84
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging immunotherapies in the Hodgkin lymphoma armamentarium

&
Received 15 Dec 2023, Accepted 25 Apr 2024, Published online: 06 May 2024

References

  • Huang J, Pang WS, Lok V, et al. Incidence, mortality, risk factors, and trends for Hodgkin lymphoma: a global data analysis. J Hematol Oncol. 2022;15(1):57. doi: 10.1186/s13045-022-01281-9
  • Spinner MA, Mou E, Advani RH. Hodgkin Lymphoma. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Burns LJ, editors. Williams Hematology. 10th ed. McGraw-Hill Education; 2021. p. 1683–1711.
  • Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–2189. doi: 10.1200/JCO.2011.38.0410
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319. doi: 10.1056/NEJMoa1411087
  • Chen R, Zinzani PL, Fanale MA, et al. Phase II study of the efficacy and safety of pembrolizumab for Relapsed/Refractory classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–2132. doi: 10.1200/JCO.2016.72.1316
  • Ansell SM, Bröckelmann PJ, von Keudell G, et al. Nivolumab for relapsed/refractory classical Hodgkin lymphoma: 5-year survival from the pivotal phase 2 CheckMate 205 study. Blood Adv. 2023;7(20):6266–6274. doi: 10.1182/bloodadvances.2023010334
  • Armand P, Zinzani PL, Lee HJ, et al. Five-year follow-up of KEYNOTE-087: pembrolizumab monotherapy for relapsed/refractory classical Hodgkin lymphoma. Blood. 2023;142(10):878–886. doi: 10.1182/blood.2022019386
  • Spinner MA, Sica RA, Tamaresis JS, et al. Improved outcomes for relapsed/refractory hodgkin lymphoma after autologous transplantation in the era of novel agents. Blood. 2023;141:2727–2737. doi: 10.1182/blood.2022018827
  • Desai SH, Spinner MA, David K, et al. Checkpoint inhibitor‐based salvage regimens prior to autologous stem cell transplant improve event‐free survival in relapsed/refractory classic hodgkin lymphoma. Am J Hematol. 2023;98(3):464–471. doi: 10.1002/ajh.26827
  • Desai SH, Merryman RW, Shah H, et al. PD-1 blockade before autologous stem cell transplantation improves outcomes in relapsed/refractory classic Hodgkin Lymphoma: results from a multicenter cohort. Blood. 2023;182(Supplement 1):182–182. doi: 10.1182/blood-2023-179573
  • Ansell SM, Radford J, Connors JM, et al. Overall survival with Brentuximab Vedotin in stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2022;387(4):310–320. doi: 10.1056/NEJMoa2206125
  • Herrera AF, LeBlanc ML, Castellino SM, et al. SWOG S1826, a randomized study of nivolumab(N)-AVD versus brentuximab vedotin(BV)-AVD in advanced stage (AS) classic hodgkin lymphoma (HL). J Clin Oncol. 2023;41(17_suppl):LBA4. doi: 10.1200/JCO.2023.41.17_suppl.LBA4
  • Epperla N, Hamadani M. Double-refractory Hodgkin lymphoma: tackling relapse after brentuximab vedotin and checkpoint inhibitors. Hematology. 2021;2021(1):247–253. doi: 10.1182/hematology.2021000256
  • Epperla N, Herrera AF. How I incorporate novel agents into the treatment of classical Hodgkin lymphoma. Blood. 2021;138(7):520–530. doi: 10.1182/blood.2020007900
  • Roemer MGM, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin Lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–2697. doi: 10.1200/JCO.2016.66.4482
  • Roemer MGM, Redd RA, Cader FZ, et al. Major histocompatibility complex class II and programmed death Ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin Lymphoma. J Clin Oncol. 2018;36(10):942–950. doi: 10.1200/JCO.2017.77.3994
  • Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin Lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–1618. doi: 10.1158/1078-0432.CCR-11-1942
  • Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and reed-sternberg cells. Blood. 2015;125(7):1061–1072. doi: 10.1182/blood-2014-11-610436
  • Nagasaki J, Togashi Y, Sugawara T, et al. The critical role of CD4+ T cells in PD-1 blockade against MHC-II–expressing tumors such as classic hodgkin lymphoma. Blood Adv. 2020;4(17):4069–4082. doi: 10.1182/bloodadvances.2020002098
  • Cader FZ, Hu X, Goh WL, et al. A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat Med. 2020;26(9):1468–1479. doi: 10.1038/s41591-020-1006-1
  • Reinke S, Bröckelmann PJ, Iaccarino I, et al. Tumor and microenvironment response but no cytotoxic T-cell activation in classic hodgkin lymphoma treated with anti-PD1. Blood. 2020;136(25):2851–2863. doi: 10.1182/blood.2020008553
  • El Halabi L, Adam J, Gravelle P, et al. Expression of the immune checkpoint regulators LAG-3 and TIM-3 in classical Hodgkin Lymphoma. Clin Lymphoma Myeloma Leuk. 2021;21(4):257–266.e3. doi: 10.1016/j.clml.2020.11.009
  • Li W, Blessin NC, Simon R, et al. Expression of the immune checkpoint receptor TIGIT in Hodgkin’s lymphoma. BMC Cancer. 2018;18(1):1209. doi: 10.1186/s12885-018-5111-1
  • Patel SS, Weirather JL, Lipschitz M, et al. The microenvironmental niche in classic hodgkin lymphoma is enriched for CTLA-4- positive T-cells that are PD-1-negative. Blood. 2019;134:2059–2069. doi: 10.1182/blood.2019002206
  • Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–885. doi: 10.1056/NEJMoa0905680
  • Tan KL, Scott DW, Hong F, et al. Tumor-associated macrophages predict inferior outcomes in classic hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood. 2012;120(16):3280–3287. doi: 10.1182/blood-2012-04-421057
  • Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for reed-sternberg cells in hodgkin lymphoma. Blood. 2017;130(22):2420–2430. doi: 10.1182/blood-2017-03-770719
  • Stewart BJ, Fergie M, Young M, et al. Spatial and molecular profiling of the mononuclear phagocyte network in classic hodgkin lymphoma. Blood. 2023;141:2343–2358. doi: 10.1182/blood.2022015575
  • López-Pereira B, Fernández-Velasco AA, Fernández-Vega I, et al. Expression of CD47 antigen in reed–Sternberg cells as a new potential biomarker for classical Hodgkin lymphoma. Clin Transl Oncol. 2020;22(5):782–785. doi: 10.1007/s12094-019-02171-2
  • Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 2021;9(1):e001341. doi: 10.1136/jitc-2020-001341
  • Shi Y, Su H, Song Y, et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): a multicentre, single-arm, phase 2 trial. Lancet Haematol. 2019;6(1):e12–e19. doi: 10.1016/S2352-3026(18)30192-3
  • Su H, Song Y, Jiang W, et al. Sintilimab for relapsed/refractory classical Hodgkin’s lymphoma: long-term follow-up on the multicenter, single-arm phase II ORIENT-1 study. J Clin Oncol. 2020;38(15_suppl):8034–8034. doi: 10.1200/JCO.2020.38.15_suppl.8034
  • Song Y, Wu J, Chen X, et al. A single-arm, multicenter, phase II study of camrelizumab in relapsed or refractory classical Hodgkin Lymphoma. Clin Cancer Res. 2019;25(24):7363–7369. doi: 10.1158/1078-0432.CCR-19-1680
