51
Views
0
CrossRef citations to date
0
Altmetric
Review

Candidate molecular targets uncovered in mouse lifespan extension studies

, , , , & ORCID Icon
Received 22 Sep 2023, Accepted 19 Apr 2024, Published online: 30 Apr 2024

References

  • World Health Organization: WHO. Ageing. World Health Organization: WHO; Published 2020 Feb 5cited 2023 Feb 5. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
  • Vanhooren V, Libert C. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev. 2013;12(1):8–21. doi: 10.1016/j.arr.2012.03.010
  • Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, et al. Back to the basics: usefulness of naturally aged mouse models and immunohistochemical and quantitative morphologic methods in studying mechanisms of lung aging and associated diseases. Biomedicines. 2023;11(7):2075. doi: 10.3390/biomedicines11072075
  • Anczuków O, Airhart S, Chuang JH, et al. Challenges and opportunities for modeling aging and cancer. Cancer Cell. 2023;41(4):641–645. doi: 10.1016/j.ccell.2023.03.006
  • Daneshjoo S, Young Park J, Moreno J. A mouse model of naturally occurring age-related cognitive impairment. Aging Pathobiol Ther. 2022;4(3):87–89. doi: 10.31491/apt.2022.09.090
  • Seluanov A, Gladyshev VN, Vijg J, et al. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 2018;18(7):433–441. doi: 10.1038/s41568-018-0004-9
  • Snyder JM, Ward JM, Treuting PM. Cause-of-death analysis in rodent aging studies. Vet Pathol. 2015;53(2):233–243. doi: 10.1177/0300985815610391
  • Palliyaguru DL, Vieira Ligo Teixeira C, Duregon E, et al. Study of longitudinal aging in mice: presentation of experimental techniques. J Gerontol A. 2020;76(4):552–560.
  • Mekada K, Yoshiki A. Substrains matter in phenotyping of C57BL/6 mice. Exp Anim. 2021;70(2):145–160. doi: 10.1538/expanim.20-0158
  • Spiridonova O, Kriukov D, Nemirovich-Danchenko N, et al. On standardization of controls in lifespan studies. Cold Spring Harbor Laboratory; 2023. cited 2023 Nov 23. doi: 10.1101/2023.08.17.552381
  • Lee J, Purello C, Booth SL, et al. Chow diet in mouse aging studies: nothing regular about it. Geroscience. 2023;45(3):2079–2084. doi: 10.1007/s11357-023-00775-9
  • Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl Med Commun. 2019;4(1). doi: 10.1186/s41231-019-0050-7
  • Moskalev A, Chernyagina E, Tsvetkov V, et al. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 2016;15(3):407–415. doi: 10.1111/acel.12463
  • Sun LY, Spong A, Swindell WR, et al. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. Elife. 2013;2. doi: 10.7554/elife.01098
  • Pathak S, Stewart WCL, Burd CE, et al. Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. PLOS ONE. 2020;15(6):e0234910. doi: 10.1371/journal.pone.0234910
  • Bartke A, Wright JC, Mattison JA, et al. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412–412. doi: 10.1038/35106646
  • Shyu Y, Liao P, Huang T, et al. Genetic disruption of KLF1 K74 SUMOylation in hematopoietic system promotes healthy longevity in mice. Adv Sci. 2022;9(25). doi: 10.1002/advs.202201409
  • Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012;1. doi: 10.7554/elife.00065
  • Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704.
  • Oh E, Miller RA, Thurmond DC. Syntaxin 4 overexpression ameliorates effects of aging and high-fat diet on glucose control and extends lifespan. Cell Metab. 2015;22(3):499–507. doi: 10.1016/j.cmet.2015.07.023
  • Harper JM, Wilkinson JE, Miller RA. Macrophage migration inhibitory factor‐knockout mice are long lived and respond to caloric restriction. Faseb J. 2010;24(7):2436–2442. doi: 10.1096/fj.09-152223
  • Strong R, Miller RA, Cheng CJ, et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell. 2022;21(12). doi: 10.1111/acel.13724
  • Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 2016;23(6):1093–1112. doi: 10.1016/j.cmet.2016.05.027
  • Selman C, Lingard S, Choudhury AI, et al. Evidence for lifespan extension and delayed age–related biomarkers in insulin receptor substrate 1 null mice. Faseb J. 2007;22(3):807–818.
