115
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress

ORCID Icon, , , , & ORCID Icon
Pages 237-250 | Received 26 Oct 2023, Accepted 15 Apr 2024, Published online: 29 Apr 2024

References

  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279–3330. doi: 10.3390/cancers3033279
  • Editorial. Advancing cancer therapy. Nat Cancer. 2021;2(3):245–246. doi: 10.1038/s43018-021-00192-x
  • Liu YP, Zheng CC, Huang YN, et al. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm. 2021;2(3):315–340. doi: 10.1002/mco2.55.
  • Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14. doi: 10.1111/j.1365-2567.2007.02587.x
  • Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–359. doi: 10.1038/s41568-021-00347-z
  • Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–388. doi: 10.1038/s41577-020-0285-6
  • Page DB, Postow MA, Callahan MK, et al. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65(1):185–202. doi: 10.1146/annurev-med-092012-112807
  • Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–461. doi: 10.1016/j.ccell.2015.03.001
  • Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer. 2003;3(9):666–675. doi: 10.1038/nrc1167
  • Sawasdikosol S, Zha RY, Yang BY, et al. HPK1 as a novel target for cancer immunotherapy. Immunol Res. 2012;54(1–3):262–265. doi: 10.1007/s12026-012-8319-1
  • Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–167. doi: 10.1038/nri.2017.108
  • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. doi: 10.1126/science.aaa8172
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012.
  • Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–133. doi: 10.1056/NEJMoa1302369
  • Day D, Hansen AR. Immune-related adverse events associated with immune checkpoint inhibitors. BioDrugs. 2016;30(6):571–584. doi: 10.1007/s40259-016-0204-3
  • Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309–5337. doi: 10.1016/j.cell.2021.09.020
  • Wu YR, Yang ZC, Cheng K, et al. Small molecule-based immune modulators for cancer therapy. Acta Pharm Sin B. 2022;12(12):4287–4308. doi: 10.1016/j.apsb.2022.11.007
  • Dhanak D, Edwards JP, Nguyen A, et al. Small-molecule targets in immuno-oncology. Cell Chem Biol. 2017;24(9):1148–1160. doi: 10.1016/j.chembiol.2017.08.019
  • Offringa R, Kötzner L, Huck B, et al. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov. 2022;21(11):821–840. doi: 10.1038/s41573-022-00538-9
  • Sitaram P, Uyemura B, Malarkannan S, et al. Beyond the cell surface: targeting intracellular negative regulators to enhance T cell anti-tumor activity. Int J Mol Sci. 2019;20(23):5821. doi: 10.3390/ijms20235821
  • Koretzky GA, Myung PS. Positive and negative regulation of T-cell activation by adaptor proteins. Nat Rev Immunol. 2001;1(2):95–107. doi: 10.1038/35100523
  • Si JW, Shi XJ, Sun SH, et al. Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell. 2020;38(4):551–566. doi: 10.1016/j.ccell.2020.08.001
  • Han Y, Zhu L, Wu W, et al. The expanding role for small molecules in immuno-oncology. Adv Exp Med Biol. 2020;1248:547–618.
