53
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting PRL phosphatases in hematological malignancies

ORCID Icon, , , ORCID Icon &
Received 13 Oct 2023, Accepted 15 Apr 2024, Published online: 26 Apr 2024

References

  • Cheng H-C, Qi RZ, Paudel H, et al. Regulation and function of protein kinases and phosphatases. Enzyme Res. 2011 Dec 13;2011. doi: 10.4061/2011/794089
  • Nasa I, Kettenbach AN. Coordination of protein kinase and phosphoprotein phosphatase activities in mitosis. Front Cell Dev Biol. 2018;6:6. doi: 10.3389/fcell.2018.00030
  • Ardito F, Giuliani M, Perrone D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med. 2017 Aug 1;40(2):271–280. doi: 10.3892/ijmm.2017.3036
  • Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006 Nov 1;7(11):833–846.
  • Motiwala T, Jacob ST. Role of protein tyrosine phosphatases in cancer. Prog Nucleic Acid Res Mol Biol. 2006;81:297–329. doi: 10.1016/S0079-6603(06)81008-1
  • Bollu LR, Mazumdar A, Savage MI, et al. Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin Cancer Res. 2017;23(9):2136–2142. doi: 10.1158/1078-0432.CCR-16-0934
  • Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012 May 1;13(5):283–296.
  • Oka T, Ouchida M, Koyama M, et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in Leukemias/Lymphomas1. Cancer Res. 2002;62(22):6390–6394.
  • Stevenson WS, Best OG, Przybylla A, et al. DNA methylation of membrane-bound tyrosine phosphatase genes in acute lymphoblastic leukaemia. Leukemia. 2014 Apr 1;28(4):787–793. doi: 10.1038/leu.2013.270
  • Frankson R, Yu Z-H, Bai Y, et al. Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res. 2017;77(21):5701–5705. doi: 10.1158/0008-5472.CAN-17-1510
  • Hardy S, Kostantin E, Hatzihristidis T, et al. Physiological and oncogenic roles of the PRL phosphatases. FEBS J. 2018 Nov 1;285(21):3886–3908. doi: 10.1111/febs.14503
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca A Cancer J Clin. 2021 May 1;71(3):209–249. doi: 10.3322/caac.21660
  • Zahnreich S, Schmidberger H. Childhood cancer: occurrence, treatment and risk of second primary malignancies. Cancers (Basel). 2021;13(11):2607. doi: 10.3390/cancers13112607
  • Wei M, Korotkov KV, Blackburn JS. Targeting phosphatases of regenerating liver (PRLs) in cancer. Pharmacol Ther. 2018 Oct 1;190:128–138. doi: 10.1016/j.pharmthera.2018.05.014
  • Bai Y, Yu G, Zhou H-M, et al. PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy. 2023 May 4;19(5):1562–1581. doi: 10.1080/15548627.2022.2140558
  • Blanchetot C, Chagnon M, Dubé N, et al. Substrate-trapping techniques in the identification of cellular PTP targets. Methods. 2005 Jan 1;35(1):44–53. doi: 10.1016/j.ymeth.2004.07.007
  • Flint AJ, Tiganis T, Barford D, et al. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA. 1997;94(5):1680–1685. doi: 10.1073/pnas.94.5.1680
  • Wang J, Kirby CE, Herbst R. The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J Biol Chem. 2002 Nov 29;277(48):46659–46668.
  • Sacchetti C, Bai Y, Stanford SM, et al. PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun. 2017 Oct 20;8(1):1060. doi: 10.1038/s41467-017-01168-1
  • Tasker NR, Rastelli EJ, Burnett JC, et al. Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors. Bioorganic Med Chem Lett. 2019 Aug 15;29(16):2008–2015. doi: 10.1016/j.bmcl.2019.06.048
  • Duciel L, Anezo O, Mandal K, et al. Protein tyrosine phosphatase 4A3 (PTP4A3/PRL-3) promotes the aggressiveness of human uveal melanoma through dephosphorylation of CRMP2. Sci Rep. 2019 Feb 28;9(1):2990. doi: 10.1038/s41598-019-39643-y
  • Xing X, Lian S, Hu Y, et al. Phosphatase of regenerating liver-3 (PRL-3) is associated with metastasis and poor prognosis in gastric carcinoma. J Transl Med. 2013 Dec 13;11(1):309. doi: 10.1186/1479-5876-11-309
  • Zhang H, Kozlov G, Li X, et al. PRL3 phosphatase active site is required for binding the putative magnesium transporter CNNM3. Sci Rep. 2017 Mar 3;7(1):48. doi: 10.1038/s41598-017-00147-2
  • Fiordalisi JJ, Keller PJ, Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 2006;66(6):3153–3161. doi: 10.1158/0008-5472.CAN-05-3116
  • Campbell AM, Zhang Z-Y. Phosphatase of regenerating liver: a novel target for cancer therapy. Expert Opin Ther Targets. 2014 May 1;18(5):555–569.