  • Wu J, Song Y, Chen X, et al. Camrelizumab for relapsed or refractory classical Hodgkin lymphoma: extended follow‐up of the multicenter, single‐arm, phase 2 study. Int J Cancer. 2022;150(6):984–992. doi: 10.1002/ijc.33852
  • Song Y, Gao Q, Zhang H, et al. Tislelizumab for relapsed/refractory classical Hodgkin Lymphoma: 3-year follow-up and correlative biomarker analysis. Clin Cancer Res. 2022;28(6):1147–1156. doi: 10.1158/1078-0432.CCR-21-2023
  • Ghesquieres H, Bouabdallah K, Andre M, et al. Tislelizumab, an anti-PD1 antibody, in patients with relapsed/refractory classical Hodgkin Lymphoma in tirhol bgb-A317-210: a prospective multicenter LYSA phase 2 study conducted in Western Countries. Blood. 2023;182(Supplement 1):1717. doi: 10.1182/blood-2023-188545
  • Ding K, Liu H, Ma J, et al. Tislelizumab with gemcitabine and oxaliplatin in patients with relapsed or refractory classic Hodgkin lymphoma: a multicenter phase II trial. Haematologica. 2023;108(8):2146–2154. doi: 10.3324/haematol.2022.282266
  • Zhao S, Liu Y, Yao Z, et al. Phase II clinical trial of camrelizumab combined with AVD (Epirubicin, vincristine and Dacarbazine) in the first-line treatment for patients with advanced classical Hodgkin’s lymphoma. Blood. 2022;140(Supplement 1):6579–6580. doi: 10.1182/blood-2022-166829
  • Bröckelmann PJ, Kaul H, Fuchs M, et al. P063: trial in progress: individualized immunotherapy in early-stage unfavorable Hodgkin lymphoma - the investigator-initiated phase II GHSG INDIE trial. Hemasphere. 2022;6:29–29. doi: 10.1097/01.HS9.0000890820.12468.10
  • Herrera AF, Burton C, Radford J, et al. Avelumab in relapsed/refractory classical Hodgkin lymphoma: phase 1b results from the JAVELIN Hodgkins trial. Blood Adv. 2021;5(17):3387–3396. doi: 10.1182/bloodadvances.2021004511
  • Collins GP, Hawkes EA, Kirkwood AA, et al. Avelumab monotherapy followed by a PET adapted chemotherapy approach in the first line treatment of classical Hodgkin lymphoma: initial results from the AVENUE window study. Hematol Oncol. 2023;41(S2):162–163. doi: 10.1002/hon.3163_108
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030
  • Armand P, Lesokhin A, Borrello I, et al. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia. 2021;35(3):777–786. doi: 10.1038/s41375-020-0939-1
  • Diefenbach CS, Hong F, Ambinder RF, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020;7(9):e660–e670. doi: 10.1016/S2352-3026(20)30221-0
  • Diefenbach CS, Jegede O, Ansell SM, et al. Results from an intergroup randomized phase II study of the combinations of ipilimumab, nivolumab and Brentuximab Vedotin in patients with Relapsed/Refractory classic Hodgkin Lymphoma: a trial of the ECOG-ACRIN Research Group (E4412). Blood. 2023;182(Supplement 1):607. doi: 10.1182/blood-2023-184531
  • Veldman J, Visser L, van den BA, et al. Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treat Rev. 2020;82:101931. doi: 10.1016/j.ctrv.2019.101931
  • Johnson NA, Lavie D, Borchmann P, et al. Favezelimab in combination with Pembrolizumab in patients with anti–PD-1–naive relapsed or refractory classical Hodgkin Lymphoma: updated analysis of an open-label phase 1/2 study. Blood. 2023;182(Supplement 1):1693. doi: 10.1182/blood-2023-182128
  • Timmerman J, Lavie D, Johnson NA, et al. Favezelimab in combination with pembrolizumab in patients with heavily pretreated anti–PD-1–refractory classical Hodgkin Lymphoma: updated analysis of an open-label phase 1/2 study. Blood. 2023;182(Supplement 1):4440. doi: 10.1182/blood-2023-182019