  • Hernandez S, Qing J, Thibodeau RH, et al. The kinase activity of hematopoietic progenitor kinase 1 is essential for the regulation of T cell function. Cell Rep. 2018;25(1):80–94. doi: 10.1016/j.celrep.2018.09.012
  • Linney ID, Kaila N. Inhibitors of immuno-oncology target HPK1 - a patent review (2016 to 2020). Expert Opin Ther Pat. 2021;31(10):893–910. doi: 10.1080/13543776.2021.1924671
  • Wu P, Sneeringer CJ, Pitts KE, et al. Hematopoietic progenitor kinase-1 structure in a domain-swapped dimer. Structure. 2019;27(1):125–133. doi: 10.1016/j.str.2018.10.025
  • Chan BK, Seward E, Lainchbury M, et al. Discovery of spiro-azaindoline inhibitors of hematopoietic progenitor kinase 1 (HPK1). ACS Med Chem Lett. 2021;13(1):84–91. doi: 10.1021/acsmedchemlett.1c00473
  • Johnson E, McTigue M, Gallego RA, et al. Multiple conformational states of the HPK1 kinase domain in complex with sunitinib reveal the structural changes accompanying HPK1 trans-regulation. J Biol Chem. 2019;294(23):9029–9036. doi: 10.1074/jbc.AC119.007466
  • Gallego RA, Bernier L, Chen H, et al. Design and synthesis of functionally active 5-amino-6-aryl pyrrolopyrimidine inhibitors of hematopoietic progenitor kinase 1. J Med Chem. 2023;66(7):4888–4909. doi: 10.1021/acs.jmedchem.2c02038
  • Yu EC, Methot JL, Fradera X, et al. Identification of potent reverse indazole inhibitors for HPK1. ACS Med Chem Lett. 2021;12(3):459–466. doi: 10.1021/acsmedchemlett.0c00672
  • Vara BA, Levi SM, Achab A, et al. Discovery of diaminopyrimidine carboxamide HPK1 inhibitors as preclinical immunotherapy tool compounds. ACS Med Chem Lett. 2021;12(4):653–661. doi: 10.1021/acsmedchemlett.1c00096
  • Degnan AP, Kumi GK, Allard CW, et al. Discovery of orally active isofuranones as potent, selective inhibitors of hematopoetic progenitor kinase 1. ACS Med Chem Lett. 2021;12(3):443–450. doi: 10.1021/acsmedchemlett.0c00660
  • Malchow S, Korepanova A, Panchal SC. The HPK1 inhibitor A-745 verifies the potential of modulating T cell kinase signaling for immunotherapy. ACS Chem Biol. 2022;17(3):556–566. doi: 10.1021/acschembio.1c00819
  • Wang MS, Wang ZZ, Li ZL, et al. Discovery of macrocycle-based HPK1 inhibitors for T-cell-based immunotherapy. J Med Chem. 2023;66(1):611–626. doi: 10.1021/acs.jmedchem.2c01551
  • You D, Hillerman S, Locke G, et al. Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor. J Immunother Cancer. 2021;9(1):e001402. doi: 10.1136/jitc-2020-001402
  • Ge HZ, Peng LZ, Sun Z, et al. Discovery of novel HPK1 inhibitors through structure-based virtual screening. Front Pharmacol. 2022;13:850855. doi: 10.3389/fphar.2022.850855
  • Shi HY, Tang HT, Li Y, et al. Development of a series of quinazoline-2,5-diamine derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem. 2023;248:115064. doi: 10.1016/j.ejmech.2022.115064
  • Wang Y, Zhang K, Georgiev P, et al. Pharmacological inhibition of hematopoietic progenitor kinase 1 positively regulates T-cell function. PLOS ONE. 2020;15(12):e0243145. doi: 10.1371/journal.pone.0243145
  • Sokolsky A, Vechorkin O, Hummel JR, et al. Potent and selective biaryl amide inhibitors of hematopoietic progenitor kinase 1 (HPK1). ACS Med Chem Lett. 2022;14(1):116–122. doi: 10.1021/acsmedchemlett.2c00241
  • Ye QD, Liu K, Ye HF, et al. Discovery of pyrazolopyridine derivatives as HPK1 inhibitors. ACS Med Chem Lett. 2022;14(1):5–10. doi: 10.1021/acsmedchemlett.2c00238
  • Zhou LX, Ye XQ, Wang KZ, et al. Discovery of diaminotriazine carboxamides as potent inhibitors of hematopoetic progenitor kinase 1. Bioorg Chem. 2023;138:106682. doi: 10.1016/j.bioorg.2023.106682
  • Toure M, Johnson T, Li B, et al. Discovery of quinazoline HPK1 inhibitors with high cellular potency. Bioorg Med Chem. 2023;92:117423. doi: 10.1016/j.bmc.2023.117423
  • Zhang JJ, Li Y, Tang HT, et al. Design and synthesis of 1H-pyrazolo[3,4-d]pyrimidine derivatives as hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem. 2023;20:106811. doi: 10.1016/j.bioorg.2023.106811
  • Wu FF, Li HY, An Q, et al. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem. 2023;254:115355. doi: 10.1016/j.ejmech.2023.115355
  • Lacey BM, Xu ZW, Chai XM, et al. Development of high-throughput assays for evaluation of hematopoietic progenitor kinase 1 inhibitors. SLAS Discov. 2021;26(1):88–99. doi: 10.1177/2472555220952071
  • Wang WX, Mevellec L, Liu A, et al. Discovery of an allosteric, inactive conformation-selective inhibitor of full-length HPK1 utilizing a kinase cascade assay. Biochemistry. 2021;60(41):3114–3124. doi: 10.1021/acs.biochem.1c00486
  • Zhou LX, Wang TY, Zhang KJ, et al. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem. 2022;244:114819. doi: 10.1016/j.ejmech.2022.114819
  • Setsu G, Goto M, Ito K, et al. Highly potent, orally active novel small-molecule HPK1 inhibitor DS21150768 induces anti-tumor responses in multiple syngeneic tumor mouse models. Eur J Pharmacol. 2023;961:176184. doi: 10.1016/j.ejphar.2023.176184
  • Zeng SX, Jin YY, Xia HY, et al. Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling. Bioorg Chem. 2024;143:107016. doi: 10.1016/j.bioorg.2023.107016.
