376
Views
14
CrossRef citations to date
0
Altmetric
Review

Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety?

, & ORCID Icon
Pages 1225-1238 | Received 27 Mar 2020, Accepted 02 Nov 2020, Published online: 26 Nov 2020

References

  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–1858.
  • Liu Q, He H, Yang J, et al. Changes in the global burden of depression from 1990 to 2017: findings from the global burden of disease study. J Psychiatr Res. [Internet]. 2019;0–1. doi:10.1016/j.jpsychires.2019.08.002
  • Ferrari AJ, Stockings E, Khoo JP, et al. The prevalence and burden of bipolar disorder: findings from the global burden of disease study 2013. Bipolar Disord. 2016;18:440–450.
  • In- CID. Prevalence, severity, and comorbidity of 12-month. 2005;62.
  • Gustavson K, Knudsen AK, Nesvåg R, et al. Prevalence and stability of mental disorders among young adults: findings from a longitudinal study. BMC Psychiatry. 2018;18(1):1–15.
  • Santos M, D’Amico D, Spadoni O, et al. Hippocampal hyperexcitability underlies enhanced fear memories in TgNTRK3, a panic disorder mouse model. J Neurosci. 2013;33:15259–15271.
  • Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci. [Internet]. 2019;129:283–296.
  • Fox AS, Souaiaia T, Oler JA, et al. Dorsal amygdala neurotrophin-3 decreases anxious temperament in primates. Biol Psychiatry. 2019;86:881–889.
  • Colpo GD, Leboyer M, Dantzer R, et al. Immune-based strategies for mood disorders: facts and challenges. Expert Rev Neurother. [Internet]. 2018;18:139–152.
  • Lippi G, Mattiuzzi C, Sanchis-Gomar F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J Sport Heal Sci. 2020;9:74–81.
  • Rodriguez-Tebar A, Dechant G, Gotz R, et al. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. Embo J. 1992;11:917–922.
  • Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–391.
  • Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4:299–309.
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci. 2006;361:1545–1564.
  • Maisonpierre PC, Le Beau MM, Espinosa R, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics. 1991;10(3):558–568.
  • Ball E, Ho RK, Goodman CS, et al. The role of neurogenesis during development and in the adult brain. 117 E Sink P M Whitington Devel-opment. [Internet]. 2016;50:134–140.
  • Shimazu K, Zhao M, Sakata K, et al. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Mem. 2006;13(3):307–315.
  • Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission?. Science (80-) 2012;338:72–75.
  • Revest JM, Dupret D, Koehl M, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. [Internet]. 2009;14(10):959–967.
  • Oliveira SLB, Pillat MM, Cheffer A, et al. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytom Part A. 2013;83(1):A:76–89.
  • Vilar M, Mira H. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. 2016;10:1–9.
  • Eisch AJ, Bolaños CA, De Wit J, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry. 2003;54(10):994–1005.
  • Kang E, Wen Z, Song H, et al. Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol. 2016;8(9):1–27.
  • Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron. 1995;15(1):89–103.
  • Vicario-Abejón C, Johe KK, Hazel TG, et al. Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron. 1995;15(1):105–114.
  • Ekman M, Zhu B, Swärd K, et al. Neurite outgrowth in cultured mouse pelvic ganglia - effects of neurotrophins and bladder tissue. Auton Neurosci Basic Clin. [Internet]. 2017;205:41–49.
  • Joo W, Hippenmeyer S, Luo L. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science. 2014;346(6209):626–629.
  • Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274(5290):1133–1138.
  • Cavanaugh JE, Ham J, Hetman M, et al. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci. 2001;21(2):434–443. .
  • Arvanov VL, Seebach BS, Mendell LM. Nt-3 evokes an LTP-like facilitation of AMPA/kainate receptor-mediated synaptic transmission in the neonatal rat spinal cord. J Neurophysiol. 2000;84(2):752–758.
