95
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review

, , , &
Pages 239-251 | Received 17 Dec 2023, Accepted 08 Apr 2024, Published online: 12 Apr 2024

References

  • Legrand AJ, Konstantinou M, Goode EF, et al. The diversification of cell death and immunity: memento mori. Mol Cell. 2019 Oct 17;76(2):232–242. doi: 10.1016/j.molcel.2019.09.006. PubMed PMID: 31586546.
  • Van Gorp H, Lamkanfi M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep. 2019 Jun;20(6): doi: 10.15252/embr.201847575 PubMed PMID: 31101676; PubMed Central PMCID: PMCPMC6549028. eng.
  • Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009 Apr;9(4):239–252. doi: 10.1038/nrc2618 PubMed PMID: 19279573; PubMed Central PMCID: PMCPMC3251309. eng.
  • Cao W, Chen G, Wu L, et al. Ionizing radiation triggers the antitumor immunity by inducing gasdermin E-Mediated pyroptosis in tumor cells. Int J Radiat Oncol Biol Phys. 2022 Jul 30;115(2): 440–452. doi: 10.1016/j.ijrobp.2022.07.1841 PubMed PMID: 35918054; eng.
  • Peng Z, Wang P, Song W, et al. GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration. Signal transduction and targeted therapy. 2020 Aug 24; 51:159. doi: 10.1038/s41392-020-00274-9 PubMed PMID: 32839451; PubMed Central PMCID: PMCPMC7445264. eng.
  • Wu M, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine. 2019 Mar;41:244–255. doi: 10.1016/j.ebiom.2019.02.012 PubMed PMID: 30876762; PubMed Central PMCID: PMCPMC6442225. eng.
  • Yan H, Luo B, Wu X, et al. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 2021;17(10):2606–2621. doi: 10.7150/ijbs.60292 PubMed PMID: 34326697; PubMed Central PMCID: PMCPMC8315016.
  • Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019 Apr 16;50(4):778–795. doi: 10.1016/j.immuni.2019.03.012. PubMed PMID: 30995499; PubMed Central PMCID: PMCPMC7174020. eng.
  • Mu M, Yu Q, Zhang Q, et al. A pan-cancer analysis of molecular characteristics and oncogenic role of gasdermins. Cancer Cell Int. 2022 Feb 14;22(1):80. doi: 10.1186/s12935-022-02483-4. PubMed PMID: 35164740; PubMed Central PMCID: PMCPMC8842873. eng.
  • Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov. 2021 May;20(5):384–405. doi:10.1038/s41573-021-00154-z PubMed PMID: 33692549; PubMed Central PMCID: PMCPMC7944254 no competing interests. eng.
  • An H, Heo JS, Kim P, et al. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell death & disease. 2021 Feb 8;12(2):159. doi: 10.1038/s41419-021-03454-9 PubMed PMID: 33558527 PubMed Central PMCID: PMCPMC7870965 potential conflicts of interest were disclosed by the other authors. eng.
  • Tang J, Bei M, Zhu J, et al. Acute cadmium exposure induces GSDME-mediated pyroptosis in triple-negative breast cancer cells through ROS generation and NLRP3 inflammasome pathway activation. Environ Toxicol Pharmacol. 2021 Oct;87:103686. doi: 10.1016/j.etap.2021.103686 PubMed PMID: 34098069; eng.
  • Yan L, Liu Y, Ma XF, et al. Triclabendazole induces pyroptosis by activating caspase-3 to cleave GSDME in breast cancer cells. Front Pharmacol. 2021;12:670081. doi: 10.3389/fphar.2021.670081 PubMed PMID: 34305590; PubMed Central PMCID: PMCPMC8297466. eng.
  • Li Y, Wang W, Li A, et al. Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem Biol Interact. 2021 May 1;340:109434. doi: 10.1016/j.cbi.2021.109434 PubMed PMID: 33689708; eng.