  • Canaan A, DeFuria J, Perelman E, et al. Extended lifespan and reduced adiposity in mice lacking the FAT10 gene. Proc Nat Acad Sci. 2014;111(14):5313–5318. doi: 10.1073/pnas.1323426111
  • Mitchell SJ, Bernier M, Mattison JA, et al. Daily fasting improves health and survival in male mice Independent of diet composition and calories. Cell Metab. 2019;29(1):221–228.e3.
  • Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science. 2022;376(6598):1192–1202. doi: 10.1126/science.abk0297
  • Miller RA, Harrison DE, Astle CM, et al. Rapamycin‐mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014;13(3):468–477. doi: 10.1111/acel.12194
  • Dang Y, An Y, He J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell. 2019;19(1): doi: 10.1111/acel.13060
  • Wu JJ, Liu J, Chen EB, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013;4(5):913–920. doi: 10.1016/j.celrep.2013.07.030
  • Unnikrishnan A, Kurup K, Salmon AB, et al. Is rapamycin a dietary restriction mimetic? J Gerontol A. 2019;75(1):4–13.
  • Most J, Tosti V, Redman LM, et al. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. doi: 10.1016/j.arr.2016.08.005
  • Waziry R, Corcoran D, Huffman K, et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults: cALERIETM Trial Analysis. Cold Spring Harbor Laboratory; 2021 [cited 2023 Nov 23]. doi: 10.1101/2021.09.21.21263912
  • Nielsen JL, Bakula D, Scheibye-Knudsen M. Clinical trials targeting aging. Front Aging. 2022;3:3. doi: 10.3389/fragi.2022.820215
  • Yu D, Tomasiewicz JL, Yang SE, et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 2019;29(1):236–248.e3.
  • Chellappa K, Brinkman JA, Mukherjee S, et al. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell. 2019;18(5). doi: 10.1111/acel.13014
  • Arriola Apelo SI, Lin A, Brinkman JA, et al. Ovariectomy uncouples lifespan from metabolic health and reveals a sex-hormone-dependent role of hepatic mTORC2 in aging. Elife. 2020;9. doi: 10.7554/elife.56177
  • Lamming DW, Mihaylova MM, Katajisto P, et al. Depletion of Rictor, an essential protein component of mTORC 2, decreases male lifespan. Aging Cell. 2014;13(5):911–917. doi: 10.1111/acel.12256
  • Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. Nature Aging. 2023;3(6):642–660. doi: 10.1038/s43587-023-00416-y
  • Vogelzang NJ, Bhor M, Liu Z, et al. Everolimus vs. Temsirolimus for advanced renal cell carcinoma: use and use of resources in the US oncology network. Clin Genitourin Cancer. 2013;11(2):115–120. doi: 10.1016/j.clgc.2012.09.008
  • Lamming DW, Ye L, Sabatini DM, et al. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Investig. 2013;123(3):980–989. doi: 10.1172/jci64099
  • Huyghe E, Zairi A, Nohra J, et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transplant Int. 2007;20(4):305–311. doi: 10.1111/j.1432-2277.2006.00423.x
  • Mannick JB, Morris M, Hockey HP, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018;10(449):eaaq1564.
