385
Views
3
CrossRef citations to date
0
Altmetric
Review

Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential

ORCID Icon, ORCID Icon & ORCID Icon
Pages 335-346 | Received 19 Jan 2021, Accepted 28 May 2021, Published online: 15 Jun 2021

References

  • Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev. 2016 Apr;96(2):751–804.
  • Field M, Graf LH, Laird WJ, et al. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Nat Acad Sci. 1978;75(6):2800–2804.
  • Hughes JM, Murad F, Chang B, et al. Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature. 1978;271(5647):755–756.
  • Romi H, Cohen I, Landau D, et al. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C. Am J Hum Genet. 2012 May 4;90(5):893–899.
  • Müller T, Rasool I, Heinz-Erian P, et al. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut. 2016;65(8):1306–1313.
  • Fiskerstrand T, Arshad N, Haukanes BI, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012 Apr 26;366(17):1586–1595.
  • Brenna Ø, Bruland T, Furnes MW, et al. The guanylate cyclase-C signaling pathway is down-regulated in inflammatory bowel disease. Scand J Gastroenterol. 2015;50(10):1241–1252.
  • Shailubhai K, Palejwala V, Arjunan KP, et al. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis. World J Gastrointest Pharmacol Ther. 2015 Nov 6;6(4):213–222.
  • Lembo AJ, Schneier HA, Shiff SJ, et al. Two randomized trials of linaclotide for chronic constipation. N Engl J Med. 2011;365(6):527–536.
  • Currie MG, Fok KF, Kato J, et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):947–951.
  • Hamra FK, Forte LR, Eber SL, et al. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10464–10468.
  • Li P, Schulz S, Bombonati A, et al. Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology. 2007 Aug;133(2):599–607.
  • Lin JE, Snook AE, Li P, et al., GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLOS ONE. 2012;7(2): e31686.
  • Lin JE, Li P, Snook AE, et al. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology. 2010 Jan;138(1):241–254.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
  • Meester RGS, Mannalithara A, Lansdorp-Vogelaar I, et al. Trends in incidence and stage at diagnosis of colorectal cancer in adults aged 40 through 49 years, 1975-2015. Jama. 2019 May 21;321(19):1933–1934.
  • Lee JJ, Chu E. The adjuvant treatment of stage III colon cancer: might less be more? Oncology (Williston Park). 2018 Sep 15;32(9):437–42, 444.
  • Wilson C, Lin JE, Li P, et al. The paracrine hormone for the GUCY2C tumor suppressor, guanylin, is universally lost in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2014;23(11):2328–2337.
  • Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–689.
  • Reed KK, Wickham R. Review of the gastrointestinal tract: from macro to micro. Semin Oncol Nurs. 2009;25(1):3–14.
  • Boudry G, Yang P-C, Perdue MH. Small Intestine, Anatomy. In: Johnson LR, editor. Encyclopedia of Gastroenterology. New York: Elsevier; 2004. p. 404–409.
  • Barker N, Van De Wetering M, Clevers H. The intestinal stem cell. Genes Dev. 2008 Jul 15;22(14):1856–1864.
  • Sato T, Van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011 Jan 20;469(7330):415–418.
  • Takahashi T, Shiraishi A. Stem cell signaling pathways in the small intestine. Int J Mol Sci. 2020;21(6):2032.
  • Qi Z, Li Y, Zhao B, et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat Commun. 2017;8(1):13824.
  • Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. JNCI. 2017;109(8):djw332.
  • Lucas KA, Pitari GM, Kazerounian S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000 Sep;52(3):375–414.
  • Cohen MB, Witte DP, Hawkins JA, et al. Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem Biophys Res Commun. 1995;209(3):803–808.
  • Perkins A, Goy MF, Li Z. Uroguanylin is expressed by enterochromaffin cells in the rat gastrointestinal tract. Gastroenterology. 1997;113(3):1007–1014.
  • Brenna Ø, Furnes MW, Munkvold B, et al. Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa. Cell Tissue Res. 2016;365(2):331–341.
  • Ikpa PT, Sleddens HFBM, Steinbrecher KA, et al. Guanylin and uroguanylin are produced by mouse intestinal epithelial cells of columnar and secretory lineage. Histochem Cell Biol. 2016;146(4):445–455.
  • Nokihara K, Wray V, Ando E, et al. Synthesis, solution structure, binding activity, and cGMP activation of human guanylin and its disulfide isomer. Regul Pept. 1997 Jun 18;70(2–3):111–120.
  • Kita T, Smith CE, Fok KF, et al. Characterization of human uroguanylin: a member of the guanylin peptide family. Am J Physiol. 1994 Feb;266(2 Pt 2):F342–8.
  • De Sauvage FJ, Keshav S, Kuang WJ, et al. Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9089–9093.
