233
Views
0
CrossRef citations to date
0
Altmetric
Review

Programmed cell death in human pathogenic fungi – a possible therapeutic target

, &
Pages 1039-1048 | Received 07 Mar 2018, Accepted 23 Oct 2018, Published online: 30 Oct 2018

References

  • Casadevall A, Pirofski LA. The weapon potential of human pathogenic fungi. Med Mycol. 2006;44(8):689–696.
  • De brucker K, Cammue BP, Thevissen K. Apoptosis-inducing antifungal peptides and proteins. Biochem Soc Trans. 2011;39(5):1527–1532.
  • Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012:713687.
  • Reales-Calderón JA, Molero G, Gil C, et al. The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Med Chem. 2016;8(12):1503–1520.
  • Salcido RS. Survival of the fittest, part 2: the emergence of super fungi. Adv Skin Wound Care. 2017;30(10):437.
  • Strich R. Programmed cell death initiation and execution in budding yeast. Genetics. 2015;200(4):1003–1014.
  • Robson GD. Programmed cell death in the aspergilli and other filamentous fungi. Med Mycol. 2006;44:S109–S114.
  • Ramsdale M. Programmed cell death in pathogenic fungi. Biochim Biophys Acta. 2008;1783(7):1369–1380.
  • Sharon A, Finkelstein A, Shlezinger N, et al. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev. 2009;33(5):833–854.
  • Gonçalves AP, Heller J, Daskalov A, et al. Regulated forms of cell death in fungi. Front Microbiol. 2017;8:1837.
  • Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci. 2016;73(11–12):2237–2250.
  • Wilkinson D, Ramsdale M. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. Biochem Soc Trans. 2011;39(5):1502–1508.
  • Fröhlich KU, Fussi H, Ruckenstuhl C. Yeast apoptosis – from genes to pathways. Semin Cancer Biol. 2007;17(2):112–121.
  • Váchová L, Palková Z. Caspases in yeast apoptosis-like death: facts and artefacts. FEMS Yeast Res. 2006;7(1):12–21.
  • Laun P, Büttner S, Rinnerthaler M, et al. Yeast aging and apoptosis. Subcell Biochem. 2012;57:207–232.
  • Guaragnella N, Zdralević M, Antonacci L, et al. The role of mitochondria in yeast programmed cell death. Front Oncol. 2012;2:70.
  • Danion F, Aguilar C, Catherinot E, et al. Mucormycosis: new developments into a persistently devastating infection. Semin Respir Crit Care Med. 2015;36(5):692–705.
  • Shirazi F, Kontoyiannis DP. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis. PLoS One. 2013;8:e63393.
  • Wang S, Li R, Yu J. Apoptotic-like phenotype triggered by hydrogen peroxide and amphotericin B in the fungus Rhizopus arrhizus. Mycoses. 2014;57(Suppl 3):25–30.
  • Shirazi F, Kontoyiannis DP, Ibrahim AS. Iron starvation induces apoptosis in Rhizopus oryzae in vitro. Virulence. 2015;6(2):121–126.
  • Shirazi F, Kontoyiannis DP. The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis. Eukaryot Cell. 2013;12(9):1225–1234.
  • Shirazi F, Pontikos MA, Walsh TJ, et al. Hyperthermia sensitizes Rhizopus oryzae to posaconazole and itraconazole action through apoptosis. Antimicrob Agents Chemother. 2013;57(9):4360–4368.
  • Chamilos G, Lewis RE, Kontoyiannis DP. Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole. Antimicrob Agents Chemother. 2006;50(1):96–103.
  • Wloch-Salamon DM, Bem AE. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol. 2013;114(2):287–298.
  • The Yin LB. Yang of a metacaspase. Cell Cycle. 2014;13(22):3471–3472.
  • Hill SM, Hao X, Liu B, et al. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science. 2014;344(6190):1389–1392.
  • Modjtahedi N, Giordanetto F, Madeo F, et al. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 2006;16(5):264–272.
  • Joza N, Pospisilik JA, Hangen E, et al. AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci. 2009;1171:2–11.
  • Li W, Sun L, Liang Q, et al. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell. 2006;17(4):1802–1811.
  • Gonçalves AP, Videira A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. Microb Cell. 2015;2(3):68–73.
  • Fahrenkrog B. Nma111p, the pro-apoptotic HtrA-like nuclear serine protease in Saccharomycescerevisiae: a short survey. Biochem Soc Trans. 2011;39(5):1499–1501.
  • Büttner S, Ruli D, Vögtle FN, et al. A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. Embo J. 2011;30(14):2779–2792.
  • Büttner S, Eisenberg T, Carmona-Gutierrez D, et al. Endonuclease G regulates budding yeast life and death. Mol Cell. 2007;25(2):233–246.
  • Burhans WC, Weinberger M. Yeast endonuclease G: complex matters of death, and of life. Mol Cell. 2007;25(3):323–325.
  • Pereira C, Camougrand N, Manon S, et al. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007;66(3):571–582.
  • Rinnerthaler M, Jarolim S, Heeren G, et al. MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta. 2006;1757(5–6):631–638.