  • Mannick JB, Teo G, Bernardo P, et al. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev. 2021;2(5):e250–e262. doi: 10.1016/s2666-7568(21)00062-3
  • Cummings J, Lee G, Nahed P, et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2022;8(1): doi: 10.1002/trc2.12295
  • Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience. 2019;41(6):861–869. doi: 10.1007/s11357-019-00113-y
  • Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224–e224. doi: 10.1038/emm.2016.16
  • Ulgherait M, Rana A, Rera M, et al. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep. 2014;8(6):1767–1780. doi: 10.1016/j.celrep.2014.08.006
  • Fang X, Wu H, Wei J, et al. Research progress on the pharmacological effects of berberine targeting mitochondria. Front Endocrinol. 2022;13:13. doi: 10.3389/fendo.2022.982145
  • Miller RA, Harrison DE, Allison DB, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21). doi: 10.1172/jci.insight.140019
  • Feng J, Wang X, Ye X, et al. Mitochondria as an important target of metformin: the mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177:106114. doi: 10.1016/j.phrs.2022.106114
  • Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–551. doi: 10.1038/s41573-019-0019-2
  • Steneberg P, Lindahl E, Dahl U, et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018;3(12). doi: 10.1172/jci.insight.99114
  • Mofidifar S, Sohraby F, Bagheri M, et al. Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: a computer-aided drug discovery study. Biogerontology. 2018;19(2):133–143. doi: 10.1007/s10522-018-9744-x
  • Viollet B. AMPK: lessons from transgenic and knockout animals. Front Biosci. 2009;14:19. doi: 10.2741/3229
  • Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563. doi: 10.1016/j.biopha.2021.112563
  • Li T, Mu N, Yin Y, et al. Targeting AMP-Activated protein kinase in aging-related cardiovascular diseases. Aging Dis. 2020;11(4):967. doi: 10.14336/ad.2019.0901
  • Wang Q, Sun J, Liu M, et al. The new role of AMP-Activated protein kinase in regulating fat metabolism and energy expenditure in adipose tissue. Biomolecules. 2021;11(12):1757. doi: 10.3390/biom11121757
  • Lu Y, Yuan T, Min X, et al. AMPK: potential therapeutic target for vascular calcification. Front Cardiovasc Med. 2021;8:8. doi: 10.3389/fcvm.2021.670222
  • Neumann NR, Thompson DC, Vasiliou V. AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol. 2021;17(10):1199–1210. doi: 10.1080/17425255.2021.1991308
  • Rey V, Tamargo-Gómez I. From kinases to diseases: investigating the role of AMPK in human pathologies. Kinases and Phosphatases. 2023;1(3):181–205. doi: 10.3390/kinasesphosphatases1030012
  • Zhang Z, Cheng X, Yue L, et al. Molecular pathogenesis in chronic obstructive pulmonary disease and therapeutic potential by targeting AMP‐activated protein kinase. J Cell Physiol. 2017;233(3):1999–2006.
  • Padki MM, Stambler I. Targeting aging with metformin (TAME). Springer International Publishing; cited 2021 Jan 1. doi: 10.1007/978-3-030-22009-9_400
  • Myers RW, Guan HP, Ehrhart J, et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science. 2017;357(6350):507–511. doi: 10.1126/science.aah5582
  • Keerthana CK, Rayginia TP, Shifana SC, et al. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 2023;14:14. doi: 10.3389/fimmu.2023.1114582
  • Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in cancer treatments. BMC Cancer. 2022;22(1). doi: 10.1186/s12885-022-09211-1
  • Bartke A. Growth hormone and aging. Rev Endocr Metab Disord. 2020;22(1):71–80. doi: 10.1007/s11154-020-09593-2
  • Merriam GR, Schwartz RS, Vitiello MV. Growth hormone-releasing hormone and growth hormone secretagogues in normal aging. Endocrine. 2003;22(1):41–48. doi: 10.1385/endo:22:1:41
  • Rudman D, Feller AG, Nagraj HS, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323(1):1–6. doi: 10.1056/nejm199007053230101
  • Perls TT, Reisman NR, Olshansky SJ. Provision or distribution of growth hormone for “antiaging. JAMA. 2005;294(16):2086. doi: 10.1001/jama.294.16.2086
  • Luo YY, Zeng X, Zhu L, et al. Growth hormone reduces aneuploidy and improves oocytes quality by JAK2-MAPK3/1 pathway in aged mice. J Transl Med. 2023;21(1): doi: 10.1186/s12967-023-04296-z
  • Masternak MM, Darcy J, Victoria B, et al. Dwarf mice and aging. In: Progress in molecular biology and translational science. Elsevier; 2018 [cited 2023 Nov 23]; p. 69–83. doi: 10.1016/bs.pmbts.2017.12.002
  • Brown-Borg HM, Borg KE, Meliska CJ, et al. Dwarf mice and the ageing process. Nature. 1996;384(6604):33–33. doi: 10.1038/384033a0
  • Panici JA, Harper JM, Miller RA, et al. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. Faseb J. 2010;24(12):5073–5079. doi: 10.1096/fj.10.163253
  • Bartke A, Wright JC, Mattison JA, et al. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412–412.