  • Arvanian VL, Mendell LM. Removal of NMDA receptor Mg 2+ block extends the action of NT-3 on synaptic transmission in neonatal rat motoneurons. J Neurophysiol. 2001;86(1):123–129.
  • Numan S, Seroogy KB. Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol. 1999;403:295–308.
  • Mele T, Čarman-Kržan M, Jurič DM. Regulatory role of monoamine neurotransmitters in astrocytic NT-3 synthesis. Int J Dev Neurosci. 2010;28(1):13–19.
  • Espejo M, Cutillas B, Arenas E, et al. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line- derived neurotrophic factor. Cell Transplant. 2000;9(1):45–53.
  • Baldelli P, Forni PE, Carbone E. BDNF, NT-3 and NGF induce distinct new Ca 2+ channel synthesis in developing hippocampal neurons. Eur J Neurosci. 2000;12(11):4017–4032.
  • Je HS, Yang F, Zhou J, et al. Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms. J Cell Biol. 2006;175(6):1029–1042.
  • Ji Y, Lu Y, Yang F, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. [Internet]. 2010;13(3):302–309.
  • Paul J, Gottmann K, Lessmann V. NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport. 2001;12(12):2635–2639.
  • Labelle C, Leclerc N. Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Dev Brain Res. 2000;123(1):1–11.
  • Hao P, Duan H, Hao F, et al. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials. [Internet]. 2017;140:88–102.
  • Rao JS, Zhao C, Zhang A, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci USA. 2018;115(24):E5595–E5604.
  • Duan H, Ge W, Zhang A, et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci USA. 2015;112(43):13360e–13365.
  • Yang Z, Zhang A, Duan H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci USA. 2015;112(43):13354e–13359.
  • Jin Y, Sun LH, Yang W, et al. The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol. 2019;10:515.
  • Yan Q, Radeke MJ, Matheson CR, et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol. 1997;378:135–157.
  • Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72(1):609–642.
  • Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov. [Internet]. 2011;10:209–219.
  • Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314(5796):140–143.
  • Berton O, McClung CA, DiLeone RJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311(5762):864–868.
  • Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neurosci. 2015;289:367–380.
  • Lu Y, Ho CS, McIntyre RS, et al. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci. [Internet]. 2018;210:177–184.
  • Karege F, Perret G, Bondolfi G, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Mol Brain Res. 2002;109:29–37.
  • Molendijk ML, Spinhoven P, Polak M, et al. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry. [Internet]. 2014;19(7):791–800.
  • Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64:527–532.
  • Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol. 2010;70(5):289–297.
  • MacQueen GM, Ramakrishnan K, Croll SD, et al. Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci. 2001;115(5):1145–1153.
  • Zörner B, Wolfer DP, Brandis D, et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than “depressive. Biol Psychiatry. 2003;54(10):972–982. .
  • Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9):1089–1093.
  • Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349–357. .
  • Cazorla M, Prémont J, Mann A, et al. Identification of a low–molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest. 2011;121(5):1846–1857.
  • Pierce RC, Pierce-Bancroft AF, Prasad BM. Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/mitogen-activated protein kinase signal transduction cascade. J Neurosci. 1999;19(19):8685–8695.
  • Freeman AY, Pierce RC. Neutralization of neutrophin-3 in the ventral tegmental area or nucleus accumbens differentially modulates cocaine-induced behavioral plasticity in rats. Synapse. 2002;46(2):57–65.
  • Fava M, Thase ME, DeBattista C. A multicenter, placebo-controlled study of modafinil augmentation in partial responders to selective serotonin reuptake inhibitors with persistent fatigue and sleepiness No title. J Clin Psychiatry. 2005;66(1):85–93.
  • Farhadi HF, Mowla SJ, Petrecca K, et al. Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J Neurosci. 2000;20(11):4059–4068.
