sleeping Beauty/minicircle vector into NK-92MI cells for treatment of pancreatic cancer. Surgery. 2019 Oct;166(4):503–508.
  • Klapdor R, Wang S, Hacker U, et al. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy. Hum Gene Ther. 2017 Oct;28(10):886–896.
  • Nakazawa T, Murakami T, Natsume A, et al. KHYG-1 Cells With EGFRvIII-specific CAR Induced a Pseudoprogression-like Feature in Subcutaneous Tumours Derived from Glioblastoma-like Cells. Anticancer Res. 2020 Jun;40(6):3231–3237.
  • Ueda T, Kumagai A, Iriguchi S, et al. Non–clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti–glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 2020 May;111(5):1478–1490.
  • Chen KH, Wada M, Firor AE, et al. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget. 2016 Aug 30;7(35):56219–56232.
  • Murakami T, Nakazawa T, Natsume A, et al. Novel Human NK Cell Line Carrying CAR Targeting EGFRvIII Induces Antitumor Effects in Glioblastoma Cells. Anticancer Res. 2018 Sep;38(9):5049–5056.
  • Klöß S, Oberschmidt O, Morgan M, et al. Optimization of Human NK Cell Manufacturing: fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells. Hum Gene Ther. 2017 Oct;28(10):897–913.
  • Kloess S, Oberschmidt O, Dahlke J, et al. Preclinical Assessment of Suitable Natural Killer Cell Sources for Chimeric Antigen Receptor Natural Killer-Based “Off-the-Shelf” Acute Myeloid Leukemia Immunotherapies. Hum Gene Ther. 2019 Apr;30(4):381–401.
  • Chen KH, Wada M, Pinz KG, et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia. 2017 Oct;31(10):2151–2160.
  • Salman H, Pinz KG, Wada M, et al. Preclinical Targeting of Human Acute Myeloid Leukemia Using CD4-specific Chimeric Antigen Receptor (CAR) T Cells and NK Cells. J Cancer. 2019;10(18):4408–4419.
  • Yang Y, Badeti S, Tseng HC, et al. Superior Expansion and Cytotoxicity of Human Primary NK and CAR-NK Cells from Various Sources via Enriched Metabolic Pathways. Mol Ther Methods Clin Dev. 2020 Sep 11;18:428–445.
  • Zhang Q, Tian K, Xu J, et al. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma. J Immunol Res. 2017;2017:6915912.
  • Liu Y, Zhou Y, Huang KH, et al. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 2020 Aug;53(8):e12858.
  • Pinz KG, Yakaboski E, Jares A, et al. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget. 2017 Dec 22;8(68):112783–112796.
  • Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep. 2020 Feb 18;10(1):2815.
  • Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020 Feb 6;382(6):545–553.
  • Chen Y, You F, Jiang L, et al. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget. 2017 Jun 6;8(23):37128–37139.
  • Tseng HC, Xiong W, Badeti S, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020 Sep 23;11(1):4810.
  • Kailayangiri S, Altvater B, Spurny C, et al. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology. 2017;6(1):e1250050.
  • Hori T. Roles of OX40 in the Pathogenesis and the Control of Diseases. Int J Hematol. 2006 Jan 01; 83(1):17–22.
  • Oei VYS, Siernicka M, Graczyk-Jarzynka A, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018 Apr;6(4):467–480.
  • Sahm C, Schönfeld K, Wels WS. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother. 2012 Sep;61(9):1451–1461.
  • Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018 Feb;32(2):520–531.
  • Daher M, Basar R, Gokdemir E, et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood. 2020 Sep 9;137(5):624–636.
  • Colamartino ABL, Lemieux W, Bifsha P, et al. Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Front Immunol. 2019;10:2873.
  • Xia N, Haopeng P, Gong JU, et al. Robo1-specific CAR-NK Immunotherapy Enhances Efficacy of (125)I Seed Brachytherapy in an Orthotopic Mouse Model of Human Pancreatic Carcinoma. Anticancer Res. 2019 Nov;39(11):5919–5925.
  • Raikar SS, Fleischer LC, Moot R, et al. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. Oncoimmunology. 2018;7(3):e1407898.