  • Miller RA. Kleemeier Award Lecture: Are There Genes for Aging? J Gerontol Ser A. 1999;54(7):B297–B307. doi: 10.1093/gerona/54.7.b297
  • Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech Ageing Dev. 2002;123(2–3):121–130. doi: 10.1016/s0047-6374(01)00339-6
  • Flurkey K, Papaconstantinou J, Miller RA, et al. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Nat Acad Sci. 2001;98(12):6736–6741. doi: 10.1073/pnas.111158898
  • Duran-Ortiz S, List EO, Basu R, et al. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary. 2021;24(3):438–456. doi: 10.1007/s11102-020-01117-0
  • Conover CA, Bale LK, Mader JR, et al. Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A. J Gerontol A. 2010;65A(6):590–599. doi: 10.1093/gerona/glq032
  • Mohrin M, Liu J, Zavala‐Solorio J, et al. Inhibition of longevity regulator PAPP‐A modulates tissue homeostasis via restraint of mesenchymal stromal cells. Aging Cell. 2021;20(3). doi: 10.1111/acel.13313
  • Coschigano KT, Clemmons D, Bellush LL, et al. Assessment of growth parameters and life span of GHR/BP gene-disrupted Mice1. Endocrinology. 2000;141(7):2608–2613. doi: 10.1210/endo.141.7.7586
  • Kim SS, Lee CK. Growth signaling and longevity in mouse models. BMB Rep. 2019;52(1):70–85. doi: 10.5483/bmbrep.2019.52.1.299
  • Geiger BC, Wang S, Padera RF Jr, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci, trans med. 2018;10(469): doi: 10.1126/scitranslmed.aat8800
  • Loffredo FS, Pancoast JR, Cai L, et al. Targeted delivery to cartilage is critical for in vivo efficacy of Insulin‐like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol. 2014;66(5):1247–1255. doi: 10.1002/art.38357
  • Abdellatif M, Trummer-Herbst V, Heberle AM, et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation. 2022;145(25):1853–1866. doi: 10.1161/circulationaha.122.059863
  • Koffi KA, Doublier S, Ricort JM, et al. The Role of GH/IGF Axis in dento-alveolar complex from development to aging and therapeutics: a narrative review. Cells. 2021;10(5):1181. doi: 10.3390/cells10051181
  • Gungor O, Ulu S, Hasbal NB, et al. Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do? J Cachexia Sarcopenia Muscle. 2021;12(6):1380–1392.
  • Kopple JD, Cheung AK, Christiansen JS, et al. OPPORTUNITYTM. Clin J Am Soc Nephrol. 2008;3(6):1741–1751.
  • Gomez J. Growth hormone and insulin-like growth factor-I as an endocrine axis in Alzheimer's disease. Endocr Metab Immune Disord Drug Target. 2008;8(2):143–151. doi: 10.2174/187153008784534367
  • Manuel Gomez Saez J. Possible usefulness of growth hormone/Insulin-like growth factor-I axis in Alzheimer’s disease treatment. Endocr Metab Immune Disord Drug. 2012;12(3):274–286. doi: 10.2174/187153012802002857
  • Basu T, Bertrand H, Karantzelis N, et al. Pharmacological inhibition of insulin growth factor-1 receptor (IGF-1R) alone or in combination with ruxolitinib shows therapeutic efficacy in preclinical myeloproliferative neoplasm models. Hemasphere. 2021;5(5):e565. doi: 10.1097/hs9.0000000000000565
  • Melmed S, Bronstein MD, Chanson P, et al. A consensus statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol. 2018;14(9):552–561. doi: 10.1038/s41574-018-0058-5
  • Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs. 2019;28(12):1101–1112. doi: 10.1080/13543784.2019.1694660
  • Siatecka M, Xue L, Bieker JJ. Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of Megakaryopoiesis. Mol Cell Biol. 2007;27(24):8547–8560. doi: 10.1128/mcb.00589-07
  • Paikari A, Sheehan VA. Fetal haemoglobin induction in sickle cell disease. Br J Haematol. 2017;180(2):189–200. doi: 10.1111/bjh.15021
  • Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood. 2014;124(5):803–811. doi: 10.1182/blood-2014-03-561779
