350
Views
15
CrossRef citations to date
0
Altmetric
Review

Potential neuroprotective role of astroglial exosomes against smoking-induced oxidative stress and HIV-1 replication in the central nervous system

, , , , &
Pages 703-714 | Received 15 Mar 2018, Accepted 13 Jul 2018, Published online: 03 Aug 2018

References

  • Ande A, McArthur C, Ayuk L, et al. Effect of mild-to-moderate smoking on viral load, cytokines, oxidative stress, and cytochrome P450 enzymes in HIV-infected individuals. PLoS One. 2015;10(4):e0122402. PubMed PMID: 25879453; PubMed Central PMCID: PMCPMC4399877.
  • Rao P, Ande A, Sinha N, et al. Effects of cigarette smoke condensate on oxidative stress, apoptotic cell death, and HIV replication in human monocytic cells. PLoS One. 2016;11(5):e0155791. PubMed PMID: 27203850; PubMed Central PMCID: PMCPMC4874604.
  • Earla R, Ande A, McArthur C, et al. Enhanced nicotine metabolism in HIV-1-positive smokers compared with HIV-negative smokers: simultaneous determination of nicotine and its four metabolites in their plasma using a simple and sensitive electrospray ionization liquid chromatography-tandem mass spectrometry technique. Drug Metab Dispos. 2014 Feb;42(2):282–293. PubMed PMID: 24301609; PubMed Central PMCID: PMC3912541.
  • Zhao L, Li F, Zhang Y, et al. Mechanisms and genes involved in enhancement of HIV infectivity by tobacco smoke. Toxicology. 2010 Dec 5;278(2):242–248. PubMed PMID: 20920546.
  • Feldman DN, Feldman JG, Greenblatt R, et al. CYP1A1 genotype modifies the impact of smoking on effectiveness of HAART among women. AIDS Educ Prev: off Pub Int Soc AIDS Ed. 2009 Jun;21(3 Suppl):81–93. PubMed PMID: 19537956; PubMed Central PMCID: PMC2754267.
  • Skjold SA, Wannamaker LW. Method for phage typing group A type 49 streptococci. J Clin Microbiol. 1976 Sep;4(3):232–238. PubMed PMID: 972190; PubMed Central PMCID: PMC274442.
  • Kaul M, Zheng J, Okamoto S, et al. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ. 2005 Aug;12 Suppl 1:878–892. PubMed PMID: 15832177.
  • Williams R, Bokhari S, Silverstein P, et al. Nonhuman primate models of NeuroAIDS. J Neurovirol. 2008 Aug;14(4):292–300. PubMed PMID: 18780230; PubMed Central PMCID: PMC2715277.
  • Kim JH, Cho MH, Choi KC, et al. Oxidative stress induced by cigarette smoke extracts in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture. J Toxicol Environ Health A. 2015;78(15):1019–1027. PubMed PMID: 26262444.
  • Ivanov AV, Valuev-Elliston VT, Ivanova ON, et al. Oxidative Stress during HIV Infection: mechanisms and Consequences. Oxid Med Cell Longev. 2016;2016:8910396. PubMed PMID: 27829986; PubMed Central PMCID: PMCPMC5088339.
  • Lu JM, Lin PH, Yao Q, et al. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010 Apr;14(4):840–860. PubMed PMID: 19754673; PubMed Central PMCID: PMC2927345.
  • Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005 Nov 11;280(45):38029–38034. PubMed PMID: 16186101; PubMed Central PMCID: PMC2515369.
  • Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000 Dec;62(6):649–671. PubMed PMID: 10880854.
  • Oshiro S, Kawamura K, Zhang C, et al. Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia. Biochim Biophys Acta. 2008 Feb;1782(2):109–117. PubMed PMID: 18187051.
  • Frohlich D, Kuo WP, Fruhbeis C, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). PubMed PMID: 25135971; PubMed Central PMCID: PMCPMC4142031.
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release: off J Controlled Release Soc. 2015 Jun 10;207:18–30.
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002 Aug;2(8):569–579. PubMed PMID: 12154376.
  • Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013 Apr 25;4(2):34. PubMed PMID: 23618405; PubMed Central PMCID: PMC3707035.
  • Eldh M, Ekstrom K, Valadi H, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PloS One. 2010 Dec 17;5(12):e15353. PubMed PMID: 21179422; PubMed Central PMCID: PMC3003701.