  • Pozniakovsky AI, Knorre DA, Markova OV, et al. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol. 2005;168:257–269.
  • Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res. 2014;14(1):119–135.
  • Léger T, Garcia C, Ounissi M, et al. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics. 2015;14(1):93–108.
  • Cao Y, Huang S, Dai B, et al. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol. 2009;46(2):183–189.
  • Phillips AJ, Crowe JD, Ramsdale M. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 2006;103(3):726–731.
  • Hao B, Cheng S, Clancy CJ, et al. Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob Agents Chemother. 2013;57(1):326–332.
  • Dai BD, Wang Y, Zhao LX, et al. Cap1p attenuates the apoptosis of Candida albicans. FEBS J. 2013;280(11):2633–2643.
  • Laprade DJ, Brown MS, McCarthy ML, et al. Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via mechanism involving the yeast metacaspase, MCA1. Microb Cell. 2016;3(7):285–292.
  • Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–465.
  • Bassetti M, Pecori D, Siega PD, et al. Current and future therapies for invasive aspergillosis. Pulm Pharmacol Ther. 2015;32:155–165.
  • Richie DL, Miley MD, Bhabhra R, et al. The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol. 2007;63(2):591–604.
  • Emri T, Molnár Z, Pócsi I. The appearances of autolytic and apoptotic markers are concomitant but differently regulated in carbon-starving Aspergillus nidulans cultures. FEMS Microbiol Lett. 2005;251(2):297–303.
  • Amaike S, Keller NP. Aspergillus flavus. Annu Rev Phytopathol. 2011;49:107–133.
  • Wang X, Wang Y, Zhou Y, et al. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia. 2014;106(5):881–888.
  • Semighini CP, Hornby JM, Dumitru R, et al. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol. 2006;59(3):753–764.
  • Savoldi M, Malavazi I, Soriani FM, et al. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. Mol Microbiol. 2008;70(1):44–59.
  • Dinamarco TM, Pimentel Bde C, Savoldi M, et al. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet Biol. 2010;47(12):1055–1069.
  • Semighini CP, Savoldi M, Goldman GH, et al. Functional characterization of the putative Aspergillus nidulans poly(ADP-ribose) polymerase homolog PrpA. Genetics. 2006;173(1):87–98.
  • Colabardini AC, De Castro PA, De Gouvêa PF, et al. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol Microbiol. 2010;78(5):1259–1279.
  • Figueiredo B, Pimentel DC, Pa DC, et al. The Aspergillus nidulans nucA(EndoG) homologue is not involved in cell death. Eukaryot Cell. 2011;10(2):276–283.
  • Shlezinger N, Irmer H, Dhingra S, et al. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science. 2017;357(6355):1037–1041.
  • Park BJ, Wannemuehler KA, Marston BJ, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525–530.
  • Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322.
  • Semighini CP, Averette AF, Perfect JR, et al. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog. 2011;7(11):e1002364.
  • Ikeda R, Sawamura K. Bacterial and H2O2 stress-induced apoptosis-like events in Cryptococcus neoformans. Res Microbiol. 2008;159(9–10):628–634.
  • Ikeda R. Possible participation of the Rho/Rho-associated coiled-coil-forming kinase pathway in the cell death of Cryptococcus neoformans caused by Staphylococcus aureus adherence. Microbiol Immunol. 2011;55(8):552–557.
  • Movahed E, Tan GM, Munusamy K, et al. Triclosan demonstrates synergic effect with amphotericin B and fluconazole and induces apoptosis-like cell death in Cryptococcus neoformans. Front Microbiol. 2016;7:360.
  • Yeaman MR, Büttner S, Thevissen K. Regulated cell death as a therapeutic target for novel antifungal peptides and biologics. Oxid Med Cell Longev. 2018;2018:5473817.
  • Holfeld L, Herth N, Singer D, et al. Immunogenicity and pharmacokinetics of short, proline-rich antimicrobial peptides. Future Med Chem. 2015;7(12):1581–1596.
  • Torres MJ, Mayorga C, Blanca M. Nonimmediate allergic reactions induced by drugs: pathogenesis and diagnostic tests. J Investig Allergol Clin Immunol. 2009;19(2):80–90.
  • Meyer V. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol. 2008;78(1):17–28.
  • Hegedűs N, Leiter É, Kovács B, et al. The small molecular mass antifungal protein of Penicillium chrysogenum – a mechanism of action oriented review. J Basic Microbiol. 2011;51(6):561–571.
  • Palicz Z, Jenes A, Gáll T, et al. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF). Toxicol Appl Pharmacol. 2013;269(1):8–16.
  • Palicz Z, Gáll T, Leiter É, et al. Application of a low molecular weight antifungal protein from Penicillium chrysogenum (PAF) to treat pulmonary aspergillosis in mice. Emerg Microbes Infect. 2016;5(11):e114.
  • Anil Kumar S, Hima Kumari P, Shravan Kumar G, et al. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci. 2015;6:163.
  • Narasimhan ML, Coca MA, Jin J, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell. 2005;17(2):171–180.
