51
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Strategies and techniques for preclinical therapeutic targeting of PI3Kin oncology: where do we stand in 2024?

, &
Received 14 Sep 2023, Accepted 06 Apr 2024, Accepted author version posted online: 22 Apr 2024
Accepted author version

REFERENCES

  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–619. doi: 10.1038/nrg1879
  • Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18(1):26. doi: 10.1186/s12943-019-0954-x
  • Fruman D A, Chiu H, Hopkins B D, et al. The PI3K Pathway in Human Disease[J]. Cell, 2017,170(4):605–635.
  • Madsen R R. PRINCIPLES OF PI3K BIOLOGY AND ITS ROLE IN LYMPHOMA[J]. 2023.
  • Castel P, Toska E, Engelman J A, et al. The present and future of PI3K inhibitors for cancer therapy[J]. Nat Cancer, 2021,2(6):587–597.
  • Vanhaesebroeck B, Perry M, Brown J R, et al. PI3K inhibitors are finally coming of age[J]. Nat Rev Drug Discov, 2021,20(10):741–769.
  • Kriplani N, Hermida M A, Brown E R, et al. Class I PI 3-kinases: Function and evolution[J]. Adv Biol Regul, 2015,59:53–64.
  • Posor Y, Eichhorn-Gruenig M, Puchkov D, et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature. 2013;499(7457):233–237. doi: 10.1038/nature12360
  • Yu L, Wei J, Liu P Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022,85:69–94.10.1016/j.semcancer.2021.06.019
  • Sarbassov D D, Guertin D A, Ali S M, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science, 2005,307(5712):1098–1101.
  • Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol. 2022;19(7):471–485. doi: 10.1038/s41571-022-00633-1
  • Liu P, Cheng H, Roberts T M, et al. Targeting the phosphoinositide 3-kinase pathway in cancer[J]. Nat Rev Drug Discov, 2009,8(8):627–644.
  • Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–156. doi: 10.1038/nrd4204
  • Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 2015;11(7):1946–1954. doi: 10.1039/C5MB00101C
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–562. doi: 10.1038/nrc2664
  • Papa A, Pandolfi P P. The PTEN(-)PI3K Axis in Cancer[J]. Biomolecules, 2019,9(4).
  • Langdon C G. Nuclear PTEN’s Functions in Suppressing Tumorigenesis: Implications for Rare Cancers[J]. Biomolecules. 2023;13(2):259. doi: 10.3390/biom13020259
  • Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1: ‘regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer. 2018;17(1):37. doi: 10.1186/s12943-018-0803-3
  • Muto J, Imai T, Ogawa D, Ouchi, T., et al.. RNA-binding protein Musashi1 modulates glioma cell growth through the post-transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways[J]. PLoS One. 2012;7(3):e33431. doi: 10.1371/journal.pone.0033431
  • Wang S, Li N, Yousefi M, et al. Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nat Commun. 2015;6(1):6517. doi: 10.1038/ncomms7517
  • Sellars E, Gabra M, Salmena L. The Complex Landscape of PTEN mRNA Regulation. Cold Spring Harb Perspect Med. 2020;10(6):a036236. doi: 10.1101/cshperspect.a036236
  • Gimm O, Perren A, Weng L P, et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors[J]. Am J Pathol, 2000,156(5):1693–1700.
  • Hopkins B D, Hodakoski C, Barrows D, et al. PTEN function: the long and the short of it[J]. Trends Biochem Sci, 2014,39(4):183–190.
  • Tanaka M, Grossman H B. In vivo gene therapy of human bladder cancer with PTEN suppresses tumor growth, downregulates phosphorylated Akt, and increases sensitivity to doxorubicin[J]. Gene Ther. 2003;10(19):1636–1642. doi: 10.1038/sj.gt.3302056
  • Ediriweera MK, Tennekoon KH, Samarakoon SR Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance[J]. Semin Cancer Biol, 2019,59:147–160.10.1016/j.semcancer.2019.05.012
  • Liang S, Yang N, Pan Y, Ng, Irene Oi Lin., et al.. Expression of activated PIK3CA in ovarian surface epithelium results in hyperplasia but not tumor formation[J]. PLoS One. 2009;4(1):e4295. doi: 10.1371/journal.pone.0004295
  • Wang W, Lu Z, Wang M, et al. The cuproptosis-related signature associated with the tumor environment and prognosis of patients with glioma[J]. Front Immunol, 2022,13:998236.10.3389/fimmu.2022.998236
  • Jee J, Lebow E S, Yeh R, et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer[J]. Nat Med, 2022,28(11):2353–2363.