  • Spurlin BA, Park SY, Nevins AK, et al. Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle. Diabetes. 2004;53(9):2223–2231. doi: 10.2337/diabetes.53.9.2223
  • Yang C, Coker KJ, Kim JK, et al. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J Clin Investig. 2001;107(10):1311–1318. doi: 10.1172/jci12274
  • Oh E, Stull ND, Mirmira RG, et al. Syntaxin 4 Up-Regulation Increases Efficiency of Insulin Release in pancreatic islets from humans with and without type 2 diabetes mellitus. J Clin Endocrinol Metab. 2014;99(5):E866–E870. doi: 10.1210/jc.2013-2221
  • Livingstone R, Bryant NJ, Boyle JG, et al. Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle. Endocrinol Diabetes Metabol. 2022;5(5): doi: 10.1002/edm2.361
  • Dratwa M, Wysoczańska B, Łacina P, et al. TERT—Regulation and roles in cancer formation. Front Immunol. 2020;11:11. doi: 10.3389/fimmu.2020.589929
  • Altamura G, Degli Uberti B, Galiero G, et al. The Small molecule BIBR1532 exerts potential anti-cancer activities in preclinical models of feline oral squamous cell carcinoma through inhibition of telomerase activity and down-regulation of TERT. Front Vet Sci. 2021 [cited 2021 Jan 20];7:620776.
  • Guterres AN, Villanueva J. Targeting telomerase for cancer therapy. Oncogene. 2020;39(36):5811–5824. doi: 10.1038/s41388-020-01405-w
  • Zheng Q, Huang J, Wang WG. Mitochondria, telomeres and telomerase subunits. Front Cell Dev Biol. 2019;7:7. doi: 10.3389/fcell.2019.00274
  • de Jesus B B, Schneeberger K, Vera E, et al. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10(4):604–621. doi: 10.1111/j.1474-9726.2011.00700.x
  • Yu X, Liu MM, Zheng CY, et al. Telomerase reverse transcriptase and neurodegenerative diseases. Front Immunol. 2023;14:14. doi: 10.3389/fimmu.2023.1165632
  • Wan T, Weir EJ, Johnson M, et al. Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog Neurobiol. 2021;199:101953. doi: 10.1016/j.pneurobio.2020.101953
  • Bawamia B, Spray L, Wangsaputra VK, et al. Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. Geroscience. 2023;45(4):2689–2705. doi: 10.1007/s11357-023-00794-6
  • Jaijyan DK, Selariu A, Cruz-Cosme R, et al. New intranasal and injectable gene therapy for healthy life extension. Proc Nat Acad Sci. 2022;119(20): doi: 10.1073/pnas.2121499119
  • Sewell PE. Safety study of AAV hTert and klotho gene transfer therapy for dementia. J Regenerative Bio Med. cited 2021 Nov 8. doi: 10.37191/mapsci-2582-385x-3(6)-097
  • Liu C, Schönke M, Zhou E, et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res. 2021;118(2):489–502.
  • Szczepańska E, Gietka-Czernel M. FGF21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. Hormone Metab Res. 2022;54(4):203–211. doi: 10.1055/a-1778-4159
  • Kilkenny DM, Rocheleau JV. The FGF21 receptor signaling complex. In: Klotho. 2016 [cited 2023 Nov 23]:17–58. doi: 10.1016/bs.vh.2016.02.008.
  • Shao W, Jin T. Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Dis Transl Med. 2022;8(1):19–25. doi: 10.1016/j.cdtm.2021.08.005
  • Talukdar S, Zhou Y, Li D, et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23(3):427–440. doi: 10.1016/j.cmet.2016.02.001
  • Sanyal A, Charles ED, Neuschwander-Tetri BA, et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet. 2018;392(10165):2705–2717. doi: 10.1016/s0140-6736(18)31785-9
  • Gaich G, Chien JY, Fu H, et al. The Effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–340. doi: 10.1016/j.cmet.2013.08.005
  • Dong JQ, Rossulek M, Somayaji VR, et al. Pharmacokinetics and pharmacodynamics of PF‐05231023, a novel long‐acting FGF21 mimetic, in a first‐in‐human study. Br J Clin Pharmacol. 2015;80(5):1051–1063.