  • Zhu X, Ferroptosis LS. Necroptosis, and pyroptosis in gastrointestinal cancers: the chief culprits of tumor progression and drug resistance. Adv Sci. 2023;10(26). doi: 10.1002/advs.202300824
  • Dong L, Vargas CPD, Tian X, et al. Harnessing the potential of non-apoptotic cell death processes in the treatment of drug-resistant melanoma. Int J Mol Sci. 2023 Jun 20;24(12). doi: 10.3390/ijms241210376 PubMed PMID: 37373523; PubMed Central PMCID: PMCPMC10299440. eng
  • Wei C, Xu Y, Shen Q, et al. Role of long non-coding RNAs in cancer: from subcellular localization to nanoparticle-mediated targeted regulation. Mol Ther Nucleic Acids. 2023 Sep 12;33:774–793. doi:10.1016/j.omtn.2023.07.009 PubMed PMID: 37655045; PubMed Central PMCID: PMCPMC10466435. eng.
  • Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat struct Mol Biol. 2007 Feb;14(2):103–105. doi: 10.1038/nsmb0207-103 PubMed PMID: 17277804; eng.
  • Policarpo R, Sierksma A, De Strooper B, et al. From junk to function: LncRNAs in CNS health and disease. Front Mol Neurosci. 2021;14. doi: 10.3389/fnmol.2021.714768
  • Kozłowska J, Kolenda T, Poter P, et al. Long intergenic non-coding RNAs in HNSCC: from “Junk DNA” to important prognostic factor. Cancers (Basel). 2021 Jun 12;13(12): 2949. doi: 10.3390/cancers13122949 PubMed PMID: 34204634; PubMed Central PMCID: PMCPMC8231241. eng.
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRnas and siRnas. Cell. 2009 Feb 20;136(4):642–655. doi: 10.1016/j.cell.2009.01.035 PubMed PMID: 19239886; PubMed Central PMCID: PMCPMC2675692. eng.
  • Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012 Feb 15;482(7385):339–346. doi: 10.1038/nature10887 PubMed PMID: 22337053; PubMed Central PMCID: PMCPMC4197003. eng.
  • Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRnas in cancer and oncology. Nat Rev Clin Oncol. 2022 Mar;19(3):188–206. doi: 10.1038/s41571-021-00585-y PubMed PMID: 34912049; eng.
  • He D, Zheng J, Hu J, et al. Long non-coding RNAs and pyroptosis. Clin Chim Acta. 2020 May;504:201–208. doi: 10.1016/j.cca.2019.11.035 PubMed PMID: 31794769; eng.
  • Bär C, Chatterjee S, Thum T. Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation. 2016 Nov 8;134(19):1484–1499. doi: 10.1161/circulationaha.116.023686 PubMed PMID: 27821419; eng.
  • Bartel DP. Metazoan MicroRNAs. Cell. 2018 Mar 22;173(1):20–51. doi: 10.1016/j.cell.2018.03.006 PubMed PMID: 29570994; PubMed Central PMCID: PMCPMC6091663. eng.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233. doi: 10.1016/j.cell.2009.01.002 PubMed PMID: 19167326; PubMed Central PMCID: PMCPMC3794896. eng.
  • He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 2020;16(14):2628–2647. doi: 10.7150/ijbs.47203 PubMed PMID: 32792861; PubMed Central PMCID: PMCPMC7415433. eng.
  • Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012 Feb 15;482(7385):347–355. doi: 10.1038/nature10888 PubMed PMID: 22337054; PubMed Central PMCID: PMCPMC3509753. eng.
  • Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020 Dec 14;19(1):172. doi: 10.1186/s12943-020-01286-3. PubMed PMID: 33317550; PubMed Central PMCID: PMCPMC7734744. eng.
  • Chi Y, Wang D, Wang J, et al. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019 Sep 1;8(9): 1015. doi: 10.3390/cells8091015 PubMed PMID: 31480503; PubMed Central PMCID: PMCPMC6770362. eng.
  • Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front Oncol. 2022;12:856974. doi: 10.3389/fonc.2022.856974 PubMed PMID: 35392236; eng.
  • Dai J, Qu T, Yin D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer. Cell Death Dis. 2023 May 8;14(5):312. doi: 10.1038/s41419-023-05840-x PubMed PMID: 37156816; PubMed Central PMCID: PMCPMC10167249. eng.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249. doi: 10.3322/caac.21660 PubMed PMID: 33538338.
  • Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline focused update. JCO. 2018 Jul 10;36(20): 2105–2122. doi: 10.1200/jco.2018.77.8738 PubMed PMID: 29846122; eng.
  • Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013 Sep;24(9):2206–2223. doi: 10.1093/annonc/mdt303 PubMed PMID: 23917950; PubMed Central PMCID: PMCPMC3755334. eng.
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011 Jul;121(7):2750–2767. doi: 10.1172/JCI45014 PubMed PMID: 21633166; PubMed Central PMCID: PMCPMC3127435.
  • Barzaman K, Karami J, Zarei Z, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020 Jul;84:106535. doi: 10.1016/j.intimp.2020.106535 PubMed PMID: 32361569; eng.
  • Bianco N, Palazzo A, Pagan E, et al. Adjuvant treatment for triple negative breast cancer with residual tumor after neo-adjuvant chemotherapy. A single institutional retrospective analysis. Breast (Edinburgh, Scotland). Breast. 2021 Oct;59:351–357. doi: 10.1016/j.breast.2021.08.004 PubMed PMID: 34407499; PubMed Central PMCID: PMCPMC8377481 Contributions All authors contributed equally to this paper. All authors made substantial contributions to conception and design, acquisition of data, analysis, and interpretation of data. All authors read and approved the final manuscript. eng.
  • Bian L, Yu P, Wen J, et al. Survival benefit of platinum-based regimen in early stage triple negative breast cancer: A meta-analysis of randomized controlled trials. NPJ Breast Cancer. 2021 Dec 21;7(1):157. doi: 10.1038/s41523-021-00367-w. PubMed PMID: 34934050; PubMed Central PMCID: PMCPMC8692362.
  • Lee JS, Yost SE, Yuan Y. Neoadjuvant treatment for triple negative breast cancer: recent progresses and challenges. Cancers (Basel). 2020 May 29;12(6):1404. doi: 10.3390/cancers12061404 PubMed PMID: 32486021; PubMed Central PMCID: PMCPMC7352772.
  • Lynce F, Nunes R. Role of platinums in triple-negative breast cancer. Curr Oncol Rep. 2021 Mar 22;23(5):50. doi: 10.1007/s11912-021-01041-x PubMed PMID: 33754211; eng.
  • Pashayan N, Antoniou AC, Ivanus U, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020 Nov;17(11):687–705. doi: 10.1038/s41571-020-0388-9 PubMed PMID: 32555420; PubMed Central PMCID: PMCPMC7567644 independent study, funded by the Italian Ministry of Health, and conducted negotiations with Becton Dickinson, Hologic and Roche to obtain reagents at a reduced price or for free; he is member of the MyPeBS steering committee. The other authors declare no competing interests. eng.
  • Volovat SR, Volovat C, Hordila I, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol. 2020;10:526850. doi: 10.3389/fonc.2020.526850 PubMed PMID: 33330019; PubMed Central PMCID: PMCPMC7716774. eng.
  • Xu J, Wu KJ, Jia QJ, et al. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B. 2020 Sep;21(9):673–689. doi: 10.1631/jzus.B1900709 PubMed PMID: 32893525; PubMed Central PMCID: PMCPMC7519626. eng.
  • Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017 Jul 6;547(7661):99–103. doi: 10.1038/nature22393. PubMed PMID: 28459430; eng.
  • Li Y, Li G, Guo X, et al. Non-coding RNA in bladder cancer. Cancer Lett. 2020 Aug 10;485:38–44. doi: 10.1016/j.canlet.2020.04.023 PubMed PMID: 32437725; eng.
  • Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res. 2019 Jul;25(3):859–874. doi: 10.1007/s12253-019-00614-3 PubMed PMID: 30793226; eng.
  • He C, Yang W, Yang J, et al. Long noncoding RNA MEG3 negatively regulates proliferation and angiogenesis in vascular endothelial cells. DNA Cell Biol. 2017;36(6):475–481. doi: 10.1089/dna.2017.3682 PubMed PMID: 28418724; eng.