  • Armand P, Zinzani PL, Timmerman J, et al. Favezelimab Plus Pembrolizumab in Anti–Pd-1–Refractory Classical Hodgkin Lymphoma (CHL): Estimating the Relative Efficacy of Favezelimab. Hematol Oncol. 2023;41(S2):163–165. doi: 10.1002/hon.3163_109
  • Merryman RW, Carreau NA, Advani RH, et al. Impact of treatment beyond progression with immune checkpoint blockade in Hodgkin Lymphoma. Oncology. 2020;25(6):e993–e997. doi: 10.1634/theoncologist.2020-0040
  • Lavie D, Timmerman J, Garcia Sanz R, et al. KEYFORM-008: coformulated favezelimab and pembrolizumab (MK4280A) versus chemotherapy in relapsed/refractory classical Hodgkin lymphoma. J Clin Oncol. 2023;41(16_suppl):TPS7585–TPS7585. doi: 10.1200/JCO.2023.41.16_suppl.TPS7585
  • McDaniel JM, Pinilla-Ibarz J, Epling-Burnette PK. Molecular action of lenalidomide in lymphocytes and hematologic malignancies. Adv Hematol. 2012;2012:1–9. doi: 10.1155/2012/513702
  • Fehniger TA, Larson S, Trinkaus K, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood. 2011;118(19):5119–5125. doi: 10.1182/blood-2011-07-362475
  • Bond DA, Wei L, Yildiz V, et al. Combination of the PD‐1 inhibitor nivolumab and immunomodulatory drug lenalidomide in relapsed Hodgkin and large B‐cell lymphoma: results from a phase I/II study. Hematol Oncol. 2023;41(S2):597–598. doi: 10.1002/hon.3164_447
  • Major A, Kline J, Karrison TG, et al. Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas. Haematologica. 2021;107(7):1608–1618. doi: 10.3324/haematol.2021.278853
  • Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–3277. doi: 10.1182/blood-2010-05-282780
  • Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–2465. doi: 10.1182/blood-2017-11-814913
  • Bachanova V, Zak J, Cao Q, et al. Phase 1 trial of ruxolitinib combined with nivolumab in patients relapsed/refractory Hodgkin lymphoma after failure of check‐point inhibitor (CPI). Hematol Oncol. 2023;41(S2):582–582. doi: 10.1002/hon.3164_436
  • Hamadani M, Balasubramanian S, Hari PN. Ibrutinib in refractory classic Hodgkin’s lymphoma. N Engl J Med. 2015;373(14):1381–1382. doi: 10.1056/NEJMc1505857
  • Badar T, Astle J, Kakar IK, et al. Clinical activity of ibrutinib in classical Hodgkin lymphoma relapsing after allogeneic stem cell transplantation is independent of tumor BTK expression. Br J Haematol. 2020;190. doi: 10.1111/bjh.16738
  • Hanel W, Shindiapina P, Bond DA, et al. A phase 2 trial of Ibrutinib and nivolumab in patients with relapsed or refractory classical Hodgkin’s lymphoma. Cancers (Basel). 2023;15(5):1437. doi: 10.3390/cancers15051437
  • Borcoman E, Kamal M, Marret G, et al. HDAC inhibition to prime immune checkpoint inhibitors. Cancers (Basel). 2021;14(1):66. doi: 10.3390/cancers14010066
  • Younes A, Sureda A, Ben-Yehuda D, et al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J Clin Oncol. 2012;30(18):2197–2203. doi: 10.1200/JCO.2011.38.1350
  • Mei M, Chen L, Godfrey J, et al. Pembrolizumab plus vorinostat induces responses in patients with Hodgkin lymphoma refractory to prior PD-1 blockade. Blood. 2023;142(16):1359–1370. doi: 10.1182/blood.2023020485
  • von Keudell G, Sermer D, Vardhana S, et al. A phase II trial investigating the combination of Pembrolizumab (PEM) and entinostat (ENT) in relapsed and refractory (R/R) Hodgkin Lymphoma (HL). Blood. 2020;136:2966.
  • Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (1979). 2016;354:1160–1165. doi: 10.1126/science.aaf2807
  • Li X, Li Y, Dong L, et al. Decitabine priming increases anti–PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models. J Clin Invest. 2023;133(7):e165673. doi: 10.1172/JCI165673
  • Nie J, Wang C, Liu Y, et al. Addition of low-dose decitabine to anti–PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin Lymphoma. J Clin Oncol. 2019;37(17):1479–1489. doi: 10.1200/JCO.18.02151
  • Wang C, Liu Y, Dong L, et al. Efficacy of Decitabine plus anti-PD-1 camrelizumab in patients with Hodgkin Lymphoma who progressed or relapsed after PD-1 blockade monotherapy. Clin Cancer Res. 2021;27(10):2782–2791. doi: 10.1158/1078-0432.CCR-21-0133
  • Mei MG, Chen L, Puverel S, et al. The combination of nivolumab and CC-486 is active in Hodgkin Lymphoma Refractory to PD-1 blockade. Blood. 2023;182(Supplement 1):1697. doi: 10.1182/blood-2023-190753
  • Hartley JA. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs. 2011;20(6):733–744. doi: 10.1517/13543784.2011.573477
  • Flynn MJ, Zammarchi F, Tyrer PC, et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer–containing antibody–drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15(11):2709–2721. doi: 10.1158/1535-7163.MCT-16-0233
  • Hamadani M, Collins GP, Caimi PF, et al. Camidanlumab tesirine in patients with relapsed or refractory lymphoma: a phase 1, open-label, multicentre, dose-escalation, dose-expansion study. Lancet Haematol. 2021;8(6):e433–e445. doi: 10.1016/S2352-3026(21)00103-4
  • Carlo-Stella C, Ansell S, Zinzani PL, et al. S201: camidanlumab tesirine: updated efficacy and safety in an open-label, multicenter, phase 2 study of patients with relapsed or refractory classical Hodgkin lymphoma (R/R CHL). Hemasphere. 2022;6:102–103. doi: 10.1097/01.HS9.0000843696.37630.1c
  • Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs. 2014;6(3):727–738. doi: 10.4161/mabs.28591
  • Sasse S, Bröckelmann PJ, Momotow J, et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: final results of an open-label, randomized, multicenter phase II trial. Leuk Lymphoma. 2022;63(8):1871–1878. doi: 10.1080/10428194.2022.2095623
  • Bartlett NL, Herrera AF, Domingo-Domenech E, et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2020;136(21):2401–2409. doi: 10.1182/blood.2019004701
  • Kerbauy LN, Marin ND, Kaplan M, et al. Combining AFM13, a Bispecific CD30/CD16 Antibody, with cytokine-activated blood and cord blood–derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin Cancer Res. 2021;27(13):3744–3756. doi: 10.1158/1078-0432.CCR-21-0164
  • Nieto Y, Banerjee P, Kaur I, et al. Innate cell engager (ICE®) AFM13 combined with preactivated and expanded (P+E) cord blood (CB)-derived natural killer (NK) cells for patients with refractory CD30-positive lymphomas: final results. Blood. 2023;182(Supplement 1):774. doi: 10.1182/blood-2023-172980
  • Moskowitz AJ, Harstrick A, Emig M, et al. AFM13 in combination with allogeneic natural killer cells (AB-101) in relapsed or refractory Hodgkin Lymphoma and CD30+ peripheral T-Cell Lymphoma: a phase 2 study (LuminICE). Blood. 2023;182(Supplement 1):4855. doi: 10.1182/blood-2023-174250
  • Gholiha AR, Hollander P, Löf L, et al. Checkpoint CD47 expression in classical Hodgkin lymphoma. Br J Haematol. 2022;197(5):580–589. doi: 10.1111/bjh.18137
