606
Views
13
CrossRef citations to date
0
Altmetric
Review

Tumor necrosis factor-α in Guillain-Barré syndrome, friend or foe?

, , , , &
Pages 103-112 | Received 19 May 2016, Accepted 04 Nov 2016, Published online: 18 Nov 2016

References

  • Van Den Berg B, Walgaard C, Drenthen J, et al. Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10:469–482.
  • Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré syndrome outbreak associated with zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–1539.
  • Ghaderi S, Gunnes N, Bakken IJ, et al. Risk of Guillain-Barré syndrome after exposure to pandemic influenza A(H1N1)pdm09 vaccination or infection: a Norwegian population-based cohort study. Eur J Epidemiol. 2016;31:67–72.
  • Grimaldi-Bensouda L, Alpérovitch A, Besson G, et al. Guillain-Barre syndrome, influenzalike illnesses, and influenza vaccination during seasons with and without circulating A/H1N1 viruses. Am J Epidemiol. 2011;174:326–335.
  • Lehmann HC, Hartung HP, Kieseier BC, et al. Guillain-Barré syndrome after exposure to influenza virus. Lancet Infect Dis. 2010;10:643–651.
  • Sivadon-Tardy V, Orlikowski D, Porcher R, et al. Guillain-Barré syndrome and influenza virus infection. Clin Infect Dis. 2009;48:48–56.
  • Zhang HL, Zheng XY, Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain-Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev. 2013;24:443–453.
  • Wang Y, Sun S, Zhu J. Biomarkers of Guillain-Barré syndrome: some recent progress, more still to be explored. Mediators Inflamm. 2015;2015:564098.
  • Lu MO, Zhu J. The role of cytokines in Guillain-Barré syndrome. J Neurol. 2011;258:533–548.
  • Xia RH, Yosef N, Ubogu EE. Selective expression and cellular localization of pro-inflammatory chemokine ligand/receptor pairs in the sciatic nerves of a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome. Neuropathol Appl Neurobiol. 2010;36:388–398.
  • Kuwabara S, Yuki N. Axonal Guillain-Barré syndrome: concepts and controversies. Lancet Neurol. 2013;12:1180–1188.
  • Willison HJ, Jacobs BC, Van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388:717–727.
  • Fokke C, Van Den Berg B, Drenthen J, et al. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria. Brain. 2014;137:33–43.
  • Derksen A, Ritter C, Athar P, et al. Sural sparing pattern discriminates Guillain-Barre syndrome from its mimics. Muscle Nerve. 2014;50:780–784.
  • Alam TA, Chaudhry V, Cornblath DR. Electrophysiological studies in the Guillain-Barre syndrome: distinguishing subtypes by published criteria. Muscle Nerve. 1998;21:1275–1279.
  • Brown WF, Snow R. Patterns and severity of conduction abnormalities in Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 1991;54:768–774.
  • Zhang HL, Hassan MY, Zhang XY, et al. Attenuated EAN in TNF-α deficient mice is associated with an altered balance of M1/M2 macrophage. PLoS One. 2012;7:e38157.
  • Bao L, Lindgren JU, Van Der Meide P, et al. IL-12 is decisive for initiating, enhancing and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol. 2002;12:420–442.
  • Yu S, Chen ZG, Mix E, et al. Neutralizing antibodies to IL-18 ameliorates experimental autoimmune neuritis by counter-regulation of antoreactive Th1 responses to peripheral myelin antigen. J Neuropathol Exp Neurol. 2002;61:614–622.
  • Bao L, Lindgren U, Zhu Y, et al. Exogenous soluble tumor necrosis factor receptor type I ameliorates murine experimental autoimmune neuritis. Neurobiol Dis. 2003;12:73–81.
  • Zhu Y, Bao L, Zhu SW, et al. CD4 andCD8 T cells, but not B cell, are critical to the control of murine experimental autoimmune neuritis. Exp Neurol. 2002;177:314–320.