  • Morton CO, Dos Santos SC, Coote P. An amphibian-derived, cationic, -helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol Microbiol. 2007;65(2):494–507.
  • Brock JH. Lactoferrin–50 years on. Biochem Cell Biol. 2012;90(3):245–251.
  • Acosta-Zaldívar M, Andrés MT, Rego A, et al. Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis. 2016;21(2):163–173.
  • Aerts AM, Bammens L, Govaert G, et al. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front Microbiol. 2011;2:47.
  • Vriens K, Cammue BP, Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules. 2014;19(8):12280–12303.
  • Thevissen K, de Mello Tavares P, Xu D, et al. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol. 2012;84(1):166–180.
  • Aerts AM, Carmona-Gutierrez D, Lefevre S, et al. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 2009;583(15):2513–2516.
  • Qi G, Zhu F, Du P, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31(11):1978–1986.
  • Andrés MT, Acosta-Zaldívar M, Fierro JF. Antifungal mechanism of action of lactoferrin: identification of H+-ATPase (P3A-Type) as a new apoptotic-cell membrane receptor. Antimicrob Agents Chemother. 2016;60(7):4206–4216.
  • Andrés MT, Viejo-Díaz M, Fierro JF. Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother. 2008;52(11):4081–4088.
  • Delgado J, Owens RA, Doyle S, et al. Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus. Appl Microbiol Biotechnol. 2015;99(20):8701–8715.
  • Delgado J, Owens RA, Doyle S, et al. Quantitative proteomics reveals new insights into calcium-mediated resistance mechanisms in Aspergillus flavus against the antifungal protein PgAFP in cheese. Food Microbiol. 2017;66:1–10.
  • Hegedüs N, Marx F. Antifungal proteins: more than antimicrobials? Fungal Biol Rev. 2013;26(4):132–145.
  • Binder U, Oberparleiter C, Meyer V, et al. (2010) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol. 2010;75(2):294–307.
  • Leiter É, Szappanos H, Oberparleiter C, et al. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother. 2005;49(6):2445–2453.
  • Yu JH. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol. 2006;44(2):145–154.
  • Leiter É, Park HS, Kwon NJ, et al. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Sci Rep. 2016;6:20523.
  • Galgóczy L, Kovács L, Karácsony Z, et al. Investigation of the antimicrobial effect of Neosartorya fischeri antifungal protein (NFAP) after heterologous expression in Aspergillus nidulans. Microbiology. 2013;159(Pt 2):411–419.
  • Virágh M, Marton A, Vizler C, et al. Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell. 2015;6(7):518–528.
  • Soares JR, José Tenório de Melo E, Da Cunha M, et al. Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochim Biophys Acta. 2017;1861(1 Pt A):3429–3443.
  • Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life. 2016;68(8):652–662.
  • Park C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun. 2010;394(1):170–172.
  • Lee J, Lee DG. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol Lett. 2014;355(1):36–42.
  • Hwang B, Hwang JS, Lee J, et al. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun. 2011;405(2):267–271.
  • Hwang B, Hwang JS, Lee J, et al. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem Biophys Res Commun. 2011;408(1):89–93.
  • Choi H, Hwang JS, Lee DG. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol Biol. 2014;23(6):788–799.
  • Cho J, Lee DG. The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis. Biochim Biophys Acta. 2011;1810(12):1246–1251.
  • Cho J, Lee DG. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie. 2011;93(10):1873–1879.
  • Yun J, Hwang JS, Lee DG. The antifungal activity of the peptide, periplanetasin-2, derived from American cockroach Periplaneta americana. Biochem J. 2017;474(17):3027–3043.
  • Lee J, Hwang JS, Hwang IS, et al. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic Biol Med. 2012;52(11–12):2302–2311.
  • Sharma A, Srivastava S. Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol. 2014;118(2):264–275.
  • Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014;4(5):pii: a019703.
  • Denning DW, Bromley MJ. Infectious disease. How to bolster the antifungal pipeline. Science. 2015;347(6229):1414–1416.
  • Slavin M, van Hal S, Sorrell TC, et al. Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect. 2015;21(5):490.e1-10.
  • Felipe LO, Júnior WFDS, Araújo KC, et al. Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment. Braz J Microbiol. 2018;49(2):212–219.
  • Tavares PM, Thevissen K, Cammue BP, et al. In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother. 2008;52(12):4522–4525.
  • Kang SJ, Park SJ, Mishig-Ochir T, et al. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther. 2014;12(12):1477–1486.
  • Greber KE, Dawgul M. Antimicrobial peptides under clinical trials. Curr Top Med Chem. 2017;17(5):620–628.
  • Jampilek J. How can we bolster the antifungal drug discovery pipeline? Future Med Chem. 2016;8(12):1393–1397.
  • Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol. 2013;31(5):379–382.
  • Barbu EM, Shirazi F, McGrath DM, et al. (2013) An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-mediated apoptosis. PLoS One. 2013;8(10):e76981.
  • Garrigues S, Gandía M, Popa C, et al. (2017) Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Sci Rep. 2017;7(1):14663.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.