  • Zhang CC, Li CG, Wang YF, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019 Apr;24(3–4):312–325. doi: 10.1007/s10495-019-01515-1 PubMed PMID: 30710195; eng.
  • Amorim M, Lobo J, Fontes-Sousa M, et al. Predictive and prognostic value of selected MicroRNAs in luminal breast cancer. Front Genet. 2019;10:815. doi: 10.3389/fgene.2019.00815 PubMed PMID: 31572437; PubMed Central PMCID: PMCPMC6749838. eng.
  • Yang X, Hu Q, Hu L-X, et al. miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discov Med. 2017;24(131):75–85. PubMed PMID: 28972876; eng.
  • Wang JG, Jian WJ, Li Y, et al. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. The Kaohsiung J of Med Scie. 2021 Jul;37(7):572–582. doi:10.1002/kjm2.12371 PubMed PMID: 33728753; eng.
  • Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 2017 Sep;36(3):463–473. doi: 10.1007/s10555-017-9687-8 PubMed PMID: 28866730; PubMed Central PMCID: PMCPMC5693744. eng.
  • Canonici A, Browne AL, Ibrahim MFK, et al. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Therapeutic advances in medical oncology. Therapeut Adv Med Oncol. 2020;12:1758835919897546. doi: 10.1177/1758835919897546 PubMed PMID: 32064003; PubMed Central PMCID: PMCPMC6987485. eng.
  • Xu W, Song C, Wang X, et al. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging. 2021 Jan 5;13(1):228–240. doi: 10.18632/aging.103669 PubMed PMID: 33472170; PubMed Central PMCID: PMCPMC7835015. eng.
  • Liao WS, Ho Y, Lin YW, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomaterialia. 2019 Mar 1;86:395–405. doi: 10.1016/j.actbio.2019.01.025 PubMed PMID: 30660004; eng.
  • Tanei T, Choi DS, Rodriguez AA, et al. Antitumor activity of cetuximab in combination with ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res. 2016 Jan 12;18(1):6. doi: 10.1186/s13058-015-0662-4. PubMed PMID: 26757880; PubMed Central PMCID: PMCPMC4711100. eng.
  • Moran MS. Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol. 2015 Mar;16(3):e113–22. doi: 10.1016/s1470-2045(14)71104-0 PubMed PMID: 25752562; eng.
  • Hamam R, Ali AM, Alsaleh KA, et al. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep. 2016 May 16;6(1): 25997. doi: 10.1038/srep25997 PubMed PMID: 27180809; PubMed Central PMCID: PMCPMC4867432. eng.
  • Khalighfard S, Kalhori MR, Haddad P, et al. RETRACTED: enhancement of resistance to chemo-radiation by hsa-miR-1290 expression in glioblastoma cells. Eur J Pharmacol. 2020 Aug 5;880:173144. doi:10.1016/j.ejphar.2020.173144 PubMed PMID: 32387352; eng.
  • Li Y, Li X. miR-1290 modulates the radioresistance of triple-negative breast cancer by targeting NLRP3-mediated pyroptosis. Clin Transl Oncol. 2022 Sep;24(9):1764–1775. doi: 10.1007/s12094-022-02831-w PubMed PMID: 35471684; eng.
  • Ye F, Dewanjee S, Li Y, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023 Jul 6;22(1):105. doi: 10.1186/s12943-023-01805-y. PubMed PMID: 37415164; PubMed Central PMCID: PMCPMC10324146. eng.
  • Sun K, Chen RX, Li JZ, et al. LINC00511/hsa-miR-573 axis-mediated high expression of Gasdermin C associates with dismal prognosis and tumor immune infiltration of breast cancer. Sci Rep. 2022 Aug 30;12(1):14788. doi: 10.1038/s41598-022-19247-9 PubMed PMID: 36042287; PubMed Central PMCID: PMCPMC9428000. eng.
  • Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019 Aug;94(8):1623–1640. doi: 10.1016/j.mayocp.2019.01.013 PubMed PMID: 31378236; eng.