  • Chuang HC, Wang XH, Tan TH. MAP4K family kinases in immunity and inflammation. Adv Immunol. 2016;129:277–314.
  • Sawasdikosol S, Burakoff S. A perspective on HPK1 as a novel immuno-oncology drug target. Elife. 2020;9:e55122. doi: 10.7554/eLife.55122
  • Zhang Q, Ding S, Zhang HL. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins (review). Mol Med Rep. 2017;16(5):6472–6482. doi: 10.3892/mmr.2017.7494
  • Kiefer F, Tibbles LA, Anafi M. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. Embo J. 1996;15(24):7013–7125. doi: 10.1002/j.1460-2075.1996.tb01093.x
  • Boomer JS, Tan TH. Functional interactions of HPK1 with adaptor proteins. J Cell Biochem. 2005;95(1):34–44. doi: 10.1002/jcb.20401
  • Zhu QS, Chen NN, Tian XJ, et al. Hematopoietic progenitor kinase 1 in tumor immunology: a medicinal chemistry perspective. J Med Chem. 2022;65(12):8065–8090. doi: 10.1021/acs.jmedchem.2c00172
  • Wang JJ, Song LJ, Yang S, et al. HPK1 positive expression associated with longer overall survival in patients with estrogen receptor‑positive invasive ductal carcinoma‑not otherwise specified. Mol Med Rep. 2017;16(4):4634–4642. doi: 10.3892/mmr.2017.7131
  • Hu MCT, Wang YP, Qiu WR, et al. Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IκB kinases (IKK-α/β) and IKK-β is a developmentally regulated protein kinase. Oncogene. 1999;18(40):5514–5524. doi: 10.1038/sj.onc.1202740
  • Luehrmann JS, Santner-Nanan B, Jha MK, et al. Hematopoietic progenitor kinase 1 supports apoptosis of T lymphocytes. Blood. 2002;100(3):954–960. doi: 10.1182/blood-2002-01-0089
  • Liu JQ, Curtin J, You D, Mascaux C, et al. Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLOS ONE. 2019;14(3):e0212670. doi: 10.1371/journal.pone.0212670.