  • Mdodo R, Frazier EL, Dube SR, et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: cross-sectional surveys. Ann Intern Med. 2015 Mar 03;162(5):335–344. PubMed PMID: 25732274.
  • Shirley DK, Kaner RJ, Glesby MJ. Effects of smoking on non-AIDS-related morbidity in HIV-infected patients. Clin Infect Dis: off Publ Infect Dis Soc Am. 2013 Jul;57(2):275–282. PubMed PMID: 23572487; PubMed Central PMCID: PMC3689343.
  • Rahmanian S, Wewers ME, Koletar S, et al. Cigarette smoking in the HIV-infected population. Proc Am Thorac Soc. 2011 Jun;8(3):313–319. PubMed PMID: 21653534; PubMed Central PMCID: PMC3132791.
  • Ockene IS, Miller NH. Cigarette smoking, cardiovascular disease, and stroke: a statement for healthcare professionals from the american heart association. american heart association task force on risk reduction. Circulation. 1997 Nov 04;96(9):3243–3247. PubMed PMID: 9386200.
  • Lortet-Tieulent J, Kulhanova I, Jacobs EJ, et al. Cigarette smoking-attributable burden of cancer by race and ethnicity in the United States. Cancer Causes & Control: CCC. 2017 Jul 26. DOI:10.1007/s10552–017-0932–9 PubMed PMID: 28748344.
  • Helleberg M, Afzal S, Kronborg G, et al. Mortality attributable to smoking among HIV-1-infected individuals: a nationwide, population-based cohort study. Clin Infect Dis: off Publ Infect Dis Soc Am. 2013 Mar;56(5):727–734. PubMed PMID: 23254417.
  • Mazzone P, Tierney W, Hossain M, et al. Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health. 2010 Dec;7(12):4111–4126. PubMed PMID: 21317997; PubMed Central PMCID: PMC3037043.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011 Jan;21(1):103–115. PubMed PMID: 21187859; PubMed Central PMCID: PMCPMC3193400.
  • Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb Haemost. 2007 May;97(5):714–721. PubMed PMID: 17479181.
  • Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affiliation. J Alzheimer’s Dis: JAD. 2010;19(2):465–480. PubMed PMID: 20110594; PubMed Central PMCID: PMC2906761.
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 Jan;37(1):13–25. PubMed PMID: 19664713.
  • Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009 Apr;43(4):348–364. PubMed PMID: 19241241.
  • Hawkins BT, Abbruscato TJ, Egleton RD, et al. Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004 Nov 19;1027(1–2):48–58. PubMed PMID: 15494156.
  • Paulson JR, Yang T, Selvaraj PK, et al. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther. 2010 Feb;332(2):371–379. PubMed PMID: 19889792; PubMed Central PMCID: PMCPMC2812118.
  • Hossain M, Mazzone P, Tierney W, et al. In vitro assessment of tobacco smoke toxicity at the BBB: do antioxidant supplements have a protective role? BMC Neurosci. 2011 Sep;24(12):92. PubMed PMID: 21943155; PubMed Central PMCID: PMC3196733.
  • Hamdi Y, Madfai H, Belhareth R, et al. Prenatal exposure to cigarette smoke enhances oxidative stress in astrocytes of neonatal rat. Toxicol Mech Methods. 2016 May;26(4):231–237. PubMed PMID: 26998663.
  • Ghosh D, Mishra MK, Das S, et al. Tobacco carcinogen induces microglial activation and subsequent neuronal damage. J Neurochem. 2009 Aug;110(3):1070–1081. PubMed PMID: 19500213.
  • Dutta K, Ghosh D, Nazmi A, et al. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation. PloS One. 2010 Apr 1;5(4):e9984. PubMed PMID: 20376308; PubMed Central PMCID: PMC2848611.
  • Khanna A, Guo M, Mehra M, et al. Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol. 2013 Jan 15;254(1–2):69–75. PubMed PMID: 23031832; PubMed Central PMCID: PMC3534934.
  • Deochand C, Tong M, Agarwal AR, et al. Tobacco smoke exposure impairs brain insulin/IGF signaling: potential co-factor role in neurodegeneration. J Alzheimer’s Dis: JAD. 2016;50(2):373–386. PubMed PMID: 26682684.
  • Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008 Jan;214(2):231–241. PubMed PMID: 18161758.
  • Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009 Jan;3(1):73–80. PubMed PMID: 19149749.