  • Lv P, Man S, Xie L, et al. Pathogenesis and therapeutic strategy in platinum resistance lung cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021 Aug;1876(1):188577. doi: 10.1016/j.bbcan.2021.188577 PubMed PMID: 34098035; eng.
  • Chen X, Xiong D, Ye L, et al. Up-regulated lncRNA XIST contributes to progression of cervical cancer via regulating miR-140-5p and ORC1. Cancer Cell Int. 2019;19(1):45. doi: 10.1186/s12935-019-0744-y PubMed PMID: 30858762; PubMed Central PMCID: PMCPMC6394057. eng.
  • Li C, Wan L, Liu Z, et al. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett. 2018 Apr 1;418:185–195. doi: 10.1016/j.canlet.2018.01.036 PubMed PMID: 29339211; eng.
  • Liu J, Yao L, Zhang M, et al. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging. 2019 Sep 25;11(18):7830–7846. doi: 10.18632/aging.102291. PubMed PMID: 31553952; PubMed Central PMCID: PMCPMC6781979. eng.
  • Xu X, Zhou X, Chen Z, et al. Silencing of lncRNA XIST inhibits non-small cell lung cancer growth and promotes chemosensitivity to cisplatin. Aging. 2020 Mar 25;12(6):4711–4726. doi: 10.18632/aging.102673. PubMed PMID: 32209729; PubMed Central PMCID: PMCPMC7138551. eng.
  • Lin W, Chen Y, Wu B, et al. Identification of the pyroptosis‑related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discovery. 2021 Jun 25;7(1): 161. doi: 10.1038/s41420-021-00557-2 PubMed PMID: 34226539; PubMed Central PMCID: PMCPMC8257680. eng.
  • Song J, Sun Y, Cao H, et al. A novel pyroptosis-related lncRNA signature for prognostic prediction in patients with lung adenocarcinoma. Bioengineered. 2021 Dec;12(1):5932–5949. doi: 10.1080/21655979.2021.1972078 PubMed PMID: 34488540; PubMed Central PMCID: PMCPMC8806662. eng.
  • Shi F, Zhang L, Liu X, et al. Knock-down of microRNA miR-556-5p increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via activating NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptotic cell death. Bioengineered. 2021 Dec;12(1):6332–6342. doi: 10.1080/21655979.2021.1971502 PubMed PMID: 34488537; PubMed Central PMCID: PMCPMC8806686. eng.
  • Zhang T, Wu D-M, Luo P-W, et al. CircNEIL3 mediates pyroptosis to influence lung adenocarcinoma radiotherapy by upregulating PIF1 through miR-1184 inhibition. Cell Death Dis. 2022;13(2). doi: 10.1038/s41419-022-04561-x
  • Dai C, Ma Z, Si J, et al. Hsa_circ_0007312 promotes third-generation epidermal growth factor receptor-tyrosine kinase inhibitor resistance through pyroptosis and apoptosis via the MIR-764/MAPK1 axis in lung adenocarcinoma cells. J Cancer. 2022;13(9):2798–2809. doi: 10.7150/jca.72066
  • Zhang Z, Chen Q, Huang C, et al. Transcription factor Nrf2 binds to circRNAPIBF1 to regulate SOD2 in lung adenocarcinoma progression. Mol Carcinog. 2022 Dec;61(12):1161–1176. doi: 10.1002/mc.23468 PubMed PMID: 36193777; eng.
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022 Feb 9;135(5): 584–590. doi: 10.1097/CM9.0000000000002108 PubMed PMID: 35143424; PubMed Central PMCID: PMCPMC8920425.
  • Tan G, Lin C, Huang C, et al. Radiosensitivity of colorectal cancer and radiation-induced gut damages are regulated by gasdermin E. Cancer Lett. 2022;529:1–10. doi: 10.1016/j.canlet.2021.12.034 PubMed PMID: 34979164; eng.
  • Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 2019;10(3):193. doi: 10.1038/s41419-019-1441-4 PubMed PMID: 30804337; eng.
  • Skandarajah AR, Lynch AC, Mackay JR, et al. The role of intraoperative radiotherapy in solid tumors. Ann Surg Oncol. 2009 Mar;16(3):735–744. doi: 10.1245/s10434-008-0287-2 PubMed PMID: 19142683; eng.