  • Stephens BJ, Han H, Gokhale V, et al. PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther. 2005;4(11):1653–1661. doi: 10.1158/1535-7163.MCT-05-0248
  • Bai Y, Zhou H-M, Zhang L, et al. Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis. Sci Rep. 2016 Sep 26;6(1):34211. doi: 10.1038/srep34211
  • Castro-Sánchez P, Hernández-Pérez S, Aguilar-Sopeña O, et al. Fast diffusion sustains plasma membrane accumulation of phosphatase of regenerating liver-1. Front Cell Dev Biol. 2020;8:8. doi: 10.3389/fcell.2020.585842
  • Skinner AL, Laurence JS. 1H,15N, 13C resonance assignments of the reduced and active form of human protein tyrosine phosphatase, PRL-1. Biomol NMR Assign. 2009 Jun 1;3(1):61–65.
  • Skinner AL, Vartia AA, Williams TD, et al. Enzyme activity of phosphatase of regenerating liver is controlled by the redox environment and its C-Terminal residues. Biochemistry. 2009 May 26;48(20):4262–4272. doi: 10.1021/bi900241k
  • Castro-Sánchez P, Ramirez-Munoz R, Martín-Cófreces NB, et al. Phosphatase of regenerating liver-1 (PRL-1) regulates actin dynamics during immunological synapse assembly and T cell effector function. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.02655
  • Kozlov G, Funato Y, Chen YS, et al. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J Biol Chem. 2020 Aug 14;295(33):11682–11692. doi: 10.1074/jbc.RA120.014464
  • Kobayashi M, Chen S, Gao R, et al. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle. 2014 Sep 17;13(18):2827–2835. doi: 10.4161/15384101.2014.954448
  • Li Q, Bai Y, Lyle LT, et al. Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Nat Acad Sci. 2020 Aug 25;117(34):20538–20548. doi: 10.1073/pnas.2002964117
  • Kobayashi M, Bai Y, Chen S, et al. Phosphatase PRL2 promotes oncogenic NOTCH1-induced T-cell leukemia. Leukemia. 2017 Mar 1;31(3):751–754. doi: 10.1038/leu.2016.340
  • Chen H, Bai Y, Kobayashi M, et al. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood. 2023;141(3):244–259. doi: 10.1182/blood.2022016580
  • Si X, Zeng Q, Ng CH, et al. Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the β-subunit of geranylgeranyltransferase II. J Biol Chem. 2001 Aug 1;276(35):32875–32882. doi: 10.1074/jbc.M010400200
  • Wang Y, Lazo JS. Metastasis-associated phosphatase PRL-2 regulates tumor cell migration and invasion. Oncogene. 2012 Feb 1;31(7):818–827.
  • Song R, Qian F, Li Y-P, et al. Phosphatase of regenerating liver-3 localizes to cyto-membrane and is required for B16F1 melanoma cell metastasis in vitro and in vivo. PLOS ONE. 2009;4(2):e4450. doi: 10.1371/journal.pone.0004450
  • Fakih R, Goldstein RH, Kozlov G, et al. Burst kinetics and CNNM binding are evolutionarily conserved properties of phosphatases of regenerating liver. J Biol Chem. 2023 Apr 1;299(4):103055. doi: 10.1016/j.jbc.2023.103055
  • Sun J-P, Luo Y, Yu X, et al. Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. J Biol Chem. 2007 Sep 28;282(39):29043–29051. doi: 10.1074/jbc.M703537200
  • Funato Y, Miki H. Molecular function and biological importance of CNNM family Mg2+ transporters. J Biochem. 2019;165(3):219–225. doi: 10.1093/jb/mvy095
  • Gulerez I, Funato Y, Wu H, et al. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 2016 Dec 1;17(12):1890–1900. doi: 10.15252/embr.201643393
  • Funato Y, Yamazaki D, Mizukami S, et al. Membrane protein CNNM4–dependent Mg2+ efflux suppresses tumor progression. J Clin Investig. 2014 Dec 1;124(12):5398–5410. doi: 10.1172/JCI76614
  • Hardy S, Uetani N, Wong N, et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene. 2015 Feb 1;34(8):986–995. doi: 10.1038/onc.2014.33
  • Diamond RH, Cressman DE, Laz TM, et al. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol. 1994 Jun 1;14(6):3752–3762. doi: 10.1128/mcb.14.6.3752-3762.1994
  • Zeng Q, Hong W, Tan YH. Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun. 1998 Mar 17;244(2):421–427.
  • Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013;140(12):2463–2467. doi: 10.1242/dev.083147
  • Bessette DC, Qiu D, Pallen CJ. PRL PTPs: mediators and markers of cancer progression. Cancer Metast Rev. 2008 Jun 1;27(2):231–252.
  • Rios P, Li X, Köhn M. Molecular mechanisms of the PRL phosphatases. FEBS J. 2013 Jan 1;280(2):505–524.
  • Bagger FO, Sasivarevic D, Sohi SH, et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016;44(D1):D917–D924. doi: 10.1093/nar/gkv1101
  • Kobayashi M, Bai Y, Dong Y, et al. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal. Stem Cells. 2014;32(7):1956–1967. doi: 10.1002/stem.1672
  • Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011 Oct 1;12(10):643–655.
  • Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11(1):34–44. doi: 10.1007/s13238-019-0633-0
  • Kondo M, Wagers AJ, Manz MG, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003 Apr 1;21(1):759–806. doi: 10.1146/annurev.immunol.21.120601.141007
  • Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010 Aug 1;466(7308):829–834. doi: 10.1038/nature09262
  • Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012 Jan 1;481(7382):457–462. doi: 10.1038/nature10783
  • Dong Y, Zhang L, Zhang S, et al. Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt Protein. J Biol Chem. 2012 Sep 14;287(38):32172–32179. doi: 10.1074/jbc.M112.393462
  • Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev. 2012 Oct 1;92(4):1619–1649.
  • Chen H, Bai Y, Kobayashi M, et al. PRL2 phosphatase promotes oncogenic KIT signaling in leukemia cells through modulating CBL phosphorylation. Mol Cancer Res. 2023;22(1):94–103. doi: 10.1158/1541-7786.MCR-23-0115
  • Kobayashi M, Nabinger SC, Bai Y, et al. Protein tyrosine phosphatase PRL2 mediates notch and kit signals in early T cell progenitors. Stem Cells. 2017;35(4):1053–1064. doi: 10.1002/stem.2559
  • Hu X-J, YUD L, FAN H, et al. Protein tyrosine phosphatase 4A3(PTP4A3) promotes enucleation in mouse fetal liver-derived erythroid cells. Basic Clin. Med. 2022;42(7):1026–1030.
  • Kong W, Swain GP, Li S, et al. PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. Am J Physiol Gastrointest Liver Physiol. 2000 Sep 1;279(3):G613–G621. doi: 10.1152/ajpgi.2000.279.3.G613
  • He G, Wang C, Li Q, et al. Clinical and laboratory features of seven patients with acute myeloid leukemia (AML)-M2/M3 and elevated myeloblasts and abnormal promyelocytes. Cancer Cell Int. 2014 Dec 31;14(1):111. doi: 10.1186/s12935-014-0111-y
  • Rubnitz JE, Gibson B, Smith FO. Acute Myeloid Leukemia. Hematol Oncol Clin North Am. 2010 Feb 1;24(1):35–63.
  • Kobayashi M, Chen S, Bai Y, et al. Phosphatase PRL2 promotes AML1-ETO-induced acute myeloid leukemia. Leukemia. 2017 Jun 1;31(6):1453–1457. doi: 10.1038/leu.2017.67
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089–5102. doi: 10.1182/blood-2010-04-261867
  • Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia. 2012 Oct 1;26(10):2176–2185.
  • Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011 Apr 1;11(4):289–301.