  • Kulemzin SV, Gorchakov AA, Chikaev AN, et al. VEGFR2-specific FnCAR effectively redirects the cytotoxic activity of T cells and YT NK cells. Oncotarget. 2018;9(10):9021–9029.
  • Hambach J, Riecken K, Cichutek S, et al. Targeting CD38-Expressing Multiple Myeloma and Burkitt Lymphoma Cells In Vitro with Nanobody-Based Chimeric Antigen Receptors (Nb-CARs). Cells. 2020 Jan 29;9:2.
  • Boyiadzis M, Agha M, Redner RL, et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy. 2017 Oct;19(10):1225–1232.
  • Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013 Dec;15(12):1563–1570.
  • Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625–632.
  • Klingemann H-G, Wong E, GJBob M, et al. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biology of Blood and Marrow Transplantation. 1996;2(2):68–75.
  • Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol. 2015;6:578.
  • Roberts MR, Cooke KS, Tran A-C, et al. Antigen-Specific Cytolysis by Neutrophils and NK Cells Expressing Chimeric Immune Receptors Bearing ζ or γ Signaling Domains. Journal of Immunology. 1998;161(1):375–384.
  • Schnalzger TE, de Groot MH, Zhang C, et al. 3D model for CAR -mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 2019 Jun 17;38(12):12.
  • Ao X, Yang Y, Li W, et al. Anti-αFR CAR-engineered NK-92 Cells Display Potent Cytotoxicity Against αFR-positive Ovarian Cancer. J Immunother. 2019 Oct;42(8):284–296.
  • Nowakowska P, Romanski A, Miller N, et al. Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunol Immunother. 2018 Jan;67(1):25–38.
  • Kulemzin SV, Matvienko DA, Sabirov AH, et al. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics. 2019 Mar 13;12(Suppl S2):44.
  • Parlar A, Sayitoglu EC, Ozkazanc D, et al. Engineering antigen-specific NK cell lines against the melanoma-associated antigen tyrosinase via TCR gene transfer. Eur J Immunol. 2019 Aug;49(8):1278–1290.
  • Qu Y, Bi JZ. [Killing effect of Robo1 targeted Chimeric Antigen Receptor modified NK92 cells against glioma and neuroblastoma cells]. Zhonghua Yi Xue Za Zhi. 2018 Mar 20;98(11):860–866.
  • Assaker G, Camirand A, Abdulkarim B, et al. PTHrP, A Biomarker for CNS Metastasis in Triple-Negative Breast Cancer and Selection for Adjuvant Chemotherapy in Node-Negative Disease. JNCI cancer spectrum. 2020 Feb;4(1):pkz063.
  • Mercogliano MF, Bruni S, Elizalde PV, et al. Tumor Necrosis Factor α Blockade: an Opportunity to Tackle Breast Cancer. Front Oncol. 2020;10:584.
  • Cao B, Liu M, Wang L, et al. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem Biophys Res Commun. 2020 Mar 26;524(1):96–102.
  • Mensali N, Dillard P, Hebeisen M, et al. NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine. 2019 Feb;40:106–117.
  • Walseng E, Köksal H, Sektioglu IM, et al. A TCR-based Chimeric Antigen Receptor. Sci Rep. 2017 Sep 6;7(1):10713.
  • Meier R, Piert M, Piontek G, et al. Tracking of [18F]FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol. 2008 Jul;35(5):579–588.
  • Chang L, Gallego-Perez D, Zhao X, et al. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab Chip. 2015 Aug 7;15(15):3147–3153.
  • Liu Q, Xu Y, Mou J, et al. Irradiated chimeric antigen receptor engineered NK-92MI cells show effective cytotoxicity against CD19(+) malignancy in a mouse model. Cytotherapy. 2020 Oct;22(10):552–562.
  • Zhang G, Liu R, Zhu X, et al. Retargeting NK-92 for anti-melanoma activity by a TCR-like single-domain antibody. Immunol Cell Biol. 2013 Nov-Dec;91(10):615–624.
  • Müller N, Michen S, Tietze S, et al. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma. J Immunother. 2015 Jun;38(5):197–210.
  • Kornbluth J, Flomenberg N, Dupont B. Cell surface phenotype of a cloned line of human natural killer cells. J Immunol. 1982 Dec;129(6):2831–2837.