  • Ghandhi SA, Smilenov LB, Elliston CD, et al. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics. 2015 May 12;8(1): 22. doi: 10.1186/s12920-015-0097-x PubMed PMID: 25963628; PubMed Central PMCID: PMCPMC4472181. eng.
  • Liu YG, Chen JK, Zhang ZT, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017 Feb 2;8(2): e2579. doi: 10.1038/cddis.2016.460 PubMed PMID: 28151471; PubMed Central PMCID: PMCPMC5386456. eng.
  • Su F, Duan J, Zhu J, et al. Long non‑coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation‑induced pyroptosis via microRNA‑448/gasdermin E in colorectal cancer cells. Int J Oncol. 2021 Oct;59(4). doi: 10.3892/ijo.2021.5259 PubMed PMID: 34476497; PubMed Central PMCID: PMCPMC8448542. eng.
  • Hao JP, Ma A. The ratio of miR-21/miR-24 as a promising diagnostic and poor prognosis biomarker in colorectal cancer. Eur Rev Med Pharmacol Sci. 2018 Dec;22(24):8649–8656. doi: 10.26355/eurrev_201812_16629 PubMed PMID: 30575905; eng.
  • Tsukamoto M, Iinuma H, Yagi T, et al. Circulating exosomal MicroRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology. 2017;92(6):360–370. doi: 10.1159/000463387 PubMed PMID: 28376502; eng.
  • Jiang R, Chen X, Ge S, et al. MiR-21-5p induces pyroptosis in colorectal cancer via TGFBI. Front Oncol. 2020;10:610545. doi: 10.3389/fonc.2020.610545 PubMed PMID: 33614494; PubMed Central PMCID: PMCPMC7892456. eng.
  • Boussios S, Seraj E, Zarkavelis G, et al. Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: where do we stand? A literature review. Crit Rev Oncol Hematol. 2016 Dec;108:164–174. doi: 10.1016/j.critrevonc.2016.11.006 PubMed PMID: 27931835; eng.
  • Fan GW, Gao XM, Wang H, et al. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J Steroid Biochem Mol Biol. 2009 Feb;113(3–5):275–280. doi: 10.1016/j.jsbmb.2009.01.011 PubMed PMID: 19429433; eng.
  • Ma L, Jiang H, Xu X, et al. Tanshinone IIA mediates SMAD7-YAP interaction to inhibit liver cancer growth by inactivating the transforming growth factor beta signaling pathway. Aging. 2019 Nov 11;11(21):9719–9737. doi: 10.18632/aging.102420. PubMed PMID: 31711043; PubMed Central PMCID: PMCPMC6874425. eng.
  • Liu Z, Zhu W, Kong X, et al. Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep. 2019 Nov;42(5):1893–1903. doi: 10.3892/or.2019.7294 PubMed PMID: 31485631; PubMed Central PMCID: PMCPMC6775814. eng.
  • Tong W, Guo J, Yang C. Tanshinone II a enhances pyroptosis and represses cell proliferation of HeLa cells by regulating miR-145/GSDMD signaling pathway. Biosci Rep. 2020 Apr 30;40(4). doi: 10.1042/bsr20200259 PubMed PMID: 32232409; PubMed Central PMCID: PMCPMC7160242. eng.
  • Nimmagadda S, Penet MF. Ovarian cancer targeted theranostics. Front Oncol. 2020;9:1537. doi: 10.3389/fonc.2019.01537 PubMed PMID: 32039018; PubMed Central PMCID: PMCPMC6985364. eng.
  • Yang J, Hao T, Sun J, et al. Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie. 2019 Apr;112:108656. doi: 10.1016/j.biopha.2019.108656 PubMed PMID: 30970507; eng.
  • Liu Y, Zhao J, Zhang W, et al. lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep. 2015 May 11;5(1): 10159. doi: 10.1038/srep10159 PubMed PMID: 25959498; PubMed Central PMCID: PMCPMC4426700. eng.