  • Ahsan MK, Tchernychev B, Kessler MM, et al. Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine. Physiol Rep. 2017;5(11):e13299.
  • Azevedo MF, Faucz FR, Bimpaki E, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014;35(2):195–233.
  • Levy I, Horvath A, Azevedo M, et al. Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. Curr Opin Pharmacol. 2011 Dec;11(6):689–697.
  • Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov. 2019;18(10):770–796.
  • Francis SH, Busch JL, Corbin JD, et al. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010 Sep;62(3):525–563.
  • Markert T, Vaandrager AB, Gambaryan S, et al. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J Clin Invest. 1995 Aug;96(2):822–830.
  • Arshad N, Visweswariah SS. Cyclic nucleotide signaling in intestinal epithelia: getting to the gut of the matter. WIREs Syst Biol Med. 2013;5(4):409–424.
  • Hou Y, Gupta N, Schoenlein P, et al. An anti-tumor role for cGMP-dependent protein kinase. Cancer Lett. 2006 Aug 18;240(1):60–68.
  • Clément G, Bosman FT, Fontolliet C, et al. Monoallelic methylation of the APC promoter is altered in normal gastric mucosa associated with neoplastic lesions. Cancer Res. 2004 Oct 1;64(19):6867–6873.
  • Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018 Jan;68(1):31–54.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016 Aug;14(8):e1002533.
  • Maisonneuve C, Irrazabal T, Martin A, et al. The impact of the gut microbiome on colorectal cancer. Annu Rev Cancer Biol. 2018;2(1):229–249.
  • Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 Jan 5;359(6371):91–97.
  • Xu X, Lv J, Guo F, et al. Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol. 2020;11:814.
  • Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019 Mar;17(3):156–166.
  • Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut. 2015 Oct;64(10):1623–1636.
  • Figueiredo JC, Hsu L, Hutter CM, et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet. 2014;10(4):e1004228.
  • Hamada T, Keum N, Nishihara R, et al. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol. 2017 Mar;52(3):265–275.
  • Ogino S, Nowak JA, Hamada T, et al. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol. 2019 Jan;24(14):83–103.
  • Pitari GM, Zingman LV, Hodgson DM, et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2695–2699.
  • Schulz S, Green CK, Yuen PS, et al. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948.
  • Steinbrecher KA, Tuohy TM, Heppner Goss K, et al. Expression of guanylin is downregulated in mouse and human intestinal adenomas. Biochem Biophys Res Commun. 2000 Jun 24;273(1):225–230.
  • Blomain ES, Rappaport JA, Pattison AM, et al., APC-β-catenin-TCF signaling silences the intestinal guanylin-GUCY2C tumor suppressor axis. Cancer Biol Ther. 2020;21(5): 441–451.
  • Pattison AM, Barton JR, Entezari AA, et al. Silencing the intestinal GUCY2C tumor suppressor axis requires APC loss of heterozygosity. Cancer Biol Ther. 2020;21(9):799–805.
  • Schulz S, Lopez MJ, Kuhn M, et al. Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest. 1997 Sep 15;100(6):1590–1595.
  • Harmel-Laws E, Mann EA, Cohen MB, et al. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis. PLoS One. 2013;8(11):e79180.
  • Li P, Lin JE, Chervoneva I, et al. Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. Am J Pathol. 2007;171(6):1847–1858.
  • Steinbrecher KA, Wowk SA, Rudolph JA, et al. Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am J Pathol. 2002;161(6):2169–2178.
  • Lin JE, Colon-Gonzalez F, Blomain E, et al. Obesity-induced colorectal cancer is driven by caloric silencing of the guanylin–GUCY2C paracrine signaling axis. Cancer Res. 2016;76(2):339–346.
  • Shailubhai K, Yu HH, Karunanandaa K, et al. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res. 2000 Sep 15;60(18):5151–5157.
  • DeMicco M, Barrow L, Hickey B, et al. Randomized clinical trial: efficacy and safety of plecanatide in the treatment of chronic idiopathic constipation. Therap Adv Gastroenterol. 2017 Nov;10(11):837–851.
  • Thomas RH, Allmond K. Linaclotide (Linzess) for irritable bowel syndrome with constipation and for chronic idiopathic constipation. P T. 2013 Mar;38(3):154–160.
  • Rao S, Lembo AJ, Shiff SJ, et al. A 12-week, randomized, controlled trial with a 4-week randomized withdrawal period to evaluate the efficacy and safety of linaclotide in irritable bowel syndrome with constipation. Am J Gastroenterol. 2012 Nov;107(11):1714–1724. quiz p.1725.
  • Waldman SA, Camilleri M. Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders. Gut. 2018 Aug;67(8):1543–1552.