  • Hu MC, Qiu WR, Wang X, et al. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev. 1996;10(18):2251–2264. doi: 10.1101/gad.10.18.2251
  • Kiefer F, Tibbles LA, Anafi M, et al. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. Embo J. 1996;15(24):7013–7025. doi: 10.1002/j.1460-2075.1996.tb01093.x
  • Shui JW, Boomer JS, Han J, et al. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell–mediated immune responses. Nat Immunol. 2007;8(1):84–91. doi: 10.1038/ni1416
  • Ling P, Yao Z, Meyer CF, et al. Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase. Mol Cell Biol. 1999;19(2):1359–1368. doi: 10.1128/MCB.19.2.1359
  • Oehrl W, Kardinal C, Ruf S, et al. The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene. 1998;17(15):1893–1901. doi: 10.1038/sj.onc.1202108
  • Arnold R, Liou J, Drexler HC, et al. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFκB into an inhibitor of NFκB. J Biol Chem. 2001;276(18):14675–14684. doi: 10.1074/jbc.M008343200
  • Chen YR, Meyer CF, Ahmed B, et al. Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1. Oncogene. 1999;18(51):7370–7377. doi: 10.1038/sj.onc.1203116
  • Brenner D, Golks A, Becker M, et al. Caspase-cleaved HPK1 induces CD95L-independent activation induced cell death in T and B lymphocytes. Blood. 2007;110(12):3968–3977. doi: 10.1182/blood-2007-01-071167
  • Ling P, Meyer CF, Redmond LP. Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling. J Biol Chem. 2001;276(22):18908–18914. doi: 10.1074/jbc.M101485200
  • Sauer K, Liou J, Singh SB, et al. Hematopoietic progenitor kinase 1 associates physically and functionally with the adaptor proteins B cell linker protein and SLP76 in lymphocytes. J Biol Chem. 2001;276(48):45207–45216. doi: 10.1074/jbc.M106811200
  • Pombo CM, Kehrl JH, Sánchez I, et al. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature. 1995;377(6551):750–754. doi: 10.1038/377750a0
  • Diener K, Wang XS, Chen C, et al. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci U S A. 1997;94(18):9687–9692. doi: 10.1073/pnas.94.18.9687
  • Su YC, Han JH, Xu SC. NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. Embo J. 1997;16(6):1279–1290. doi: 10.1093/emboj/16.6.1279
  • Flach RJR, Skoura A, Matevossian A, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6(1):8995. doi: 10.1038/ncomms9995
  • Vitorino P, Yeung S, Crow A, et al. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature. 2015;519(7544):425–430. doi: 10.1038/nature14323
  • Tung RM, Blenis J. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene. 1997;14(6):653–659. doi: 10.1038/sj.onc.1200877
  • Dan I, Watanabe NM, Kobayashi T. Molecular cloning of MINK, a novel member of mammalian GCK family kinases, which is up-regulated during postnatal mouse cerebral development. FEBS Lett. 2000;469(1):19–23. doi: 10.1016/S0014-5793(00)01247-3
  • Fu CA, Shen M, Huang BCB, et al. TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J Biol Chem. 1999;274(43):30729–30737. doi: 10.1074/jbc.274.43.30729
  • Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, et al. TNIK signaling imprints CD8+ T cell memory formation early after priming. Nat Commun. 2020;11(1):1632. doi: 10.1038/s41467-020-15413-7
  • Chen DY, Chuang HC, Lan JL, et al. Germinal center kinase-like kinase (GLK/MAP4K3) expression is increased in adult-onset still’s disease and may act as an activity marker. BMC Med. 2012;10(1):84. doi: 10.1186/1741-7015-10-84
  • Chen YM, Chuang HC, Lin WC, et al. Germinal center kinase-like kinase overexpression in T cells as a novel biomarker in rheumatoid arthritis. Arthritis Rheum. 2013;65(10):2573–2582. doi: 10.1002/art.38067
  • Chuang HC, Lan JL, Chen DY, et al. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-θ in T cells. Nat Immunol. 2011;12(11):1113–1118. doi: 10.1038/ni.2121
  • Esen E, Sergin I, Jesudason R, et al. MAP4K4 negatively regulates CD8 T cell–mediated antitumor and antiviral immunity. Sci Immunol. 2020;5(45):2245. doi: 10.1126/sciimmunol.aay2245.