  • Gunesch JT, Angelo LS, Mahapatra S, et al. Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol. 2019 Nov 01;115:64–75. https://doi.org/10.1016/j.molimm.2018.07.015.
  • Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994 Apr;8(4):652–658.
  • Cronin J, Zhang X-Y RJ. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther. 2005;5(4):387–398.
  • Tam YK, Maki G, Miyagawa B, et al. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther. 1999 May 20;10(8):1359–1373.
  • Robertson MJ, Cochran KJ, Cameron C, et al. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol. 1996 Feb;24(3):406–415.
  • Suck G, Branch DR, Smyth MJ, et al. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol. 2005 Oct;33(10):1160–1171.
  • Yodoi J, Teshigawara K, Nikaido T, et al. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar;134(3):1623–1630.
  • Bergman H, Sissala N, Hägerstrand H, et al. Human NK-92 Cells Function as Target Cells for Human NK Cells - Implications for CAR NK-92 Therapies. Anticancer Res. 2020 Oct;40(10):5355–5359.
  • Gunesch JT, Angelo LS, Mahapatra S, et al. Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol. 2019 Nov;115:64–75. https://doi.org/10.1016/j.molimm.2018.07.015
  • Klingemann H, Boissel L, Toneguzzo F. Natural Killer Cells for Immunotherapy – advantages of the NK-92 Cell Line over Blood NK Cells [Review]. Frontiers in Immunology. 2016 Mar 14;7:91.
  • Matosevic S. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res. 2018/Sep/17;2018:4054815.
  • Kundu S, Gurney M, O’Dwyer M. Generating natural killer cells for adoptive transfer: expanding horizons. Cytotherapy. 2021 January 08;23(7):559–566.
  • Li YC, Zhou Q, Song QK, et al. Overexpression of an Immune Checkpoint (CD155) in Breast Cancer Associated with Prognostic Significance and Exhausted Tumor-Infiltrating Lymphocytes: a Cohort Study. J Immunol Res. 2020;2020:3948928.
  • Wilk AJ, Weidenbacher NL, Vergara R, et al. Charge-altering releasable transporters enable phenotypic manipulation of natural killer cells for cancer immunotherapy. Blood Adv. 2020 Sep 8;4(17):4244–4255.
  • Cho FN, Chang TH, Shu CW, et al. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis. PloS One. 2014;9(10):e109352.
  • Herrera L, Juan M, Eguizabal C. Purification, Culture, and CD19-CAR Lentiviral Transduction of Adult and Umbilical Cord Blood NK Cells. Curr Protoc Immunol. 2020 Dec;131(1):e108.
  • Caumartin J, Favier B, Daouya M, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J. 2007;26(5):1423–1433.
  • Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol. 2012;9(4):310–320.
  • Lowe E, Truscott LC, De Oliveira SN. In Vitro Generation of Human NK Cells Expressing Chimeric Antigen Receptor Through Differentiation of Gene-Modified Hematopoietic Stem Cells. Methods Mol Biol. 2016;1441:241–251.
  • Maluski M, Ghosh A, Herbst J, et al. Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development. J Clin Invest. 2019 Dec 2;129(12):5108–5122.
  • Gill S. Planes, Trains, and Automobiles: perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies. Curr Hematol Malig Rep. 2016;11(4):318–325.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528.
  • Rozenbaum M, Meir A, Aharony Y, et al. Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia [Original Research]. Frontiers in Immunology. 2020 Jul 02;11:1347.
  • Merker M, Wagner J, Kreyenberg H, et al. ERBB2-CAR-Engineered Cytokine-Induced Killer Cells Exhibit Both CAR-Mediated and Innate Immunity Against High-Risk Rhabdomyosarcoma [Original Research]. Frontiers in Immunology. 2020 October 19;11:2483.
  • Mills JK, Henderson MA, Giuffrida L, et al. Generating CAR T cells from tumor-infiltrating lymphocytes. Ther Adv Vaccines Immunother. 2021 Jan 01;9:25151355211017119.
  • Mukhopadhyay M. Macrophages enter CAR immunotherapy. Nat Methods. 2020 Jun 01; 17(6):561.
  • Duong CPM, Westwood JA, Yong CSM, et al. Engineering T Cell Function Using Chimeric Antigen Receptors Identified Using a DNA Library Approach. PloS One. 2013;8(5):e63037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.