  • Sharman SK, Islam BN, Hou Y, et al. Cyclic-GMP-elevating agents suppress polyposis in Apc(Min) mice by targeting the preneoplastic epithelium. Cancer Prev Res (Phila). 2018 Feb;11(2):81–92.
  • Brancale A, Shailubhai K, Ferla S, et al. Therapeutically targeting guanylate cyclase-C: computational modeling of plecanatide, a uroguanylin analog. Pharmacol Res Perspect. 2017 Apr;5(2):e00295.
  • Chang WL, Masih S, Thadi A, et al. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc(+/Min-FCCC) mice. World J Gastrointest Pharmacol Ther. 2017 Feb 6;8(1):47–59.
  • Boulete IM, Thadi A, Beaufrand C, et al. Oral treatment with plecanatide or dolcanatide attenuates visceral hypersensitivity via activation of guanylate cyclase-C in rat models. World J Gastroenterol. 2018 May 7;24(17):1888–1900.
  • Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005 Mar 17;352(11):1092–1102.
  • Ruder EH, Laiyemo AO, Graubard BI, et al. Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. Am J Gastroenterol. 2011 Jul;106(7):1340–1350.
  • Chandra S, Nymeyer AC, Rice PF, et al. Intermittent dosing with sulindac provides effective colorectal cancer chemoprevention in the azoxymethane-treated mouse model. Cancer Prev Res. 2017;10(8):459–466.
  • Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 2014;20(5):1104–1113.
  • Elder DJ, Halton DE, Hague A, et al. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res. 1997;3(10):1679–1683.
  • Piazza GA, Rahm AK, Finn TS, et al. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res. 1997;57(12):2452–2459.
  • Li H, Liu L, David ML, et al. Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve beta-catenin and cyclin D1 down-regulation. Biochem Pharmacol. 2002 Nov 1;64(9):1325–1336.
  • Piazza GA, Alberts DS, Hixson LJ, et al. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. 1997;57(14):2909–2915.
  • Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med. 1993 May 6;328(18):1313–1316.
  • Mei XL, Yang Y, Zhang YJ, et al. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res. 2015;5(11):3311–3324.
  • Islam BN, Sharman SK, Hou Y, et al. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev Res (Phila). 2017 Jul;10(7):377–388.
  • Huang W, Sundquist J, Sundquist K, et al. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat Commun. 2020;11(1):3191.
  • Huang W, Sundquist J, Sundquist K, et al. Use of phosphodiesterase 5 inhibitors is associated with lower risk of colorectal cancer in men with benign colorectal neoplasms. Gastroenterology. 2019 Sep;157(3):672–681.e4.
  • Sutton SS, Magagnoli J, Cummings TH, et al. The association between phosphodiesterase-5 inhibitors and colorectal cancer in a national cohort of patients. Clin Transl Gastroenterol. 2020 Jun;11(6):e00173.
  • Cea Soriano L, García Rodríguez LA. No association between use of phosphodiesterase 5 inhibitors and colorectal cancer in men with erectile dysfunction. Pharmacoepidemiol Drug Saf. 2020;29(5):605–608.
  • Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014 Apr 26;383(9927):1490–1502.
  • Boland GM, Chang GJ, Haynes AB, et al. Association between adherence to national comprehensive cancer network treatment guidelines and improved survival in patients with colon cancer. Cancer. 2013;119(8):1593–1601.
  • Varghese A. Chemotherapy for stage II colon cancer. Clin Colon Rectal Surg. 2015 Dec;28(4):256–261.
  • Gunderson LL, Jessup JM, Sargent DJ, et al. Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol. 2010 Jan 10;28(2):264–271.
  • Kim GW, Lin JE, Snook AE, et al. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity. Nutr Diabetes. 2016 May 23;6(5):e211.
  • Valentino MA, Lin JE, Snook AE, et al. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest. 2011 Sep;121(9):3578–3588.
  • Merlino DJ, Barton JR, Charsar BA, et al. Two distinct GUCY2C circuits with PMV (hypothalamic) and SN/VTA (midbrain) origin. Brain Struct Funct. 2019;224(8):2983–2999.
  • Carrithers SL, Barber MT, Biswas S, et al. Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Nat Acad Sci. 1996;93(25):14827–14832.
  • Cagir B, Gelmann A, Park J, et al. Guanylyl cyclase C messenger RNA is a biomarker for recurrent stage II colorectal cancer. Ann Intern Med. 1999;131(11):805–812.
  • Birbe R, Palazzo JP, Walters R, et al. Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum Pathol. 2005 Feb;36(2):170–179.
  • Danaee H, Kalebic T, Wyant T, et al., Consistent expression of guanylyl cyclase-C in primary and metastatic gastrointestinal cancers. PLoS One. 2017;12(12): e0189953.
  • Park J, Schulz S, Haaf J, et al. Ectopic expression of guanylyl cyclase C in adenocarcinomas of the esophagus and stomach. Cancer Epidemiol Biomarkers Prev. 2002 Aug;11(8):739–744.