  • Liou J, Kiefer F, Dang A, et al. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Immunity. 2000;12(4):399–408. doi: 10.1016/S1074-7613(00)80192-2
  • Arnold R, Patzak IM, Neuhaus B, et al. Activation of hematopoietic progenitor kinase 1 involves relocation, autophosphorylation, and transphosphorylation by protein kinase D1. Mol Cell Biol. 2005;25(6):2364–2383. doi: 10.1128/MCB.25.6.2364-2383.2005
  • Nagata Y, Kiefer F, Watanabe T, et al. Activation of hematopoietic progenitor kinase-1 by erythropoietin. Blood. 1999;93(10):3347–3354. doi: 10.1182/blood.V93.10.3347.410k06_3347_3354
  • Wang W, Zhou G, Hu MC, et al. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-jun N-terminal kinase (JNK) pathway by transforming growth factor β (TGF-β)-activated kinase (TAK1), a kinase mediator of TGF β signal transduction. J Biol Chem. 1997;272(36):22771–22775. doi: 10.1074/jbc.272.36.22771
  • Sawasdikosol S, Russo KM, Burakoff SJ. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates prostaglandin E2–induced fos gene transcription. Blood. 2003;101(9):3687–3689. doi: 10.1182/blood-2002-07-2316
  • Alzabin S, Bhardwaj N, Kiefer F, et al. Hematopoietic progenitor kinase 1 is a negative regulator of dendritic cell activation. J Immunol. 2009;182(10):6187–6194. doi: 10.4049/jimmunol.0802631
  • Bartolo VD, Montagne B, Salek M, et al. A novel pathway down-modulating T cell activation involves HPK-1-dependent recruitment of 14-3-3 proteins on SLP-76. J Exp Med. 2007;204(3):681–691. doi: 10.1084/jem.20062066
  • Lasserre R, Cuche C, Blecher-Gonen R, et al. Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation. J Cell Bio. 2011;195(5):839–853. doi: 10.1083/jcb.201103105
  • Hwang JR, Byeon Y, Kim D, et al. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020;52(5):750–761. doi: 10.1038/s12276-020-0435-8
  • Wang X, Li JP, Kuo HK, et al. Down-regulation of B cell receptor signaling by hematopoietic progenitor kinase 1 (HPK1)-mediated phosphorylation and ubiquitination of activated B cell linker protein (BLNK). J Biol Chem. 2012;287(14):11037–11048. doi: 10.1074/jbc.M111.310946
  • Tsuji S, Okamoto M, Yamada K, et al. B cell adaptor containing src homology 2 domain (BASH) links B cell receptor signaling to the activation of hematopoietic progenitor kinase 1. J Exp Med. 2001;194(4):529–539. doi: 10.1084/jem.194.4.529
  • Soini L, Leysen S, Davis J, et al. A biophysical and structural analysis of the interaction of BLNK with 14-3-3 protein. J Struct Biol. 2020;212(3):107662. doi: 10.1016/j.jsb.2020.107662
  • Rao KMM. MAP kinase activation in macrophages. J Leukocyte Biol. 2001;69(1):3–10. doi: 10.1189/jlb.69.1.3.
  • Bhide RS, Keon A, Weigelt C, et al. Discovery and structure-based design of 4,6-diaminonicotinamides as potent and selective IRAK4 inhibitors. Bioorg Med Chem Lett. 2017;27(21):4908–4913. doi: 10.1016/j.bmcl.2017.09.029.
  • Lee J, Jo S, Lim K, et al. Indazoles as hematopoietic progenitor kinase 1 (HPK1) inhibitors and methods of using same. Patent WO2022064459. 2022.
  • Chen Y, Liu C, Lv M, et al. High activity HPK1 kinase inhibitor. Patent WO2022089398. 2022.
  • Deng XM, Huang W, Zhang JM, et al. HPK1 kinase modulator, preparation method therefor, and application thereof. Patent WO2022100688. 2022.
  • Zhou FS, Zhao JC, He W, et al. Fused ring substituted six-membered heterocyclic compound, preparation method therefor and use thereof. Patent WO2022184152. 2022.
  • Zhao JC, Zhou FS, Lin CL, et al. Fused ring-substituted six-membered heterocyclic compound, and preparation method therefor and use thereof. Patent WO2023131122. 2023.
  • Liu B. Tricyclic HPK1 inhibitor and use thereof. Patent WO2022188823. 2022.
  • Wang ZY, Shao YQ, Li LT, et al. Heterocyclic compounds as HPK1 inhibitors. Patent WO2022188735. 2022.