  • Filippova EA, Fridman MV, Burdennyy AM, et al. Long noncoding RNA GAS5 in breast cancer: epigenetic mechanisms and biological functions. Int J Mol Sci. 2021 Jun 24;22(13): 6810. doi: 10.3390/ijms22136810 PubMed PMID: 34202777; PubMed Central PMCID: PMCPMC8267719. eng.
  • Yang X, Xie Z, Lei X, et al. Long non-coding RNA GAS5 in human cancer. Oncol Lett. 2020 Sep;20(3):2587–2594. doi: 10.3892/ol.2020.11809 PubMed PMID: 32782576; PubMed Central PMCID: PMCPMC7400976. eng.
  • Li J, Yang C, Li Y, et al. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation. Biosci Rep. 2018 Apr 27;38(2). doi: 10.1042/bsr20171150 PubMed PMID: 29229673; PubMed Central PMCID: PMCPMC5857912. eng.
  • Tan C, Liu W, Zheng ZH, et al. LncRNA HOTTIP inhibits cell pyroptosis by targeting miR-148a-3p/AKT2 axis in ovarian cancer. Cell Biol Int. 2021 Jul;45(7):1487–1497. doi: 10.1002/cbin.11588 PubMed PMID: 33710684; eng.
  • Shang A, Wang W, Gu C, et al. Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res. 2019 Sep 18;38(1): 411. doi: 10.1186/s13046-019-1394-6 PubMed PMID: 31533774; PubMed Central PMCID: PMCPMC6751824. eng.
  • Shan Y, Ma J, Pan Y, et al. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis. 2018 Jun 18;9(7): 722. doi: 10.1038/s41419-018-0759-7 PubMed PMID: 29915311; PubMed Central PMCID: PMCPMC6006356. eng.
  • Li Y, Zeng C, Hu J, et al. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol. 2018 Jul 3;11(1): 89. doi: 10.1186/s13045-018-0632-2 PubMed PMID: 29970122; PubMed Central PMCID: PMCPMC6029165. eng.
  • She K, Huang J, Zhou H, et al. lncRNA-SNHG7 promotes the proliferation, migration and invasion and inhibits apoptosis of lung cancer cells by enhancing the FAIM2 expression. Oncol Rep. 2016 Nov;36(5):2673–2680. doi: 10.3892/or.2016.5105 PubMed PMID: 27666964; eng.
  • Wang MW, Liu J, Liu Q, et al. LncRNA SNHG7 promotes the proliferation and inhibits apoptosis of gastric cancer cells by repressing the P15 and P16 expression. Eur Rev Med Pharmacol Sci. 2017 Oct;21(20):4613–4622. PubMed PMID: 29131253; eng.
  • Qi H, Wen B, Wu Q, et al. Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2018 Jun;102:326–332. doi: 10.1016/j.biopha.2018.03.011 PubMed PMID: 29571017; eng.
  • Yang X, Sun L, Wang L, et al. LncRNA SNHG7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating miR-122-5p and RPL4. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2019 Oct;118:109386. doi: 10.1016/j.biopha.2019.109386 PubMed PMID: 31545291; eng.
  • Chen Z, He M, Chen J, et al. Long non-coding RNA SNHG7 inhibits NLRP3-dependent pyroptosis by targeting the miR-34a/SIRT1 axis in liver cancer. Oncol Lett. 2020 Jul;20(1):893–901. doi: 10.3892/ol.2020.11635 PubMed PMID: 32566017; PubMed Central PMCID: PMCPMC7285900.
  • Leng XF, Daiko H, Han YT, et al. Optimal preoperative neoadjuvant therapy for resectable locally advanced esophageal squamous cell carcinoma. Ann N Y Acad Sci. 2020 Dec;1482(1):213–224. doi: 10.1111/nyas.14508 PubMed PMID: 33067818; eng.
  • Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014 Mar;10(3):143–156. doi: 10.1038/nrendo.2013.256 PubMed PMID: 24393785; eng.
  • Wang S, Lin Y, Xiong X, et al. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase ii clinical trial. Clin Cancer Res. 2020 Sep 15;26(18):4921–4932. doi: 10.1158/1078-0432.Ccr-20-0113. PubMed PMID: 32646922; eng.