  • Kloeters O, Friess H, Giese N, et al. Uroguanylin inhibits proliferation of pancreatic cancer cells. Scand J Gastroenterol. 2008;43(4):447–455.
  • Debruyne PR, Witek M, Gong L, et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology. 2006 Apr;130(4):1191–1206.
  • Mejia A, Schulz S, Hyslop T, et al. GUCY2C reverse transcriptase PCR to stage pN0 colorectal cancer patients. Expert Rev Mol Diagn. 2009 Nov;9(8):777–785.
  • Beaulieu M, Desaulniers M, Bertrand N, et al. Analytical performance of a qRT-PCR assay to detect guanylyl cyclase C in FFPE lymph nodes of patients with colon cancer. Diagn Mol Pathol. 2010 Mar;19(1):20–27.
  • Sargent DJ, Resnick MB, Meyers MO, et al. Evaluation of guanylyl cyclase C lymph node status for colon cancer staging and prognosis. Ann Surg Oncol. 2011 Nov;18(12):3261–3270.
  • Haince JF, Houde M, Beaudry G, et al. Comparison of histopathology and RT-qPCR amplification of guanylyl cyclase C for detection of colon cancer metastases in lymph nodes. J Clin Pathol. 2010 Jun;63(6):530–537.
  • Snook AE, Stafford BJ, Li P, et al. Guanylyl cyclase C–induced immunotherapeutic responses opposing tumor metastases without autoimmunity. JNCI. 2008;100(13):950–961.
  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. Npj Vaccines. 2019;4(1):7.
  • Pan RY, Chung WH, Chu MT, et al. Recent development and clinical application of cancer vaccine: targeting neoantigens. J Immunol Res. 2018;2018:4325874.
  • Shaw AR, Suzuki M. Immunology of adenoviral vectors in cancer therapy. Mol Ther Methods Clin Dev. 2019;15:418–429.
  • Xiang B, Baybutt TR, Berman-Booty L, et al. Prime-boost immunization eliminates metastatic colorectal cancer by producing high-avidity effector CD8(+) T cells. J Immunol. 2017 May 1;198(9):3507–3514.
  • Snook AE, Baybutt TR, Hyslop T, et al. Preclinical evaluation of a replication-deficient recombinant adenovirus serotype 5 vaccine expressing guanylate cyclase C and the PADRE T-helper epitope. Hum Gene Ther Methods. 2016;27(6):238–250.
  • Snook AE, Magee MS, Marszalowicz GP, et al. Epitope-targeted cytotoxic T cells mediate lineage-specific antitumor efficacy induced by the cancer mucosa antigen GUCY2C. Cancer Immunol Immunother. 2012;61(5):713–723.
  • Snook AE, Baybutt TR, Xiang B, et al. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer. 2019;7(1):104.
  • Snook AE, Magee MS, Schulz S, et al. Selective antigen-specific CD4(+) T-cell, but not CD8(+) T- or B-cell, tolerance corrupts cancer immunotherapy. Eur J Immunol. 2014 Jul;44(7):1956–1966.
  • Snook A, Baybutt T, Mastrangelo M, et al. A Phase I study of AD5-GUCY2C-PADRE in stage I and II colon cancer patients. J Immunother Cancer. 2015;3(Suppl 2):P450.
  • Flickinger JC Jr., Singh J, Carlson R, et al. Chimeric Ad5.F35 vector evades anti-adenovirus serotype 5 neutralization opposing GUCY2C-targeted antitumor immunity. J Immunother Cancer. 2020 Aug;8(2):e001046.
  • June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018 Mar 23;359(6382):1361–1365.
  • Magee MS, Kraft CL, Abraham TS, et al. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology. 2016;5(10):e1227897.
  • Magee MS, Abraham TS, Baybutt TR, et al., Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases. Cancer Immunol Res. 2018;6(5): 509–516.
  • Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lancet. 2019;394(10200):793–804.
  • Marszalowicz GP, Snook AE, Magee MS, et al. GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer. Oncotarget. 2014;5(19):9460–9471.
  • Almhanna K, Miron MLL, Wright D, et al. Phase II study of the antibody-drug conjugate TAK-264 (MLN0264) in patients with metastatic or recurrent adenocarcinoma of the stomach or gastroesophageal junction expressing guanylyl cyclase C. Invest New Drugs. 2017;35(2):235–241.
  • Almhanna K, Wright D, Mercade TM, et al. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest New Drugs. 2017 Oct;35(5):634–641.
  • McMurray JG, Feldman RA, Auerbach SM, et al. Long-term safety and effectiveness of sildenafil citrate in men with erectile dysfunction. Ther Clin Risk Manag. 2007 Dec;3(6):975–981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.