  • Dong Y, Zhang L, Bai Y, et al. Phosphatase of regenerating liver 2 (PRL2) deficiency impairs kit signaling and spermatogenesis. J Biol Chem. 2014 Feb 7;289(6):3799–3810. doi: 10.1074/jbc.M113.512079
  • Carlock C, Bai Y, Paige-Hood A, et al. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight. 2023;8(19):e170065. doi: 10.1172/jci.insight.170065
  • Park JE, Yuen HF, Zhou JB, et al. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia. EMBO Mol Med. 2013 Sep 1;5(9):1351–1366. doi: 10.1002/emmm.201202183
  • Qu S, Liu B, Guo X, et al. Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD–negative acute myeloid leukemia. Cancer. 2014 Jul 15;120(14):2130–2141. doi: 10.1002/cncr.28668
  • Zhou J, Bi C, Chng W-J, et al. PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLOS ONE. 2011;6(5):e19798. doi: 10.1371/journal.pone.0019798
  • Zhou J, Chong PSY, Lu X, et al. Phosphatase of regenerating liver-3 is regulated by signal transducer and activator of transcription 3 in acute myeloid leukemia. Exp Hematol. 2014 Dec 1;42(12):1041–1052.e2. doi: 10.1016/j.exphem.2014.08.001
  • Beekman R, Valkhof M, Erkeland SJ, et al. Retroviral integration mutagenesis in mice and comparative analysis in human AML identify reduced PTP4A3 expression as a prognostic indicator. PLOS ONE. 2011;6(10):e26537. doi: 10.1371/journal.pone.0026537
  • Chong PSY, Zhou J, Cheong L-L, et al. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia. Cancer Res. 2014;74(11):3043–3053. doi: 10.1158/0008-5472.CAN-13-2321
  • Zhou J, Chan Z-L, Bi C, et al. LIN28B activation by PRL-3 promotes Leukemogenesis and a stem cell–like transcriptional program in AML. Mol Cancer Res. 2017;15(3):294–303. doi: 10.1158/1541-7786.MCR-16-0275-T
  • Lin Q, Mao L, Shao L, et al. Global, regional, and national burden of chronic myeloid leukemia, 1990–2017: a systematic analysis for the global burden of disease study 2017. Front Oncol. 2020;10:10. doi: 10.3389/fonc.2020.580759
  • Hao T, Zhang C, Wang Z, et al. An aging mouse model of human chronic myeloid leukemia. Oncogene. 2021 Apr 1;40(17):3152–3163. doi: 10.1038/s41388-021-01770-0
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. Ca A Cancer J Clin. 2022 Jan 1;72(1):7–33. doi: 10.3322/caac.21708
  • Quintás-Cardama A, Cortes J. Molecular biology of bcr-abl1–positive chronic myeloid leukemia. Blood. 2009;113(8):1619–1630. doi: 10.1182/blood-2008-03-144790
  • Osman AEG, Deininger MW. Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 2021 Sep 1;49:100825. doi: 10.1016/j.blre.2021.100825
  • Arzoun H, Srinivasan M, Thangaraj SR, et al. The progression of chronic myeloid leukemia to myeloid Sarcoma: a systematic review. Cureus. 2022 Jan 10;14(1):e21077. doi: 10.7759/cureus.21077
  • Zhou J, Cheong L-L, Liu S-C, et al. The pro-metastasis tyrosine phosphatase, PRL-3 (PTP4A3), is a novel mediator of oncogenic function of BCR-ABL in human chronic myeloid leukemia. Mol Cancer. 2012 Sep 21;11(1):72. doi: 10.1186/1476-4598-11-72
  • Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett. 2021 Mar 31;501:105–113. doi: 10.1016/j.canlet.2020.11.042
  • Fagerli U-M, Holt RU, Holien T, et al. Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood. 2008 Jan 15;111(2):806–815. doi: 10.1182/blood-2007-07-101139
  • Broyl A, Hose D, Lokhorst H, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010 Oct 7;116(14):2543–2553. doi: 10.1182/blood-2009-12-261032
  • Slørdahl TS, Abdollahi P, Vandsemb EN, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016 19;7(19):27295–27306. doi: 10.18632/oncotarget.8422
  • Abdollahi P, Vandsemb EN, Hjort MA, et al. Src family kinases are regulated in multiple myeloma cells by phosphatase of regenerating liver-3. Mol Cancer Res. 2017;15(1):69–77. doi: 10.1158/1541-7786.MCR-16-0212
  • Chong PSY, Zhou J, Lim JSL, et al. IL6 promotes a STAT3-PRL3 feedforward loop via SHP2 repression in multiple myeloma. Cancer Res. 2019;79(18):4679–4688. doi: 10.1158/0008-5472.CAN-19-0343
  • Børset M, Elsaadi S, Vandsemb EN, et al. Highly expressed genes in multiple myeloma cells – what can they tell us about the disease? European J Haematology. 2022 Jul 1;109(1):31–40. doi: 10.1111/ejh.13766
  • Vandsemb EN, Rye MB, Steiro IJ, et al. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J. 2021 Dec 1;288(23):6700–6715. doi: 10.1111/febs.16058
  • Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017 Jun 1;7(6):e577–e577.