  • Harrison SA, Ruane PJ, Freilich BL, et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nature Med. 2021;27(7):1262–1271. doi: 10.1038/s41591-021-01425-3
  • Cui A, Li J, Ji S, et al. The Effects of B1344, a novel fibroblast growth factor 21 analog, on nonalcoholic steatohepatitis in nonhuman primates. Diabetes. 2020;69(8):1611–1623. doi: 10.2337/db20-0209
  • Wong C, Dash A, Fredrickson J, et al. Fibroblast growth factor receptor 1/Klothoβ agonist BFKB8488A improves lipids and liver health markers in patients with diabetes or NAFLD: a phase 1b randomized trial. Hepatology. 2022;78(3):847–862.
  • Davidsohn N, Pezone M, Vernet A, et al. A single combination gene therapy treats multiple age-related diseases. Proc Nat Acad Sci. 2019;116(47):23505–23511. doi: 10.1073/pnas.1910073116
  • Florez-Sampedro L, Soto-Gamez A, Poelarends GJ, et al. The role of MIF in chronic lung diseases: looking beyond inflammation. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1183–L1197. doi: 10.1152/ajplung.00521.2019
  • Oda S, Oda T, Nishi K, et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLOS ONE. 2008;3(5):e2215. doi: 10.1371/journal.pone.0002215
  • Sinitski D, Kontos C, Krammer C, et al. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thromb Haemost. 2019;119(4):553–566.
  • Sauler M, Bucala R, Lee PJ. Role of macrophage migration inhibitory factor in age-related lung disease. Am J Physiol Lung Cell Mol Physiol. 2015;309(1):L1–L10. doi: 10.1152/ajplung.00339.2014
  • Bilsborrow JB, Doherty E, Tilstam PV, et al. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets. 2019;23(9):733–744. doi: 10.1080/14728222.2019.1656718
  • Mahalingam D, Patel MR, Sachdev JC, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br J Clin Pharmacol. 2020;86(9):1836–1848.
  • Sumaiya K, Langford D, Natarajaseenivasan K, et al. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther. 2022;233:108024. doi: 10.1016/j.pharmthera.2021.108024
  • Gokani S, Bhatt LK. Bromodomains: a novel target for the anticancer therapy. Eur J Pharmacol. 2021;911:174523. doi: 10.1016/j.ejphar.2021.174523
  • Liu L, Yang C, Candelario-Jalil E. Role of BET Proteins in inflammation and CNS diseases. Front Mol Biosci. 2021;8:8. doi: 10.3389/fmolb.2021.748449
  • Kokkola T, Suuronen T, Pesonen M, et al. BET inhibition upregulates SIRT1 and alleviates inflammatory responses. Chembiochem. 2015;16(14):1997–2001. doi: 10.1002/cbic.201500272
  • Zhou S, Zhang S, Wang L, et al. BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis. 2020;9(3). doi: 10.1038/s41389-020-0218-z
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073. doi: 10.1038/nature09504
  • Piquereau J, Boet A, Péchoux C, et al. The BET bromodomain inhibitor I-BET-151 induces structural and functional alterations of the heart mitochondria in healthy male mice and rats. Int J Mol Sci. 2019;20(7):1527. doi: 10.3390/ijms20071527
  • Zhang X, Lee HC, Shirazi F, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia. 2018;32(10):2224–2239. doi: 10.1038/s41375-018-0044-x
  • Braun T, Gardin C. Investigational BET bromodomain protein inhibitors in early stage clinical trials for acute myelogenous leukemia (AML). Expert Opin Investig Drugs. 2017;26(7):803–811. doi: 10.1080/13543784.2017.1335711
  • Roverato ND, Sailer C, Catone N, et al. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep. 2021;34(11):108857. doi: 10.1016/j.celrep.2021.108857
  • Bakula D, Scheibye-Knudsen M. MitophAging: mitophagy in aging and disease. Front Cell Dev Biol. 2020;8:8. doi: 10.3389/fcell.2020.00239
  • Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 – much more than a proteasome-targeting signal. J Cell Sci. 2020;133(14). doi: 10.1242/jcs.246041
  • Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and Age-Related diseases. J Am Med Dir Assoc. 2013;14(12):877–882. doi: 10.1016/j.jamda.2013.05.009
  • Jia Y, Ji P, French SW. The role of FAT10 in alcoholic hepatitis pathogenesis. Biomedicines. 2020;8(7):189. doi: 10.3390/biomedicines8070189
  • Zhang Y, Zuo Z, Liu B, et al. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC. J Gastrointest Oncol. 2021;12(4):1823–1837.