  • Kieseier BC, Hartung HP, Wiendl H. Immune circuitry in the peripheral nervous system. Curr Opin Neurol. 2006;19:437–445.
  • Kiefer R, Kieseier BC, Stoll G, et al. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64:109–127.
  • Mäurer M, Toyka KV, Gold R. Cellular immunity in inflammatory autoimmune neuropathies. Rev Neurol (Paris). 2002;158:S7–15.
  • Créange A, Sharshar T, Raphaël JC, et al. Cellular aspect of neuroinflammation in Guillain-Barré syndrome: a key to a new therapeutic option? Rev Neurol (Paris). 2002;158:15–27.
  • Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–3670.
  • Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117:244–279.
  • Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med. 2001;193:427–434.
  • Ledgerwood EC, Pober JS, Bradley JR. Recent advances in the molecular basis of TNF signal transduction. Lab Invest. 1999;79:1041–1050.
  • Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–1635.
  • Chatzidakis I, Mamalaki C. T cell as sources and targets of TNF: implications for immunity and autoimmunity. Curr Dir Autoimmun. 2010;11:105–118.
  • Tam CC, Rodrigues LC, Petersen I, et al. Incidence of Guillain-Barré syndrome among patients with campylobacter infection: a general practice research database study. J Infect Dis. 2006;194:95–97.
  • Wu LY, Zhou Y, Qin C, et al. The effect of TNF-alpha, FcγR and CD1 polymorphisms on Guillain-Barré syndrome risk: evidences from a meta-analysis. J Neuroimmunol. 2012;243:18–24.
  • Jiao H, Wang WZ, Wang HB, et al. Tumor necrosis factor alpha 308 G/A polymorphism and Guillain-Barré syndrome risk. Mol Biol Rep. 2012;39:1537–1540.
  • Blum S, McCombe PA. Genetics of Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): current knowledge and future directions. J Peripher Nerv Syst. 2014;19:88–103.
  • Uncini A, Notturno F, Pace M, et al. Polymorphism of CD1 and SH2D2A genes in inflammatory neuropathies. J Peripher Nerv Syst. 2011; 16 Suppl 1:48–51.
  • Kuijf ML, Geleijns K, Ennaji N, et al. Susceptibility to Guillain-Barré syndrome is not associated with CD1A and CD1E gene polymorphisms. J Neuroimmunol. 2008;205:110–112.
  • Lehmann HC, Hughes RA, Kieseier BC, et al. Recent developments and future directions in Guillain-Barré syndrome. J Peripher Nerv Syst. 2012;17:57–70.
  • Prasad KN, Nyati KK, Verma A, et al. Tumor necrosis factor–polymorphisms and expression in Guillain-Barré syndrome. Hum Immunol. 2010;71:905–910.
  • Müller U, Jongeneel CV, Nedospasov SA, et al. Tumour necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex. Nature. 1987;325:265–267.
  • Nedwin GE, Naylor SL, Sakaguchi AY, et al. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res. 1985;13:6361–6373.
  • Pachman LM, Fedczyna TO, Lechman TS, et al. Juvenile dermatomyositis: the association of the TNF alpha-308A allele and disease chronicity. Curr Rheumatol Rep. 2001;3:379–386.
  • Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990;11:137–142.
  • Huizinga R, Van Rijs W, Bajramovic JJ, et al. Sialylation of Campylobacter jejune endotoxin promotes dendritic cell-mediated B cell responses through CD14-dependent production of IFN-β and TNF-. J Immunol. 2013;191:5636–5645.
  • Kamakura K, Kaida KL, Kusunoki S, et al. Harmful effects of anti-GaINAc-GD1a antibodies and TNF-alpha on rat dorsal root ganglia. J Peripher Nerv Syst. 2005;10:190–201.
  • Li C, Zhao P, Sun X, et al. Elevated levels of cerebrospinal fluid and plasma interleukin-37 in patients with Guillain-Barré syndrome. Mediators Inflamm. 2013;2013:639712–639712.