  • Gil L, Martinez G, Gonzalez I, et al. Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharm Res. 2003 Mar;47(3):217–224. PubMed PMID: 12591017.
  • Price TO, Ercal N, Nakaoke R, et al. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res. 2005 May 31;1045(1–2):57–63. PubMed PMID: 15910762.
  • Deshmane SL, Mukerjee R, Fan S, et al. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem. 2009 Apr 24;284(17):11364–11373. PubMed PMID: 19204000; PubMed Central PMCID: PMCPMC2670142.
  • Shah A, Kumar S, Simon SD, et al. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis. 2013 Oct;10(4):e850. PubMed PMID: 24113184; PubMed Central PMCID: PMC3824683.
  • Capone C, Cervelli M, Angelucci E, et al. A role for spermine oxidase as a mediator of reactive oxygen species production in HIV-Tat-induced neuronal toxicity. Free Radic Biol Med. 2013 Oct;63:99–107. PubMed PMID: 23665428.
  • Pu H, Tian J, Flora G, et al. HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci. 2003 Sep;24(1):224–237. PubMed PMID: 14550782.
  • Holguin A, Ka O, Biedenkapp J, et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain. 2004 Aug;110(3):517–530. PubMed PMID: 15288392.
  • Louboutin JP, Strayer D. Role of oxidative stress in HIV-1-associated neurocognitive disorder and protection by gene delivery of antioxidant enzymes. Antioxid. 2014 Nov 18;3(4):770–797. PubMed PMID: 26785240; PubMed Central PMCID: PMC4665507.
  • Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011 Dec;32(12):708–714. PubMed PMID: 21975165; PubMed Central PMCID: PMCPMC3223320.
  • Kis O, Sankaran-Walters S, Hoque MT, et al. HIV-1 alters intestinal expression of drug transporters and metabolic enzymes: implications for antiretroviral drug disposition. Antimicrob Agents Chemother. 2016 May;60(5):2771–2781. PubMed PMID: 26902756; PubMed Central PMCID: PMCPMC4862509.
  • Bell KF. Insight into a neuron’s preferential susceptibility to oxidative stress. Biochem Soc Trans. 2013 Dec;41(6):1541–1545. PubMed PMID: 24256251.
  • Hamilton JA, Hillard CJ, Spector AA, et al. Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci: MN. 2007 Sep;33(1):2–11. PubMed PMID: 17901539.
  • Bell KF, Al-Mubarak B, Martel MA, et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun. 2015 May;13(6):7066. PubMed PMID: 25967870; PubMed Central PMCID: PMCPMC4441249.
  • Birben E, Sahiner UM, Sackesen C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9–19. PubMed PMID: 23268465; PubMed Central PMCID: PMC3488923.
  • Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011 Oct 01;15(7):1957–1997. PubMed PMID: 21087145; PubMed Central PMCID: PMC3159114.
  • Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010 Jan;5(1):51–66. PubMed PMID: 20057381; PubMed Central PMCID: PMC2830880.
  • Kansanen E, Kuosmanen SM, Leinonen H, et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013 Jan;18(1):45–49. PubMed PMID: 24024136; PubMed Central PMCID: PMC3757665.
  • Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014 Aug 29;289(35):24700–24715. PubMed PMID: 25037225; PubMed Central PMCID: PMC4148892.
  • Abraham CR, Mullen PC, Tucker-Zhou T, et al. Klotho is a neuroprotective and cognition-enhancing protein. Vitam Horm. 2016;101:215–238. PubMed PMID: 27125744.
  • Kuro-O M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 Nov 6;390(6655):45–51. PubMed PMID: 9363890.
  • Abraham CR, Chen C, Cuny GD, et al. Small-molecule Klotho enhancers as novel treatment of neurodegeneration. Future Med Chem. 2012 Sep;4(13):1671–1679. PubMed PMID: 22924505; PubMed Central PMCID: PMC3564652.
  • Nagai T, Yamada K, Kim HC, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J: off Pub Fed Am Soc Exp Biol. 2003 Jan;17(1):50–52. PubMed PMID: 12475907.
  • Shiozaki M, Yoshimura K, Shibata M, et al. Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience. 2008 Apr 9;152(4):924–941. PubMed PMID: 18343589.
  • Dringen R, Pfeiffer B, Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci: off J Soc Neurosci. 1999 Jan 15;19(2):562–569. PubMed PMID: 9880576.