  • Wu YJ, Krüttgen A, Möller JC, et al. Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 are sorted to dense-core vesicles and released via the regulated pathway in primary rat cortical neurons. J Neurosci Res. 2004;75(6):825–834.
  • Asztely F, Kokaia M, Olofsdotter K, et al. Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur J Neurosci. 2000;12(2):662–669.
  • Kokaia M, Asztely F, Olofsdotter K, et al. Endogenousneurotrophin-3regulates short-term plasticity at lateral perforant path-granule cell synapses. J Neurosci. 1998;IV(21):8730–8739. .
  • Ramos-Languren LE, Escobar ML. Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci. 2013;37(8):1248–1259.
  • Xu B, Michalski B, Racine RJ, et al. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience. 2002;115(4):1295–1308.
  • Loudes C, Petit F, Kordon C. Distinct populations of hypothalamic dopaminergic neurons exhibit differential responses to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTS). Eur J Neurosci. 1999;11(2):617–624.
  • McAllister AK, Katz LC, Lo DC. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron. 1997;18(5):767–778.
  • Lucassen PJ, Pruessner J, Sousa N, et al. Neuropathology of stress. Acta Neuropathol. 2014;127:109–135.
  • Russo-Neustadt A. No Title. Semin Clin Neuropsychiatry. 2003;8(2):109–118.
  • Castrén E. Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Mol Neurobiol. 2004;29(3):289–301.
  • Tseng PT, Chen YW, Tu KY, et al. State-dependent increase in the levels of neurotrophin-3 and neurotrophin-4/5 in patients with bipolar disorder: a meta-analysis. J Psychiatr Res. [Internet]. 2016;79:86–92.
  • Rapaport M. Prevalence, recognition, and treatment of comorbid depression and anxiety. J Clin Psychiatry. 2001;62:6–10.
  • Mergl R, Seidscheck I, Allgaier A, et al. Depressive, anxiety, and somatoform disorders in primary care: prevalence and recognition. Depress Anxiety. 2007;24(3):185–195.
  • Dierssen M, Gratacòs M, Sahún I, et al. Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction. Neurobiol Dis. 2006;24(2):403–418.
  • Sahún I, Gallego X, Gratacòs M, et al. Differential responses to anxiogenic drugs in a mouse model of panic disorder as revealed by Fos immunocytochemistry in specific areas of the fear circuitry. Amino Acids. 2007;33(4):677–688.
  • D’Amico D, Gener T, De Lagrán MM, et al. Infralimbic neurotrophin-3 infusion rescues fear extinction impairment in a mouse model of pathological fear. Neuropsychopharmacology. 2017;42(2):462–472.
  • Amador-Arjona A, Delgado-Morales R, Belda X, et al. Susceptibility to stress in transgenic mice overexpressing TrkC, a model of panic disorder. J Psychiatr Res. [Internet]. 2010;44(3):157–167.
  • Michael T, Blechert J, Vriends N, et al. Fear conditioning in panic disorder: enhanced resistance to extinction. J Abnorm Psychol. 2007;116(3):612–617.
  • Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci. 2013;16(2):146–153.
  • Armengol L, Gratacòs M, Pujana MA, et al. 5′ UTR-region SNP in the NTRK3 gene is associated with panic disorder [2]. Mol Psychiatry. 2002;7(9):928–930.
  • Muiños-Gimeno M, Guidi M, Kagerbauer B, et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat. 2009;30(7):1062–1071. .
  • Zhou X, Rush R. Functional roles of neurotrophin 3 in the developing and mature sympathetic nervous system. Mol Neurobiol. 1996;13(3):185–197.
  • Shirayama Y, Chen ACH, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–3261.
  • Sheldrick A, Camara S, Ilieva M, et al. Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals – a proof of concept study. Eur Psychiatry. [Internet]. 2017;46:65–71.
  • Ogłodek EA, Just MJ, Szromek AR, et al. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. [Internet]. 2016;68(5):945–951.