  • DeAngelo DJ, Jabbour E, Advani A. Recent advances in managing acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2020 May 1;(40):330–342. doi: 10.1200/EDBK_280175
  • Wei M, Haney MG, Rivas DR, et al. Protein tyrosine phosphatase 4A3 (PTP4A3/PRL-3) drives migration and progression of T-cell acute lymphoblastic leukemia in vitro and in vivo. Oncogenesis. 2020 Jan 30;9(1):6. doi: 10.1038/s41389-020-0192-5
  • Chia PL, Ang KH, Thura M, et al. PRL3 as a therapeutic target for novel cancer immunotherapy in multiple cancer types. Theranostics. 2023;13(6):1876–1891. doi: 10.7150/thno.79265
  • Garcia EG, Veloso A, Oliveira ML, et al. PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia. 2021 Mar 1;35(3):679–690. doi: 10.1038/s41375-020-0937-3
  • Hjort MA, Abdollahi P, Vandsemb EN, et al. Phosphatase of regenerating liver-3 is expressed in acute lymphoblastic leukemia and mediates leukemic cell adhesion, migration and drug resistance. Oncotarget. 2017 3;9(3):3549–3561. doi: 10.18632/oncotarget.23186
  • Dombret H, Gabert J, Boiron J-M, et al. Outcome of treatment in adults with Philadelphia chromosome–positive acute lymphoblastic leukemia—results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–2366. doi: 10.1182/blood-2002-03-0704
  • Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood. 2005;105(9):3434–3441. doi: 10.1182/blood-2004-07-2922
  • Juric D, Lacayo NJ, Ramsey MC, et al. Differential gene expression patterns and interaction networks in BCR-ABL–positive and –negative adult acute lymphoblastic leukemias. J Clin Oncol. 2007 Apr 10;25(11):1341–1349. doi: 10.1200/JCO.2006.09.3534
  • Mohamed AN, Palutke M, Eisenberg L, et al. Chromosomal analyses of 52 cases of follicular lymphoma with t(14;18), including blastic/blastoid variant. Cancer Genet Cytogenet. 2001 Apr 1;126(1):45–51. doi: 10.1016/S0165-4608(00)00383-6
  • Martinez-Climent JA, Alizadeh AA, Segraves R, et al. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood. 2003;101(8):3109–3117. doi: 10.1182/blood-2002-07-2119
  • Hjort MA, Hov H, Abdollahi P, et al. Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration. Exp Hematol Oncol. 2018 Apr 10;7(1):8. doi: 10.1186/s40164-018-0100-2
  • Zhou J, Toh S-M, Tan TK, et al. Super-enhancer-driven TOX2 mediates oncogenesis in natural killer/T cell lymphoma. Mol Cancer. 2023 Apr 10;22(1):69. doi: 10.1186/s12943-023-01767-1
  • Nguele Meke F, Bai Y, Ruiz-Avila D, et al. Inhibition of PRL2 upregulates PTEN and attenuates tumor growth in Tp53-deficient sarcoma and lymphoma mouse models. Cancer Res Commun. 2024;4(1):5–17. doi: 10.1158/2767-9764.CRC-23-0308
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569
  • Ward E, DeSantis C, Robbins A, et al. Childhood and adolescent cancer statistics, 2014. Ca A Cancer J Clin. 2014 Mar 1;64(2):83–103. doi: 10.3322/caac.21219
  • Pathak MK, Dhawan D, Lindner DJ, et al. Pentamidine is an inhibitor of PRL phosphatases with anticancer Activity1. Mol Cancer Ther. 2002;1(14):1255–1264.