  • Guo Y, Yu S, Zhang C, et al. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med. 2015 Nov;88(Pt B):337–349. PubMed PMID: 26117320; PubMed Central PMCID: PMCPMC4955581.
  • Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, et al. Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 2015 Nov;22(11):1877–1889. PubMed PMID: 25909891; PubMed Central PMCID: PMC4648333.
  • Belanger M, Pj M. The role of astroglia in neuroprotection. Dialogues Clin Neurosci. 2009;11(3):281–295. PubMed PMID: 19877496; PubMed Central PMCID: PMCPMC3181926.
  • Makar TK, Nedergaard M, Preuss A, et al. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem. 1994 Jan;62(1):45–53. PubMed PMID: 7903354.
  • Bolanos JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem. 2016 Oct;139(Suppl 2):115–125. PubMed PMID: 26968531; PubMed Central PMCID: PMC5018236.
  • Garcia-Krauss A, Ferrada L, Astuya A, et al. Dehydroascorbic acid promotes cell death in neurons under oxidative stress: a protective role for astrocytes. Mol Neurobiol. 2016 Nov;53(9):5847–5863. PubMed PMID: 26497038.
  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013 Mar 15;14(3):6044–6066. PubMed PMID: 23502468; PubMed Central PMCID: PMC3634463.
  • Bolanos JP, Almeida A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life. 2010 Jan;62(1):14–18. PubMed PMID: 19937972.
  • Urbanelli L, Magini A, Buratta S, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel). 2013 Mar 28;4(2):152–170. PubMed PMID: 24705158; PubMed Central PMCID: PMCPMC3899971.
  • Johnstone RM. The Jeanne manery-fisher memorial lecture 1991. maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol. 1992 Mar-Apr;70(3–4):179–190. PubMed PMID: 1515120.
  • Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016 Mar 10;164(6):1226–1232. PubMed PMID: 26967288.
  • Li M, Zeringer E, Barta T, et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc London Ser B, Biol Sci. 2014 Sep 26;369(1652). PubMed PMID: 25135963; PubMed Central PMCID: PMC4142023.
  • Xiao T, Zhang W, Jiao B, et al. The role of exosomes in the pathogenesis of Alzheimer’ disease. Transl Neurodegener. 2017;6:3. PubMed PMID: 28184302; PubMed Central PMCID: PMC5289036.
  • Rahimian P, He JJ. Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein. J Neurovirol. 2016 Dec;22(6):774–788. 10.1007/s13365-016-0451-6. PubMed PMID: 27173397.
  • Guitart K, Loers G, Buck F, et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia. 2016 Jun;64(6):896–910. PubMed PMID: 26992135.
  • Wang S, Cesca F, Loers G, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci: off J Soc Neurosci. 2011 May 18;31(20):7275–7290. PubMed PMID: 21593312.
  • Taylor AR, Robinson MB, Gifondorwa DJ, et al. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol. 2007 Nov;67(13):1815–1829. PubMed PMID: 17701989.
  • Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009 Apr 28;61(4):310–318. PubMed PMID: 19248813.
  • Jakel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:24. PubMed PMID: 28243193; PubMed Central PMCID: PMC5303749.
  • Fernandez-Fernandez S, Almeida A, Bolanos JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J. 2012 Apr 1;443(1):3–11. PubMed PMID: 22417747.
  • Lee M, Schwab C, Yu S, et al. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging. 2009 Oct;30(10):1523–1534. PubMed PMID: 19631409.
  • Wang XF, Cynader MS. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci: off J Soc Neurosci. 2001 May 15;21(10):3322–3331. PubMed PMID: 11331361.
  • McBean GJ. Cysteine, glutathione, and thiol redox balance in astrocytes. Antioxid. 2017 Aug 03;6(3). PubMed PMID: 28771170; PubMed Central PMCID: PMC5618090. DOI:10.3390/antiox6030062
  • Stoessl AJ. Glucose utilization: still in the synapse. Nat Neurosci. 2017 Feb 23;20(3):382–384. PubMed PMID: 28230843.
  • Siushansian R, Tao L, Dixon SJ, et al. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. J Neurochem. 1997 Jun;68(6):2378–2385. PubMed PMID: 9166731.