  • Mishra BR, Maiti R, Nath S, et al. Effect of sertraline, dosulepin, and venlafaxine on non-BDNF neurotrophins in patients with depression: a cohort study. J Clin Psychopharmacol. 2019;39(3):220–225.
  • Otsuki K, Uchida S, Watanuki T, et al. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res. 2008;42(14):1145–1153.
  • Valvassori SS, Mariot E, Varela RB, et al. The role of neurotrophic factors in manic-, anxious- and depressive-like behaviors induced by amphetamine sensitization: implications to the animal model of bipolar disorder. J Affect Disord. 2019;245:1106–1113.
  • Walz JC, Andreazza AC, Frey BN, et al. Serum neurotrophin-3 is increased during manic and depressive episodes in bipolar disorder. Neurosci Lett. 2007;415(1):87–89.
  • Arabska J, Łucka A, Strzelecki D, et al. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett. 2018;684:152–155.
  • Martin-Iverson MT, Todd KG, Altar CA. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci. 1994;14(3):1262–1270.
  • Celada P, Siuciak JA, Tran TM, et al. Local infusion of brain-derived neurotrophic factor modifies the firing pattern of dorsal raphé serotonergic neurons. Brain Res. 1996;712(2):293–298.
  • Gibon J, Barker PA. Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist. 2017;23(6):587–604.
  • Agostinho FR, Réus GZ, Stringari RB, et al. Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neurosci Lett. [Internet]. 2011;497(2):99–103.
  • Walz JC, Frey BN, Andreazza AC, et al. Effects of lithium and valproate on serum and hippocampal neurotrophin-3 levels in an animal model of mania. J Psychiatr Res. 2008;42(5):416–421.
  • Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18:951–975.
  • Hirschfeld R. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000;61:4–6.
  • Boku S, Nakagawa S, Toda H, et al. Neural basis of major depressive disorder: beyond monoamine hypothesis. Comput Graph Forum. 2018;37:3–12.
  • Mamounas LA, Blue ME, Siuciak JA, et al. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci. 1995;15(12):7929–7939. .
  • Arenas E, Persson H. Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature. 1994;367(6461):368–371.
  • Merlio JP, Ernfors P, Jaber M, et al. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trkfile:///Users/jlvmb/Desktop/Library NT-3/Scola et al.,2015.pdf family in the rat central nervous system. Neuroscience. 1992;51:(3):513–532. .
  • Sieber-Blum M, Ren Z. Norepinephrine transporter expression and function in noradrenergic cell differentiation. Mol Cell Biochem. 2000;212(1/2):61–70.
  • Smith MA, Makino S, Altemus M, et al. Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus. Proc Natl Acad Sci USA. 1995;92(19):8788–8792.
  • Hock C, Heese K, Müller-Spahn F, et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry. 2000;5(5):510–513.
  • Loch AA, Zanetti MV, de Sousa RT, et al. Elevated neurotrophin-3 and neurotrophin 4/5 levels in unmedicated bipolar depression and the effects of lithium. Prog Neuro-Psychopharmacol Biol Psych. [Internet]. 2015;56:243–246.
  • Kempermann G, Kronenberg G. Depressed new neurons - adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003;54(5):499–503.
  • Gratacòs M, Soria V, Urretavizcaya M, et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J. 2008;8(2):101–112. .
  • Kapczinski F, Frey BN, Kauer-Sant’Anna M, et al. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother. 2008;8(7):1101–1113.
  • Zörner B, Wolfer DP, Brandis D, et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. Biol Psychiatry. 2008;290:185–197.
  • Scola G, Andreazza AC. The role of neurotrophins in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psych. [Internet]. 2015;56:122–128.
  • Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037(1–2):204–208.
  • Huang TL, Te LC, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res. 2008;42(7):521–525.
  • Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18(1):223–253.
  • Schütte A, Yan Q, Mestres P, et al. The endogenous survival promotion of axotomized rat corticospinal neurons by brain-derived neurotrophic factor is mediated via paracrine, rather than autocrine mechanisms. Neurosci Lett. 2000;290(3):185–188.