  • Iourov IY, Yurov YB, Vorsanova SG, et al. Chromosome instability, aging and brain diseases. Cells. 2021;10(5):1256. doi: 10.3390/cells10051256
  • Morice S, Danieau G, Rédini F, et al. Hippo/YAP signaling pathway: a promising therapeutic target in bone paediatric cancers? Cancers (Basel). 2020;12(3):645. doi: 10.3390/cancers12030645
  • Sladitschek-Martens HL, Guarnieri A, Brumana G, et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature. 2022;607(7920):790–798. doi: 10.1038/s41586-022-04924-6
  • Yi X, Deng X, Zhao Y, et al. Ubiquitin-like protein FAT10 promotes osteosarcoma growth by modifying the ubiquitination and degradation of YAP1. Exp Cell Res. 2020;387(2):111804. doi: 10.1016/j.yexcr.2019.111804
  • Zhang K, Chen L, Zhang Z, et al. Ubiquitin-like protein FAT10: a potential cardioprotective factor and novel therapeutic target in cancer. Clinica Chimica Acta. 2020;510:802–811. doi: 10.1016/j.cca.2020.09.016
  • Gao Y, Theng SS, Mah WC, et al. Silibinin down-regulates FAT10 and modulate TNF-α/IFN-γ-induced chromosomal instability and apoptosis sensitivity. Biol Open. 2015;4(8):961–969. doi: 10.1242/bio.011189
  • Knufinke M, MacArthur MR, Ewald CY, et al. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. Front Aging. 2023;4:4. doi: 10.3389/fragi.2023.1172789
  • Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5. doi: 10.7554/elife.16351
  • Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. doi: 10.1016/j.ebiom.2018.09.015
  • Sabini E, O’Mahony A, Caturegli P. MyMD-1 improves health span and prolongs life span in old mice: a noninferiority study to rapamycin. J Gerontol A. 2022;78(2):227–235. doi: 10.1093/gerona/glac142
  • Junnila RK, Duran-Ortiz S, Suer O, et al. Disruption of the GH receptor gene in adult mice increases maximal lifespan in females. Endocrinology. 2016;157(12):4502–4513. doi: 10.1210/en.2016-1649
  • Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299(5606):572–574. doi: 10.1126/science.1078223
  • Lee HY, Jeon Y, Kim YK, et al. Identifying molecular targets for reverse aging using integrated network analysis of transcriptomic and epigenomic changes during aging. Sci Rep. 2021;11(1): doi: 10.1038/s41598-021-91811-1
  • Sen P. High-throughput chromatin screens to identify targets of senescence and aging. Transl Med Aging. 2020;4:73–75. doi: 10.1016/j.tma.2020.06.002
  • Mo C, Zhang W, Liu L, et al. High throughput screening technology and the small molecules modulating aging related signals. Comb Chem High Throughput Screen. 2012;15(3):242–252.
  • Aliper A, Belikov AV, Garazha A, et al. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging. 2016;8(9):2127–2152. doi: 10.18632/aging.101047
  • Moskalev A, Chernyagina E, Kudryavtseva A, et al. Geroprotectors: a unified concept and screening approaches. Aging Dis. 2017;8(3):354. doi: 10.14336/ad.2016.1022
  • Center for Drug Evaluation, Research. Codevelopment of two or more new investigational drugs for use in combination. U.S. Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/codevelopment-two-or-more-new-investigational-drugs-use-combination.
  • Kim SK, Goughnour PC, Lee EJ, et al. Identification of drug combinations on the basis of machine learning to maximize anti-aging effects. PLOS ONE. 2021;16(1):e0246106. doi: 10.1371/journal.pone.0246106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.