  • Wang Y, Ni H, Zhou S, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 2021;70(2):365–376. doi: 10.1007/s00262-020-02679-5
  • Zhang H, Yu J, LI H, et al. CD47/PD-L1 bispecific antibody (IBI322) in anti-PD-1 or PD-L1 treatment-resistant classical Hodgkin lymphoma: a phase 1 study. Hemasphere. 2023;7(S3):e8102841. doi: 10.1097/01.HS9.0000967776.81028.41
  • Ramos CA, Grover NS, Beaven AW, et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin Lymphoma. J Clin Oncol. 2020;38(32):3794–3804. doi: 10.1200/JCO.20.01342
  • Ahmed S, Flinn IW, Mei M, et al. Updated results and correlative analysis: autologous CD30.CAR-T-Cell therapy in patients with relapsed or refractory classical Hodgkin Lymphoma (CHARIOT trial). Blood. 2022;140(Supplement 1):7496–7497. doi: 10.1182/blood-2022-158869
  • Zhang S, Gu C, Huang L, et al. The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity. Sci Rep. 2022;12(1):10488. doi: 10.1038/s41598-022-14523-0
  • Grover NS, Ivanova A, Moore DT, et al. CD30-directed CAR-T cells Co-expressing CCR4 in relapsed/refractory Hodgkin Lymphoma and CD30+ cutaneous T cell Lymphoma. Blood. 2021;138(Supplement 1):742–742. doi: 10.1182/blood-2021-148102
  • Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):4700–4702. doi: 10.1182/blood-2010-06-289991
  • Ramos CA, Quach DH, Lulla PD, et al. Off-the-shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T cells (CD30.CAR EBVSTS) provide a safe and effective therapy for patients with Hodgkin Lymphoma (HL). Hematol Oncol. 2023;41(S2):83–85. doi: 10.1002/hon.3163_47
  • Liu J, Wang L, Zhao F, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLOS ONE. 2015;10(9):e0137345. doi: 10.1371/journal.pone.0137345
  • Advani R, Flinn I, Popplewell L, et al. CD47 blockade by Hu5F9-G4 and rituximab in Non-Hodgkin’s lymphoma. N Engl J Med. 2018;379(18):1711–1721. doi: 10.1056/NEJMoa1807315
  • Burger P, Hilarius-Stokman P, de Korte D, et al. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood. 2012;119(23):5512–5521. doi: 10.1182/blood-2011-10-386805
  • Ordentlich P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors. Semin Immunol. 2021;54:101514. doi: 10.1016/j.smim.2021.101514
  • Ries CH, Cannarile MA, Hoves S, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–859. doi: 10.1016/j.ccr.2014.05.016
  • Koh YW, Park C, Yoon DH, et al. CSF-1R expression in tumor-associated macrophages is associated with worse prognosis in classical Hodgkin Lymphoma. Am J Clin Pathol. 2014;141(4):573–583. doi: 10.1309/AJCPR92TDDFARISU
  • von Tresckow B, Morschhauser F, Ribrag V, et al. An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin Lymphoma. Clin Cancer Res. 2015;21(8):1843–1850. doi: 10.1158/1078-0432.CCR-14-1845
  • Garralda E, Sanborn RE, Minchom AR, et al. SGNTGT-001: a phase 1 study of SEA-TGT, an effector-function enhanced monoclonal antibody (mAb), in advanced malignancies (trial in progress). J Clin Oncol. 2021;39:TPS2657.(15_suppl):TPS2657–TPS2657. doi: 10.1200/JCO.2021.39.15_suppl.TPS2657
  • Gruber DR, Zeng W, Thurman B, et al. Abstract 6361: a preclinical model of acquired anti-PD-1 resistance is responsive to SEA-TGT, an effector-function enhanced anti-TIGIT monoclonal antibody. Cancer Res. 2023;83(7_Supplement):6361. doi: 10.1158/1538-7445.AM2023-6361