  • Nyati KK, Prasad KN, Rizwan A, et al. TH1 and TH2 response to Campylobacter jejuni antigen in Guillain-Barre syndrome. Arch Neurol. 2011;68:445–452.
  • Radhakrishnan VV, Sumi MG, Reuben S, et al. Serum tumour necrosis factor-alpha and soluble tumour necrosis factor receptors levels in patients with Guillain-Barre syndrome. Acta Neurol Scand. 2004;109:71–74.
  • Sharief MK, Ingram DA, Swash M, et al. I.v. immunoglobulin reduces circulating proinflammatory cytokines in Guillain-Barre syndrome. Neurology. 1999;52:1833–1838.
  • Lehmann HC, Hartung HP. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol. 2011;231:61–69.
  • Brettschneider J, Petzold A, Suessmuth S, et al. Cerebrospinal fluid biomarkers in Guillain-Barré syndrome–where do we stand? J Neurol. 2009;256:3–12.
  • Deng H, Yang X, Jin T, et al. The role of IL-12 and TNF-alpha in AIDP and AMAN. Eur J Neurol. 2008;15:1100–1105.
  • Putzu GA, Figarella-Branger D, Bouvier-Labit C, et al. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain-Barré syndrome. J Neurol Sci. 2000;174:16–21.
  • Kurz M, Pischel H, Hartung HP, et al. Tumor necrosis factor-alpha-converting enzyme is expressed in the inflamed peripheral nervous system. J Peripher Nerv Syst. 2005;10:311–318.
  • Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun. 2010;11:180–210.
  • Esposito E, Cuzzocrea S. TNF-Alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem. 2009;16:3152–3167.
  • Stubgen JP. Tumor necrosis factor-alpha antagonists and neuropathy. Muscle Nerve. 2008;37:281–292.
  • Shin ISJ, Baer AN, Kwon HJ, et al. Guillain-Barré and Miller Fisher syndromes occurring with tumor necrosis factor alpha antagonist therapy. Arthritis Rheum. 2006;54:1429–1434.
  • Alvarez-Lario B, Prieto-Tejedo R, Colazo-Burlato M, et al. Severe Guillain-Barré syndrome in a patient receiving anti-TNF therapy. Consequence or coincidence. A case-based review. Clin Rheumatol. 2013;32:1407–1412.
  • Zhang HL, Wu LM, Wu XJ, et al. Can IFN-gamma be a therapeutic target in Guillain-Barré syndrome? Expert Opin Ther Targets. 2014;18:355–363.
  • Oka N, Akiguchi I, Kawasaki T, et al. Tumor necrosis factor-alpha in peripheral nerve lesions. Acta Neuropathol. 1998;95:57–62.
  • De La Hoz CLR, Castro FR, Santos LMB, et al. Distribution of inducible nitric oxide synthase and tumor necrosis factor-alpha in the peripheral nervous system of Lewis rats during ascending paresis and spontaneous recovery from experimental autoimmune neuritis. Neuroimmunomodulation. 2010;17:56–66.
  • Zhu J, Bai XF, Mix E, et al. Cytokine dichotomy in peripheral nervous system influences the outcome of experimental allergic neuritis: dynamics of mRNA expression for IL-1 beta, IL-6, IL-10, IL-12, TNF-alpha, TNF-beta, and cytolysin. Clin Immunol Immunopathol. 1997;84:85–94.
  • Redford EJ, Hall SM, Smith KJ. Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor. Brain. 1995;118(Pt 4):869–878.
  • Said G, Hontebeyrie-Joskowicz M. Nerve lesions induced by macrophage activation. Res Immunol. 1992;143:589–599.
  • Mao XJ, Zhang XM, Zhang HL, et al. TNF-alpha receptor 1 deficiency reduces antigen-presenting capacity of Schwann cells and ameliorates experimental autoimmune neuritis in mice. Neurosci Lett. 2010;470:19–23.