  • Bucher C, Dukes A, Gomez B, et al. 1H-pyrazolo[3,4-d] pyrimidin-6-yl-amine derivatives as hematopoietic progenitor kinase 1 (HPK1) modulators and/or inhibitors for the treatment of cancer and other diseases. Patent WO2022197641. 2022.
  • Al-Awar R, Isaac M, Joseph B, et al. Substituted amino aza-heteroaryl compounds as inhibitors of the haematopoietic progenitor kinase 1 (HPK1). Patent WO2022226666. 2022.
  • Al-Awar R, Isaac M, Joseph B, et al. Substituted amino pyridine compounds as inhibitors of the haematopoietic progenitor kinase 1 (HPK1). Patent WO2022226667. 2022.
  • Chau A, Isaac M, Joseph B, et al. Halo-substituted amino aza-heteroaryl compounds as inhibitors of the haematopoietic progenitor kinase 1 (HPK1). Patent WO2022226665. 2022.
  • Chau A, Isaac M, Joseph B, et al. Halo-substituted amino pyridine compounds as inhibitors of the haematopoietic progenitor kinase 1 (HPK1). Patent WO2022226668. 2022.
  • Fang H, Yang H. Heterocyclic compounds useful as HPK1 inhibitors. Patent WO2022253252. 2022.
  • Xie Y, Liu WZ, Qian LQ. Fused ring compound as HPK1 inhibitor. Patent WO2023083282. 2022.
  • Xie Y, Liu WZ, Qian LQ. Fused ring compounds serving as HPK1 inhibitors. Patent WO2023134608. 2023.
  • Zhang C, Zhao C, Chai JL, et al. Fused heterocyclic derivative and use thereof in medicine. Patent WO2023109902. 2023.
  • Zhai WQ, Guo LB, Huang MH, et al. Pyrrole fused-ring pyrazole compound, and preparation method therefor and use thereof. Patent WO2023131271. 2023.
  • Sun YK, Quan WG, Ma WP, et al. Heteroaryl compounds as HPK1 inhibitors and methods of using same. Patent WO2023137406. 2023.
  • Fang HQ, Liu XL, Yang H, et al. Heterocyclic compounds useful as HPK1 inhibitors. Patent WO2023138612. 2023.
  • Liu L, Liu Y, Zhou F, et al. Pyrrolopyridine compound and application thereof. Patent CN114685490. 2022.
  • Tang F, Hu ZL, Huang LC, et al. Lactam compound as HPK1 inhibitor and application thereof. Patent CN116023378. 2023.
  • Hu ZL, Liu LF, Tang F, et al. Heterocyclic compound as HPK1 inhibitor and application thereof. Patent CN116265470. 2023.
  • Jiang S, Xiao YB, Zhou LX, et al. Compound used as HPK1 kinase inhibitor and preparation method and application thereof. Patent CN114853730. 2022.
  • Zhang KJ, Mao J, Tang H, et al. Benzopyrimidine and benzotriazine hematopoietic progenitor cell kinase 1 degradation agent and application thereof. Patent CN115873018. 2022.
  • Wang TY, Xiao YB, Jiang S, et al. Compound of hematopoietic progenitor cell kinase 1 inhibitor and preparation method and application thereof. Patent CN116143779. 2023.
  • Wu YC, Liu X, Zhong QF, et al. Heterocyclic compound as well as preparation method, pharmaceutical composition and application thereof. Patent CN114907374. 2022.
  • Li X, Dong HD, Shen F, et al. Condensed bicyclic compound, preparation method thereof and application of fused bicyclic compound in medicine. Patent CN115073472. 2022.
  • Wu H, Zhang J, Wu WM, et al. HPK1 inhibitor and application thereof in medicine. Patent CN115197132. 2022.
  • Wu H, Wu WM, Zhang J, et al. HPK1 inhibitor and application thereof in medicine. Patent CN115894480. 2023.
  • Wu H, Wu WM, Zhang J, et al. HPK1 inhibitor and application thereof in medicine. Patent CN116102550. 2023.
  • Wu H, Liu QS, Kuang CW, et al. HPK1 inhibitor and application thereof in medicine. Patent CN116332904. 2022.