  • Haenisch B, Bilkei-Gorzo A, Caron MG, et al. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem. 2009;111(2):403–416.
  • Mao QQ, Zhong XM, Li ZY, et al. Herbal formula SYJN increases neurotrophin-3 and nerve growth factor expression in brain regions of rats exposed to chronic unpredictable stress. J Ethnopharmacol. [Internet]. 2010;131(1):182–186.
  • Koshkina A, Dudnichenko T, Baranenko D, et al. Effects of vitamin D 3 in long-term ovariectomized rats subjected to chronic unpredictable mild stress.
  • Faure J, Uys JDK, Marais L, et al. Early maternal separation followed by later stressors leads to dysregulation of the HPA-axis and increases in hippocampal NGF and NT-3 levels in a rat model. Metab Brain Dis. 2006;21(2–3):181–188.
  • Juruena MF, Bocharova M, Agustini B, et al. Atypical depression and non-atypical depression: is HPA axis function a biomarker? A systematic review. J Affect Disord [Internet]. 2018;233:45–67.
  • Nielsen DM. Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci. 2006;78(9):909–919.
  • Scherf-Clavel M, Wurst C, Nitschke F, et al. Extent of cortisol suppression at baseline predicts improvement in HPA axis function during antidepressant treatment. Psychoneuroendocrinol. [Internet]. 2020;114:104590.
  • Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–388.
  • Davies P, Ijaz S, Williams CJ, et al. Pharmacological interventions for treatment-resistant depression in adults. Cochrane Database Syst Rev. 2019;12(12):CD010557.
  • Angelucci F, Mathé AA, Aloe L. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res. 2004;146:151–165.
  • Nibuya M, Morinobu S, RS D. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neuroscifile. 2009;1995(15): 7539–7547. ///Users/jlvmb/Desktop/Library NT-3/Chen al.
  • Siuciak JA, Lewis DR, Wiegand SJ, et al. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav. 1996;56(1):131–137.
  • Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64:238–258.
  • Andero R, P D, Heldt SA, et al. TrkB agonist, on emotional learning. Learning. 2010;2010:1–10.
  • Seredenin SB, Voronina TA, Gudasheva TA, et al. Antidepressant effect of dimeric dipeptide GSB-106, an original low-molecular-weight mimetic of BDNF. Acta Naturae. 2013;5(4):105–109.
  • Garibova TL, Kraineva VA, Kotel’nikova SO, et al. Behavioral effects of dimeric dipeptide BDNF mimetic GSB-106 in a rat model of depressive-like state. Bull Exp Biol Med. 2020;169(2):286–289.
  • Liu X, Chan B, Jang S-W, et al. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem. 2010;53, 23:8274–8286.
  • Naletova I, Grasso GI, Satriano C, et al. Copper complexes of synthetic peptides mimicking neurotrophin-3 enhance neurite outgrowth and CREB phosphorylation. Metallomics. 2019;11(9):1567–1578.
  • Chen D, Brahimi F, Angell Y, et al. Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals. ACS Chem Biol. 2010;4(9):769–781. 769.pdf. 2009;4.
  • Ashdown-Franks G, Firth J, Carney R, et al. Exercise as medicine for mental and substance use disorders: a meta-review of the benefits for neuropsychiatric and cognitive outcomes. Sport Med. [Internet]. 2020;50(1):151–170.
  • Koo HM, Lee SM, Kim MH. Spontaneous wheel running exercise induces brain recovery via neurotrophin-3 expression following experimental traumatic brain injury in rats. J Phy Therapy Sci. 2013;25(9):1103–1107.
  • Chung JY, Kim MW, Im W, et al. Expression of neurotrophin-3 and trkC following focal cerebral ischemia in adult rat brain with treadmill exercise. Biomed Res Int. 2017;2017:9248542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.