  • Nyati KK, Prasad KN, Verma A, et al. Correlation of matrix metalloproteinases-2 and −9 with proinflammatory cytokines in Guillain-Barré syndrome. J Neurosci Res. 2010;88:3540–3546.
  • Wang YZ, Tian FF, Liu H, et al. Macrophage migration inhibitory factor is necessary for the Lipo-oligosaccharide-induced response by modulation of Toll-like receptor 4 in monocytes from GBS patients. J Neuroimmunol. 2013;257:67–75.
  • Langert KA, Von Zee CL, Stubbs EB Jr. Cdc42 GTPases facilitate TNF-alpha-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. J Peripher Nerv Syst. 2013;18:199–208.
  • Langert KA, Von Zee CL, Stubbs EB Jr. Tumour necrosis factor alpha enhances CCL2 and ICAM-1 expression in peripheral nerve microvascular endoneurial endothelial cells. ASN Neuro. 2013;5:e00104.
  • Zhang HL, Wu J, Zhu J. The role of apolipoprotein E in Guillain-Barré syndrome and experimental autoimmune neuritis. J Biomed Biotechnol. 2010;2010:357412.
  • Zhang H, Wu LM, Wu J. Cross-talk between apolipoprotien E and cytokines. Mediators Inflamm. 2011;2011:949072.
  • Matsui H, Ohgomori T, Natori T, et al. Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis. Cell Death Dis. 2013;4:e946.
  • Weishaupt A, Gold R, Hartung T, et al. Role of TNF-alpha in high-dose antigen therapy in experimental autoimmune neuritis: inhibition of TNF-alpha by neutralizing antibodies reduces T-cell apoptosis and prevents liver necrosis. J Neuropathol Exp Neurol. 2000;59:368–376.
  • Taylor JM, Pollard JD. Soluble TNFR1 inhibits the development of experimental autoimmune neuritis by modulating blood-nerve-barrier permeability and inflammation. J Neuroimmunol. 2007;183:118–124.
  • Xu H, Li XL, Yue LT, et al. Therapeutic potential of atorvastatin-modified dendritic cells in experimental autoimmune neuritis by decreased-Thl/Th17 cytokines and up-regulated T regulatory cells and NKR-P1(+) cells. J Neuroimmunol. 2014;269:28–37.
  • Zou LP, Deretzi G, Levi M, et al. Rolipram suppresses experimental autoimmune neuritis and prevents relapses in Lewis rats. Neuropharmacology. 2000;39:324–333.
  • Ramkalawan H, Wang YZ, Hurbungs A, et al. Pioglitazone, PPAR gamma agonist, attenuates experimental autoimmune neuritis. Inflammation. 2012;35:1338–1347.
  • Han F, Luo BW, Shi RC, et al. Curcumin ameliorates rat experimental autoimmune neuritis. J Neurosci Res. 2014;92:743–750.
  • Tan XD, Dou YC, Shi CW, et al. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J Neuroimmunol. 2009;207:39–44.
  • Di Marco R, Khademi M, Wallstrom E, et al. Amelioration of experimental allergic neuritis by sodium fusidate (fusidin): suppression of IFN-gamma and TNF-alpha and enhancement of IL-10. J Autoimmun. 1999;13:187–195.
  • Li H, Li XL, Zhang M, et al. Berberine ameliorates experimental autoimmune neuritis by suppressing both cellular and humoral immunity. Scand J Immunol. 2014;79:12–19.
  • Zhu J, Bai XF, Hedlund G, et al. Linomide suppresses experimental autoimmune neuritis in Lewis rats by inhibiting myelin antigen-reactive T and B cell responses. Clin Exp Immunol. 1999;115:56–63.
  • Bai XF, Shi FD, Zhu J, et al. Experimental autoimmune neuritis is associated with down-regulated macrophage functions. J Neuroimmunol. 1997;76:177–184.
  • Zou LP, Abbas N, Volkmann I, et al. Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Neuropharmacology. 2002;42:731–739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.