  • Yin C, Zhou S, Jiang L, et al. Mechanical injured neurons stimulate astrocytes to express apolipoprotein E through ERK pathway. Neurosci Lett. 2012 Apr 25;515(1):77–81. PubMed PMID: 22450050.
  • Takemoto T, Ishihara Y, Ishida A, et al. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury. Environ Toxicol Pharmacol. 2015 Jul;40(1):199–205. PubMed PMID: 26143513.
  • Jean YY, Lercher LD, Dreyfus CF. Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol. 2008 Feb;4(1):35–42. PubMed PMID: 19267952.
  • Dhandapani KM, Hadman M, De Sevilla L, et al. Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway. J Biol Chem. 2003 Oct 31;278(44):43329–43339. PubMed PMID: 12888549.
  • Choi SS, Lee HJ, Lim I, et al. Human astrocytes: secretome profiles of cytokines and chemokines. PloS One. 2014;9(4):e92325. PubMed PMID: 24691121; PubMed Central PMCID: PMC3972155.
  • Ledeboer A, Breve JJ, Wierinckx A, et al. Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells. Eur J Neurosci. 2002 Oct;16(7):1175–1185. PubMed PMID: 12405978.
  • Hu MH, Zheng QF, Jia XZ, et al. Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol. 2014 Feb;175(2):268–284. PubMed PMID: 24117055; PubMed Central PMCID: PMC3892418.
  • Ouyang YB, Xu L, Lu Y, et al. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia. 2013 Nov;61(11):1784–1794. PubMed PMID: 24038396; PubMed Central PMCID: PMC3810393.
  • Basso M, Pozzi S, Tortarolo M, et al. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem. 2013 May 31;288(22):15699–15711. PubMed PMID: 23592792; PubMed Central PMCID: PMC3668729.
  • Bassett T, Bach P, Chan HM. Effects of methylmercury on the secretion of pro-inflammatory cytokines from primary microglial cells and astrocytes. Neurotoxicology. 2012 Mar;33(2):229–234. PubMed PMID: 22037494.
  • Cerciat M, Unkila M, Garcia-Segura LM, et al. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia. 2010 Jan 01;58(1):93–102. PubMed PMID: 19533603.
  • Tarassishin L, Loudig O, Bauman A, et al. Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia. 2011 Dec;59(12):1911–1922. PubMed PMID: 22170100; PubMed Central PMCID: PMC3241213.
  • Kampmann E, Johann S, van Neerven S, et al. Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. J Neurochem. 2008 Jul;106(1):320–332. PubMed PMID: 18394023.
  • Molina-Holgado F, Lledo A, Guaza C. Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia. 1995 Oct;15(2):167–172. PubMed PMID: 8567068.
  • van Neerven S, Regen T, Wolf D, et al. Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neurochem. 2010 Sep 01;114(5):1511–1526. PubMed PMID: 20557428.
  • Kamat PK, Swarnkar S, Rai S, et al. Astrocyte mediated MMP-9 activation in the synapse dysfunction: an implication in Alzheimer disease. Ther Targets Neurol Dis. 2014;1(1). DOI:10.14800/ttnd.243 PubMed PMID: 25590048; PubMed Central PMCID: PMC4290019.
  • Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001 Jul;4(7):702–710. PubMed PMID: 11426226.
  • Ranjit S, Midde NM, Sinha N, et al. Effect of polyaryl hydrocarbons on cytotoxicity in monocytic cells: potential role of cytochromes P450 and oxidative stress pathways. PLoS One. 2016;11(9):e0163827. PubMed PMID: 27684561; PubMed Central PMCID: PMCPMC5042547.
  • Zhao Y, Zhang M, Yan F, et al. Nicotine-induced upregulation of antioxidant protein Prx 1 in oral squamous cell carcinoma [journal article]. Chin Sci Bull. 2013 June 01;58(16):1912–1918.
  • Lafon-Cazal M, Adjali O, Galeotti N, et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J Biol Chem. 2003 Jul 04;278(27):24438–24448. PubMed PMID: 12709418.
  • Eades G, Yang M, Yao Y, et al. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011 Nov 25;286(47):40725–40733. PubMed PMID: 21926171; PubMed Central PMCID: PMC3220489.
  • Takahashi HK, Iwagaki H, Hamano R, et al. Effect of nicotine on IL-18-initiated immune response in human monocytes. J Leukoc Biol. 2006 Dec;80(6):1388–1394. PubMed PMID: 16966384.