  • Dbouk H A, Khalil B D, Wu H, et al. Characterization of a tumor-associated activating mutation of the p110beta PI 3-kinase[J]. PLoS One, 2013,8(5):e63833.
  • Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24. doi: 10.1038/nrc3860
  • Tsai P J, Lai Y H, Manne R K, et al. Correction: Akt: a key transducer in cancer[J]. J Biomed Sci, 2023,30(1):7.
  • Tsai P J, Lai Y H, Manne R K, et al. Akt: a key transducer in cancer[J]. J Biomed Sci, 2022,29(1):76.
  • Carpten J D, Faber A L, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer[J]. Nature, 2007,448(7152):439–444.
  • Tao T, Shi H, Wang M, et al. Ganglioneuromas are driven by activated AKT and can be therapeutically targeted with mTOR inhibitors[J]. J Exp Med, 2020,217(10).10.1084/jem.20191871
  • Revathidevi S, Munirajan AK Akt in cancer: Mediator and more[J]. Semin Cancer Biol, 2019,59:80–91.10.1016/j.semcancer.2019.06.002
  • Bellacosa A, de Feo D, Godwin A K, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas[J]. Int J Cancer, 1995,64(4):280–285.
  • Mundi P S, Sachdev J, McCourt C, et al. AKT in cancer: new molecular insights and advances in drug development[J]. Br J Clin Pharmacol, 2016,82(4):943–956.
  • Dummler B, Tschopp O, Hynx D, et al. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol. 2006;26(21):8042–8051. doi: 10.1128/MCB.00722-06
  • Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling Pathways. Cancers (Basel). 2017;9(5):52. doi: 10.3390/cancers9050052
  • Xue C, Li G, Lu J, et al. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression[J]. Signal Transduct Target Ther, 2021,6(1):400.
  • Carvalho D O J, Mathias C, Oliveira V C, et al. The Double Face of miR-708: A Pan-Cancer Player with Dissociative Identity Disorder[J]. Genes (Basel), 2022,13(12).
  • Yang Q Y, Yu Q, Zeng W Y, et al. Killing two birds with one stone: miR-126 involvement in both cancer and atherosclerosis[J]. Eur Rev Med Pharmacol Sci, 2022,26(17):6145–6168.
  • Baldassari F, Zerbinati C, Galasso M, et al. Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors[J]. Front Genet, 2018,9:174.10.3389/fgene.2018.00174
  • Huang J, Chen L, Wu J, et al. Targeting the PI3K/AKT/mTOR signaling pathway in the treatment of human diseases: Current status, trends, and Solutions. J Med Chem. 2022;65(24):16033–16061. doi: 10.1021/acs.jmedchem.2c01070
  • Banerjee T, Kim M S, Haslam A, et al. Clinical Trials Portfolio and Regulatory History of Idelalisib in Indolent Non-Hodgkin Lymphoma: A Systematic Review and Meta-analysis[J]. JAMA Intern Med, 2023,183(5):435–441.
  • Wang J, Zhou H, Mu M, et al. Efficacy and safety of copanlisib in relapsed/refractory B-cell non-Hodgkin lymphoma: A meta-analysis of prospective clinical trials[J]. Front Immunol, 2022,13:1034253.10.3389/fimmu.2022.1034253
  • Paul J, Soujon M, Wengner A M, et al. Simultaneous Inhibition of PI3Kdelta and PI3Kalpha Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-kappaB and AKT[J]. Cancer Cell, 2017,31(1):64–78.
  • Gockeritz E, Kerwien S, Baumann M, et al. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int J Cancer. 2015;137(9):2234–2242. doi: 10.1002/ijc.29579
  • Ladygina N, Gottipati S, Ngo K, et al. PI3Kgamma kinase activity is required for optimal T-cell activation and differentiation[J]. Eur J Immunol, 2013,43(12):3183–3196.
  • Wang Z, Zhou H, Xu J, et al. Safety and efficacy of dual PI3K-delta, gamma inhibitor, duvelisib in patients with relapsed or refractory lymphoid neoplasms: A systematic review and meta-analysis of prospective clinical trials[J]. Front Immunol, 2022,13:1070660.
  • Shouse G, Danilova OV, Danilov AV. Current status of phosphoinotiside-3 kinase inhibitors in blood cancers. Curr Opin Oncol. 2022;34(5):540–545. doi: 10.1097/CCO.0000000000000871
  • Maharaj K, Powers J J, Achille A, et al. The dual PI3Kdelta/CK1epsilon inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells[J]. Blood Adv, 2020,4(13):3072–3084.