  • Sugihara H, Ishimoto T, Miyake K, et al. Noncoding RNA expression aberration is associated with cancer progression and is a potential biomarker in esophageal squamous cell carcinoma. Int J Mol Sci. 2015 Nov 24;16(11): 27824–27834. doi: 10.3390/ijms161126060 PubMed PMID: 26610479; PubMed Central PMCID: PMCPMC4661918. eng.
  • Wang L, Li K, Lin X, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019 May 28;450:22–31. doi:10.1016/j.canlet.2019.02.014 PubMed PMID: 30771436; eng.
  • Gong W, Xu J, Wang Y, et al. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2022 Feb 14;7(1): 40. doi: 10.1038/s41392-021-00865-0 PubMed PMID: 35153295 PubMed Central PMCID: PMCPMC8841503 but he has not been involved in the process of the manuscript handling. The other authors declare no competing interests. eng.
  • Rogers C, Erkes DA, Nardone A, et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 2019 Apr 11;10(1):1689. doi: 10.1038/s41467-019-09397-2. PubMed PMID: 30976076 PubMed Central PMCID: PMCPMC6459836 and has ownership interest in patent number 9880150. The authors declare no competing interests. eng.
  • Marsh D, Suchak K, Moutasim KA, et al. Stromal features are predictive of disease mortality in oral cancer patients. J Pathol. 2011 Mar;223(4):470–481. doi: 10.1002/path.2830 PubMed PMID: 21294121; eng.
  • Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011 Oct 14;147(2):358–369. doi: 10.1016/j.cell.2011.09.028. PubMed PMID: 22000014; PubMed Central PMCID: PMCPMC3234495. eng.
  • Wang Z, Zhu X, Dong P, et al. Long noncoding RNA LINC00958 promotes the oral squamous cell carcinoma by sponging miR-185-5p/YWHAZ. Life Sci. 2020 Feb 1;242:116782. doi: 10.1016/j.lfs.2019.116782 PubMed PMID: 31442551; eng.
  • Jiang L, Ge W, Cui Y, et al. The regulation of long non-coding RNA 00958 (LINC00958) for oral squamous cell carcinoma (OSCC) cells death through absent in melanoma 2 (AIM2) depending on microRNA-4306 and Sirtuin1 (SIRT1) in vitro. Bioengineered. 2021 Dec;12(1):5085–5098. doi: 10.1080/21655979.2021.1955561 PubMed PMID: 34384029; PubMed Central PMCID: PMCPMC8806533. eng.
  • Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020 Jun 4;21(11): 4012. doi: 10.3390/ijms21114012 PubMed PMID: 32512697; PubMed Central PMCID: PMCPMC7312039. eng.
  • Peng C, Huang K, Liu G, et al. MiR-876-3p regulates cisplatin resistance and stem cell-like properties of gastric cancer cells by targeting TMED3. J Gastro Hepatol. 2019 Oct;34(10):1711–1719. doi: 10.1111/jgh.14649 PubMed PMID: 30843262; eng.
  • Pan H, Guo C, Pan J, et al. Construction of a competitive endogenous RNA network and identification of potential regulatory axis in gastric cancer. Front Oncol. 2019;9:912. doi: 10.3389/fonc.2019.00912 PubMed PMID: 31637209; PubMed Central PMCID: PMCPMC6787165. eng.
  • Liu C, Yang Z, Deng Z, et al. Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3. IUBMB Life. 2018 Jun;70(6):536–546. doi: 10.1002/iub.1752 PubMed PMID: 29707897; eng.
  • Ren N, Jiang T, Wang C, et al. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging. 2020 Jun 9;12(11):11025–11041. doi: 10.18632/aging.103314. PubMed PMID: 32516127; PubMed Central PMCID: PMCPMC7346038. eng.
  • Zhang F, Yin Y, Xu W, et al. Icariin inhibits gastric cancer cell growth by regulating the hsa_circ_0003159/miR-223-3p/NLRP3 signaling axis. Hum Exp Toxicol. 2022 Jan;41:9603271221097363. doi: 10.1177/09603271221097363 PubMed PMID: 35532261; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.