  • Hamblett KJ, Jin S, Yumul R. SGN-35T: a novel CD30-directed antibody-drug conjugate for the treatment of lymphomas. Clin Cancer Res. 2023;22(12_Supplement):C132. doi: 10.1158/1535-7163.TARG-23-C132
  • Ryan M, Lyski R, Bou L, et al. SGN-CD30C, an Investigational CD30-directed camptothecin antibody-drug conjugate (ADC), shows strong anti tumor activity and superior tolerability in preclinical studies. Blood. 2020;136(Supplement 1):41–42. doi: 10.1182/blood-2020-136577
  • Hamblett KJ, Cochran J, Snead K, et al. SGN-35C: a novel CD30-directed antibody-drug conjugate for the treatment of lymphomas. Blood. 2023;182(Supplement 1):1440. doi: 10.1182/blood-2023-182400
  • Oostindie SC, Alemdehy MF, Janmaat ML, et al. Duobody-CD3xCD30 demonstrates potent anti-tumor activity in preclinical models of CD30+ hematologic malignancies. Blood. 2022;140(Supplement 1):3153–3154. doi: 10.1182/blood-2022-159396
  • Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–2194. doi: 10.1084/jem.20100643
  • Mei MG, Corazzelli G, Morschhauser F, et al. Safety and preliminary efficacy of sabestomig (AZD7789), an anti-PD-1 and anti-TIM-3 bispecific antibody, in patients with relapsed or refractory classical Hodgkin Lymphoma Previously Treated with anti-PD-(L)1 therapy. Blood. 2023;182(Supplement 1):4433. doi: 10.1182/blood-2023-180926
  • Yang H, Xun Y, You H. The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark Res. 2023;11(1):15. doi: 10.1186/s40364-023-00456-x
  • Sockolosky JT, Dougan M, Ingram JR, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci USA. 2016;113(19):113. doi: 10.1073/pnas.1604268113
  • Liu X, Liu L, Ren Z, et al. Dual targeting of innate and adaptive checkpoints on tumor cells limits immune evasion. Cell Rep. 2018;24(8):2101–2111. doi: 10.1016/j.celrep.2018.07.062
  • Lian S, Xie R, Ye Y, et al. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci Rep. 2019;9(1):4532. doi: 10.1038/s41598-019-40241-1
  • Alvarez‐Fernández C, Escribà‐Garcia L, Caballero A, et al. Memory stem T cells modified with a redesigned CD30‐chimeric antigen receptor show an enhanced antitumor effect in Hodgkin lymphoma. Clin Transl Immunology. 2021;10(4):10. doi: 10.1002/cti2.1268
  • Sang W, Wang X, Geng H, et al. Anti-PD-1 therapy enhances the efficacy of CD30-directed chimeric antigen receptor T cell therapy in patients with relapsed/refractory CD30+ lymphoma. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.858021
  • Alig SK, Esfahani MS, Garofalo A, et al. Distinct hodgkin lymphoma subtypes defined by noninvasive genomic profiling. Nature. 2024;625(7996):778–787. doi: 10.1038/s41586-023-06903-x
  • Aoki T, Jiang A, Xu A, et al. Spatially resolved tumor microenvironment predicts treatment outcomes in relapsed/refractory Hodgkin Lymphoma. J Clin Oncol. 2024;42(9):1077–1087. doi: 10.1200/JCO.23.01115
  • Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413–2425. doi: 10.1182/blood-2017-11-812073
  • Kurtz DM, Soo J, Co Ting Keh L, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021;39(12):1537–1547. doi: 10.1038/s41587-021-00981-w
  • Lynch RC, Ujjani CS, Poh C, et al. Concurrent pembrolizumab with AVD for untreated classical Hodgkin lymphoma. Blood. 2023;141:2576–2586. doi: 10.1182/blood.2022019254

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.