  • Ahn JH, Kim SJ, Park WS, et al. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic Med Chem Lett. 2006 Jun 1;16(11):2996–2999. doi: 10.1016/j.bmcl.2006.02.060
  • Min G, Lee S-K, Kim H-N, et al. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. Bioorganic Med Chem Lett. 2013 Jul 1;23(13):3769–3774. doi: 10.1016/j.bmcl.2013.04.092
  • Choi S-K, Oh H-M, Lee S-K, et al. Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Nat Prod Res. 2006 Apr 1;20(4):341–346. doi: 10.1080/14786410500463312
  • Daouti S, W-H L, Qian H, et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 2008;68(4):1162–1169. doi: 10.1158/0008-5472.CAN-07-2349
  • Lu W, Yan S, Ran S, et al. An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Mol Pharmacol. 2009;76(6):1238. doi: 10.1124/mol.109.059105
  • Moon MK, Han Y-M, Lee Y-J, et al. Inhibitory activities of anthraquinones from rubia akane on phosphatase regenerating liver-3. Arch Pharm Res. 2010 Nov 1;33(11):1747–1751. doi: 10.1007/s12272-010-1106-4
  • Hoeger B, Diether M, Ballester PJ, et al. Biochemical evaluation of virtual screening methods reveals a cell-active inhibitor of the cancer-promoting phosphatases of regenerating liver. Eur J Med Chem. 2014 Dec 17;88:89–100.
  • Salamoun JM, McQueeney KE, Patil K, et al. Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org Biomol Chem. 2016;14(27):6398–6402. doi: 10.1039/C6OB00946H
  • McQueeney KE, Salamoun JM, Burnett JC, et al. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget. 2017 9;9(9):8223–8240. doi: 10.18632/oncotarget.23787
  • Bai Y, Yu Z-H, Liu S, et al. Novel anticancer agents based on targeting the trimer interface of the PRL phosphatase. Cancer Res. 2016;76(16):4805–4815. doi: 10.1158/0008-5472.CAN-15-2323
  • Guo K, Li J, Ping Tang J, et al. Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther. 2008 May 1;7(5):750–757. doi: 10.4161/cbt.7.5.5764
  • Guo K, Tang JP, Li J, et al. Engineering the first chimeric antibody in targeting intracellular PRL-3 oncoprotein for cancer therapy in mice. Oncotarget. 2012 Feb 2;3(2):158–171. doi: 10.18632/oncotarget.442
  • Thura M, Al-Aidaroos AQO, Yong WP, et al. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016 Jun 16;1(9). doi: 10.1172/jci.insight.87607
  • Thura M, Al-Aidaroos AQ, Gupta A, et al. PRL3-zumab as an immunotherapy to inhibit tumors expressing PRL3 oncoprotein. Nat Commun. 2019 Jun 6;10(1):2484. doi: 10.1038/s41467-019-10127-x
  • Chee CE, Ooi M, Lee S-C, et al. A phase I, first-in-human study of PRL3-zumab in advanced, refractory solid tumors and hematological malignancies. Targeted Oncol. 2023 May 1;18(3):391–402. doi: 10.1007/s11523-023-00962-w
  • Smith CN, Kihn K, Williamson ZA, et al. Development and characterization of nanobodies that specifically target the oncogenic phosphatase of regenerating liver-3 (PRL-3) and impact its interaction with a known binding partner, CNNM3. PLOS ONE. 2023;18(5):e0285964. doi: 10.1371/journal.pone.0285964
  • Liu Z, Hu M, Yang Y, et al. An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 2022 Dec 20;3(1):46. doi: 10.1186/s43556-022-00112-0
  • Li J, Guo K, Koh VWC, et al. Generation of PRL-3- and PRL-1-Specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clin Cancer Res. 2005;11(6):2195–2204. doi: 10.1158/1078-0432.CCR-04-1984
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993 Jun 1;363(6428):446–448. doi: 10.1038/363446a0
  • Bao G, Tang M, Zhao J, et al. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res. 2021 Jan 19;11(1):6. doi: 10.1186/s13550-021-00750-5
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021 May 31;6(1):201. doi: 10.1038/s41392-021-00572-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.