  • Royer B, Kaderbhai CG, Schmitt A. Pharmacokinetics and pharmacodynamic of Alpelisib. Clin Pharmacokinet. 2023;62(1):45–53. doi: 10.1007/s40262-022-01195-2
  • Ye Y, Huang Z, Zhang M, et al. Synergistic therapeutic potential of alpelisib in cancers (excluding breast cancer): Preclinical and clinical evidences[J]. Biomed Pharmacother, 2023,159:114183.10.1016/j.biopha.2022.114183
  • Dong C, Chen Y, Li H, et al. The antipsychotic agent flupentixol is a new PI3K inhibitor and potential anticancer drug for lung cancer. Int J Biol Sci. 2019;15(7):1523–1532. doi: 10.7150/ijbs.32625
  • Joshi S, Liu K X, Zulcic M, et al. Macrophage Syk-PI3Kgamma Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk-PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression[J]. Mol Cancer Ther, 2020,19(3):755–764.
  • De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells[J]. Nature, 2016,539(7629):443–447.
  • Ji M, Wang D, Lin S, et al. A novel PI3K inhibitor XH30 suppresses orthotopic glioblastoma and brain metastasis in mice models. Acta Pharm Sin B. 2022;12(2):774–786. doi: 10.1016/j.apsb.2021.05.019
  • Stanciu S, Ionita-Radu F, Stefani C, et al. Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: from molecular to clinical Aspects. Int J Mol Sci. 2022;23(17):10132. doi: 10.3390/ijms231710132
  • Awasthi N, Yen P L, Schwarz M A, et al. The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer[J]. J Cell Biochem, 2012,113(3):784–791.
  • Wu X, Xu Y, Liang Q, et al. Recent Advances in Dual PI3K/mTOR Inhibitors for Tumour Treatment[J]. Front Pharmacol, 2022,13:875372.10.3389/fphar.2022.875372
  • Tarantelli C, Lupia A, Stathis A, et al. Is there a role for dual PI3K/mTOR inhibitors for patients affected with Lymphoma? Int J Mol Sci. 2020;21(3):1060. doi: 10.3390/ijms21031060
  • Mahadevan D, Chiorean E G, Harris W B, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies[J]. Eur J Cancer, 2012,48(18):3319–3327.
  • Han J, Chen Y, Yang C, et al. Structure-based optimization leads to the discovery of NSC765844, a highly potent, less toxic and orally efficacious dual PI3K/mTOR inhibitor[J]. Eur J Med Chem, 2016,122:684–701.10.1016/j.ejmech.2016.06.030
  • Bartholomeusz C, Gonzalez-Angulo AM. Targeting the PI3K signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):121–130. doi: 10.1517/14728222.2011.644788
  • Nitulescu G M, Margina D, Juzenas P, et al. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review)[J]. Int J Oncol, 2016,48(3):869–885.
  • Alzahrani AS PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside[J]. Semin Cancer Biol, 2019,59:125–132.10.1016/j.semcancer.2019.07.009
  • Suzuki A, de la Pompa J L, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice[J]. Curr Biol, 1998,8(21):1169–1178.
  • Mao B, Zhang Q, Ma L, et al.. Overview of Research into mTOR Inhibitors[J]. Molecules. 2022;27(16):5295. doi: 10.3390/molecules27165295
  • Rashid MM, Lee H, Jung BH Metabolite identification and pharmacokinetic profiling of PP242, an ATP-competitive inhibitor of mTOR using ultra high-performance liquid chromatography and mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018,1072:244–251.10.1016/j.jchromb.2017.11.027
  • Rodrik-Outmezguine V S, Okaniwa M, Yao Z, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor[J]. Nature, 2016,534(7606):272–276.
  • Duncan L, Shay C, Teng Y. PI3K Isoform-Selective Inhibitors in Cancer[J]. Adv Exp Med Biol, 2020,1255:165–173.
  • Sato H, Yamamoto H, Sakaguchi M, et al. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer[J]. Cancer Sci, 2018,109(10):3183–3196.
  • Solzak J P, Atale R V, Hancock B A, et al. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer[J]. NPJ Breast Cancer, 2017,3:17.
  • Kim H R, Kang H N, Yun M R, et al. Mouse-human co-clinical trials demonstrate superior anti-tumour effects of buparlisib (BKM120) and cetuximab combination in squamous cell carcinoma of head and neck[J]. Br J Cancer, 2020,123(12):1720–1729.
  • Farrar M C, Jacobs T F. Paclitaxel[J]. 2023.
  • Tewari D, Patni P, Bishayee A, et al. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy[J]. Semin Cancer Biol, 2022,80:1–17.10.1016/j.semcancer.2019.12.008
  • Huw L Y, O’Brien C, Pandita A, et al. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer[J]. Oncogenesis, 2013,2(12):e83.