  • Piao WH, Campagnolo D, Dayao C, et al. Nicotine and inflammatory neurological disorders. Acta Pharmacol Sin. 2009 Jun;30(6):715–722. PubMed PMID: 19448649; PubMed Central PMCID: PMC4002379.
  • Yoshikawa H, Kurokawa M, Ozaki N, et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol. 2006 Oct;146(1):116–123. PubMed PMID: 16968406; PubMed Central PMCID: PMC1809735.
  • de Jonge WJ, van Der Zanden EP, The FO, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005 Aug;6(8):844–851. PubMed PMID: 16025117.
  • Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4148–4153. PubMed PMID: 11259680; PubMed Central PMCID: PMCPMC31194.
  • Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3–19. PubMed PMID: 26472524; PubMed Central PMCID: PMCPMC4795468.
  • Balaraman S, Winzer-Serhan UH, Miranda RC. Opposing actions of ethanol and nicotine on microRNAs are mediated by nicotinic acetylcholine receptors in fetal cerebral cortical-derived neural progenitor cells. Alcohol Clin Exp Res. 2012 Oct;36(10):1669–1677. PubMed PMID: 22458409; PubMed Central PMCID: PMCPMC3390449.
  • Zhuang G, Wu X, Jiang Z, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012 Aug 29;31(17):3513–3523. PubMed PMID: 22773185; PubMed Central PMCID: PMCPMC3433782.
  • Wang Y, Zhu N, Wang K, et al. Identification of alpha7 nicotinic acetylcholine receptor on hippocampal astrocytes cultured in vitro and its role on inflammatory mediator secretion. Neural Regen Res. 2012 Aug 5;7(22):1709–1714. PubMed PMID: 25624792; PubMed Central PMCID: PMC4302451.
  • Revathikumar P, Bergqvist F, Gopalakrishnan S, et al. Immunomodulatory effects of nicotine on interleukin 1beta activated human astrocytes and the role of cyclooxygenase 2 in the underlying mechanism. J Neuroinflam. 2016 Sep 29;13(1):256. PubMed PMID: 27681882; PubMed Central PMCID: PMCPMC5041575.
  • Xiang X, Poliakov A, Liu C, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Inter J of Cancer. 2009 Jun 01;124(11):2621–2633. PubMed PMID: 19235923; PubMed Central PMCID: PMCPMC2757307.
  • Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010 Aug;51(8):2105–2120. PubMed PMID: 20424270; PubMed Central PMCID: PMCPMC2903822.
  • Desagher S, Glowinski J, Premont J. Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci: off J Soc Neurosci. 1996 Apr 15;16(8):2553–2562. PubMed PMID: 8786431.
  • Lafourcade C, Ramirez JP, Luarte A, et al. MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J Exp Neurosci. 2016;10(Suppl 1):1–9. PubMed PMID: 27547038; PubMed Central PMCID: PMC4978198.
  • Baxter PS, Hardingham GE. Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic Biol Med. 2016 Nov;100:147–152. PubMed PMID: 27365123; PubMed Central PMCID: PMCPMC5145800.
  • Uccelli A, Benvenuto F, Laroni A, et al. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011 Mar;24(1):59–64. PubMed PMID: 21396593.
  • Otsuka T, Imura T, Nakagawa K, et al. Simulated microgravity culture enhances the neuroprotective effects of human cranial bone-derived mesenchymal stem cells in traumatic brain injury. Stem Cells Dev. 2018 May 23. DOI:10.1089/scd.2017.0299 PubMed PMID: 29790427.
  • Saylor D, Dickens AM, Sacktor N, et al. HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Reviews Neurol. 2016 Apr;12(4):234–248. PubMed PMID: 26965674; PubMed Central PMCID: PMC4937456.
  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sinica B. 2016 Jul;6(4):287–296. PubMed PMID: 27471669; PubMed Central PMCID: PMC4951582.
  • Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015 Jun;32(6):2003–2014. PubMed PMID: 25609010; PubMed Central PMCID: PMC4520542.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011 Apr;29(4):341–345. PubMed PMID: 21423189.
  • Kalani A, Chaturvedi P. Curcumin-primed and curcumin-loaded exosomes: potential neural therapy. Neural Regen Res. 2017 Feb;12(2):205–206. PubMed PMID: 28400796; PubMed Central PMCID: PMC5361498.
  • Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013 May;10(3):301–312. PubMed PMID: 23399448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.