  • Zhang XJ, Chang SH, Li XQ, et al. HPK1 inhibitor and application thereof. Patent CN115433184. 2022.
  • Zhang HC, Jia W, Cai CC. Heterocyclic compounds as HPK1 inhibitors. Patent CN115536656. 2022.
  • Jia LQ, You ZJ, Ran MS, et al. Heterocyclic lactam compound, pharmaceutical composition containing heterocyclic lactam compound and application of heterocyclic lactam compound. Patent CN115557946. 2023.
  • Liu B. HPK1 inhibitors and uses thereof. Patent CN115611925. 2023.
  • Qiu HB, Shen DG, Chen AH, et al. Heterocyclic lactam derivative, preparation method thereof and application of pharmaceutical composition containing derivative in medicine. Patent CN115806553. 2023.
  • Sun GL, Fang SY, Wang RN, et al. HPK1 inhibitor, preparation method and application thereof. Patent CN116063329. 2023.
  • Zhang A, Geng MY, Ai J, et al. Novel kinase inhibitor with dimethyl isoindolone structure as well as preparation method and application of novel kinase inhibitor. Patent CN116217561. 2023.
  • Zhang A, Geng MY, Ai J, et al. HPK1 inhibitor with five-membered aromatic heterocyclic piperidine/homopiperidine and preparation method and application thereof. Patent CN116535422. 2023.
  • The inventor has waived the right to be mentioned. Anti-tumor compound and application thereof. Patent. CN116462680. 2023.
  • Papadopoulos PP, Laurie SA, Spira A, et al. TWT-101: a first-in-clinic study of CFI-402411, a hematopoietic progenitor kinase-1 (HPK1) inhibitor, as single agent or combined with pembrolizumab in subject with advanced solid malignancies. J Immunother Cancer. 2023;11(Suppl1):A1–A1731.
  • Starodub A, Henry J, Vandross A, et al. A phase 1, first-in-human, open-label study evaluating the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of PRJ1–3024 in subjects with advanced solid tumors. J Immunother Cancer. 2023;11(Suppl1):A1–A1731.
  • Sommerhalder D, Noel M, Boiko S, et al. Monotherapy results from an ongoing phase 1a dose escalation study of NDI-101150, a highly selective oral hematopoietic progenitor kinase 1 (HPK1) inhibitor. J Immunother Cancer. 2023;11(Suppl1):A1–A1731.
  • Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev. 2022;51(12):5214–5236. doi: 10.1039/D2CS00193D
  • Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200. doi: 10.1038/s41573-021-00371-6
  • Gao H, Sun X, Rao Y. PROTAC technology: opportunities and challenge. ACS Med Chem Lett. 2020;11(3):237–240. doi: 10.1021/acsmedchemlett.9b00597
  • Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade. JAMA Oncol. 2019;5(8):1195–1204. doi: 10.1001/jamaoncol.2019.1549
  • Peterson C, Denlinger N, Yang YP. Recent advances and challenges in cancer immunotherapy. Cancers (Basel). 2022;14(16):3972. doi: 10.3390/cancers14163972
  • Yang L, Zhao QL, Chen T, et al. An HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in non-Hodgkin’s lymphoma. Clin Exp Med. 2023;23(7):3767–3780. doi: 10.1007/s10238-023-01068-3
  • Schreiber SL. The rise of molecular glues. Cell. 2021;184(1):3–9. doi: 10.1016/j.cell.2020.12.020
  • Dong G, Ding Y, He S, et al. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem. 2021;64(15):10606–10620. doi: 10.1021/acs.jmedchem.1c00895
  • Dumontet C, Reichert JM, Senter PD, et al. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641–661. doi: 10.1038/s41573-023-00709-2
  • Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18(6):327–344. doi: 10.1038/s41571-021-00470-8
  • Models for immuno-oncology research. Cancer Cell. 2020;38(2):145–147. doi: 10.1016/j.ccell.2020.07.010
  • Dranoff G. Experimental mouse tumour models: what can be learnt about human cancer immunology. Nat Rev Immunol. 2011;12(1):61–66. doi: 10.1038/nri3129

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.