  • Juric D, Castel P, Griffith M, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor[J]. Nature, 2015,518(7538):240–244.
  • Elkabets M, Vora S, Juric D, et al. mTORC1 inhibition is required for sensitivity to PI3K p110alpha inhibitors in PIK3CA-mutant breast cancer[J]. Sci Transl Med, 2013,5(196):196r–199r.
  • Wang J, Lv X, Guo X, et al.. Feedback activation of STAT3 limits the response to PI3K/AKT/mTOR inhibitors in PTEN-deficient cancer cells[J]. Oncogenesis. 2021;10(1):8. doi: 10.1038/s41389-020-00292-w
  • Shepherd C, Banerjee L, Cheung C W, et al. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response[J]. Leukemia, 2013,27(3):650–660.
  • Song L, Zhou Z, Gan Y, et al. Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATbeta/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p[J]. J Cell Biochem, 2019,120(6):9656–9666.
  • Neklesa TK, Davis RW. Superoxide anions regulate TORC1 and its ability to bind Fpr1: rapamycin complex. Proc Natl Acad Sci U S A. 2008;105(39):15166–15171. doi: 10.1073/pnas.0807712105
  • Koh K X, Tan G H, Hui L S, et al. Acquired resistance to PI3K/mTOR inhibition is associated with mitochondrial DNA mutation and glycolysis[J]. Oncotarget, 2017,8(66):110133–110144.
  • Makinoshima H, Umemura S, Suzuki A, et al. Metabolic determinants of sensitivity to phosphatidylinositol 3-kinase pathway inhibitor in small-cell lung Carcinoma. Cancer Res. 2018;78(9):2179–2190. doi: 10.1158/0008-5472.CAN-17-2109
  • Icard P, Simula L, Fournel L, et al. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications[J]. Drug Resist Updat, 2022,63:100852.10.1016/j.drup.2022.100852
  • Konstantinopoulos P A, Barry W T, Birrer M, et al. Olaparib and alpha-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial[J]. Lancet Oncol, 2019,20(4):570–580.
  • Sharma P, Abramson V G, O’Dea A, et al. Clinical and Biomarker Results from Phase I/II Study of PI3K Inhibitor Alpelisib plus Nab-paclitaxel in HER2-Negative Metastatic Breast Cancer[J]. Clin Cancer Res, 2021,27(14):3896–3904.
  • Rugo H S, Andre F, Yamashita T, et al. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer[J]. Ann Oncol, 2020,31(8):1001–1010.
  • Esposito A, Viale G, Curigliano G. Safety, Tolerability, and Management of Toxic Effects of Phosphatidylinositol 3-Kinase Inhibitor Treatment in Patients With Cancer: A Review[J]. JAMA Oncol, 2019,5(9):1347–1354.
  • Yoon M S. Nanotechnology-Based Targeting of mTOR Signaling in Cancer[J]. Int J Nanomedicine, 2020,15:5767–5781.
  • Fan Y, Marioli M, Zhang K Analytical characterization of liposomes and other lipid nanoparticles for drug delivery[J]. J Pharm Biomed Anal, 2021,192:113642.10.1016/j.jpba.2020.113642
  • Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2012,366(6):520–529.
  • Vasan N, Razavi P, Johnson J L, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors[J]. Science, 2019,366(6466):714–723.
  • Langdon S, Hughes A, Taylor M A, et al. Combination of dual mTORC1/2 inhibition and immune-checkpoint blockade potentiates anti-tumour immunity[J]. Oncoimmunology, 2018,7(8):e1458810.
  • Wang Y, Wang X Y, Subjeck J R, et al. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines[J]. Br J Cancer, 2011,104(4):643–652.
  • Lattanzio L, Tonissi F, Monteverde M, et al. Treatment effect of buparlisib, cetuximab and irradiation in wild-type or PI3KCA-mutated head and neck cancer cell lines. Invest New Drugs. 2015;33(2):310–320. doi: 10.1007/s10637-015-0210-1
  • You I, Erickson E C, Donovan K A, et al. Discovery of an AKT Degrader with Prolonged Inhibition of Downstream Signaling[J]. Cell Chem Biol, 2020,27(1):66–73.
  • Edwards N J, Oberti M, Thangudu R R, et al. The CPTAC Data Portal: A Resource for Cancer Proteomics Research[J]. J Proteome Res, 2015,14(6):2707–2713.
  • Mishra R, Patel H, Alanazi S, et al. PI3K inhibitors in cancer: clinical implications and adverse Effects. Int J Mol Sci. 2021;22(7):3464. doi: 10.3390/ijms22073464
  • Dhimolea E, de Matos S R, Kansara D, et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence[J]. Cancer Cell, 2021,39(2):240–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.