67
Views
0
CrossRef citations to date
0
Altmetric
Review

Establishing biomarkers for soft tissue sarcomas

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 407-421 | Received 18 Nov 2023, Accepted 18 Apr 2024, Published online: 30 Apr 2024

References

  • Choi JH, Ro JY. The 2020 WHO classification of tumors of bone: an updated review. Adv Anat Pathol. 2021;28(3):119–138. doi: 10.1097/PAP.0000000000000293
  • Sbaraglia M, Bellan E, Dei Tos AP. The 2020 WHO classification of soft tissue tumours: news and perspectives. Pathologica. 2020;113(2):70–84. doi: 10.32074/1591-951X-213
  • Franchi A. Epidemiology and classification of bone tumors. Clinical cases in mineral and bone metabolism: the official journal of the Italian Society of Osteoporosis. Mineral Metabolism, and Skeletal Diseases. 2012;9(2):92–95.
  • Hui JYC. Epidemiology and etiology of Sarcomas. Surgical Clinic North Am. 2016;96(5):901–914. doi: 10.1016/j.suc.2016.05.005
  • Zahm SH, Fraumeni JF. The epidemiology of soft tissue sarcoma. Semin Oncol. 1997;24(5):504–514.
  • Azizmohammad Looha M, Akbari A, Akbari ME, et al. Epidemiology of pediatric sarcoma in Iran. Cancer Reports. 2023;6(1): doi: 10.1002/cnr2.1660
  • Burningham Z, Hashibe M, Spector L, et al. The epidemiology of Sarcoma. Clin Sarcoma Res. 2012;2(1):14–14. doi: 10.1186/2045-3329-2-14
  • Kunisada T, Nakata E, Fujiwara T, et al. Soft-tissue sarcoma in adolescents and young adults. Int J Clin Oncol. 2023;28(1):1–11. doi: 10.1007/s10147-022-02119-7
  • Anderson JL, Denny CT, Tap WD, et al. Pediatric sarcomas: translating molecular pathogenesis of disease to novel therapeutic possibilities. Pediat Res. 2012 Aug 01;72(2):112–121. doi: 10.1038/pr.2012.54
  • Koscielniak E, Morgan M, Treuner J. Soft tissue sarcoma in children. Pediatr Drugs. 2002;4(1):21–28. doi: 10.2165/00128072-200204010-00003
  • Ou JY, Spraker-Perlman H, Dietz AC, et al. Conditional survival of pediatric, adolescent, and young adult soft tissue sarcoma and bone tumor patients. Cancer Epidemiol. 2017;50:150–157. doi: 10.1016/j.canep.2017.08.015
  • Lochner J, Menge F, Vassos N, et al. Prognosis of patients with metastatic soft tissue sarcoma: advances in recent years. Oncol Res Treat. 2020;43(11):613–619. doi: 10.1159/000509519
  • Wiltink LM, Haas RLM, Gelderblom H, et al. Treatment strategies for metastatic soft tissue sarcomas. Cancers (Basel). 2021;13(7):1722–1722. doi: 10.3390/cancers13071722
  • Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012 Apr 01;6(2):140–146.
  • Malone ER, Oliva M, Sabatini PJB, et al. Molecular profiling for precision cancer therapies. Genome Med. 2020 Jan 14;12(1):8. doi: 10.1186/s13073-019-0703-1
  • Brown NA, Elenitoba-Johnson KSJ. Enabling precision oncology through precision diagnostics. Annu Rev Pathol. 2020;15(1):97–121. doi: 10.1146/annurev-pathmechdis-012418-012735
  • Wallander K, Öfverholm I, Boye K, et al. Sarcoma care in the era of precision medicine. J Intern Med. 2023;294(6):690–707. doi: 10.1111/joim.13717
  • Warren RC. Enhancing oral and systemic health. Nat Comprehensive Cancer Network National Comprehensive Cancer Network Compendium. 2001;22(3 Spec No):4–11.
  • Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. Ca A Cancer J Clinicians. 2017;67(2):93–99. doi: 10.3322/caac.21388
  • Kang S, Han I, Lee SA, et al. Clinicopathological characteristics and prognostic factors of T1 (≤5 cm) soft tissue sarcoma – a comparative study with T2 (>5 cm) soft tissue sarcoma. Eur J Surg Oncol. 2014;40(4):406–411. doi: 10.1016/j.ejso.2013.12.010
  • Lindner LH, Litière S, Sleijfer S, et al. Prognostic factors for soft tissue sarcoma patients with lung metastases only who are receiving first‐line chemotherapy: an exploratory, retrospective analysis of the European Organization for Research and Treatment of Cancer‐soft tissue and Bone sarcoma. Intl J Cancer. 2018;142(12):2610–2620. doi: 10.1002/ijc.31286
  • Tsuchie H, Emori M, Miyakoshi N, et al. Prognostic significance of histological subtype in soft tissue sarcoma with distant metastasis. In Vivo. 2020;34(4):1975–1980. doi: 10.21873/invivo.11994
  • Balachandran VP, Gonen M, Smith JJ, et al. Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015;16(4):e173–e180. doi: 10.1016/S1470-2045(14)71116-7
  • Mariani L, Miceli R, Kattan MW, et al. Validation and adaptation of a nomogram for predicting the survival of patients with extremity soft tissue sarcoma using a three-grade system. Cancer. 2005;103(2):402–408. doi: 10.1002/cncr.20778
  • Callegaro D, Miceli R, Bonvalot S, et al. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol. 2016;17(5):671–680. doi: 10.1016/S1470-2045(16)00010-3
  • Pasquali S, Pizzamiglio S, Touati N, et al. The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur J Cancer. 2019;109:51–60. doi: 10.1016/j.ejca.2018.12.009
  • Rueten-Budde AJ, van Praag VM, van de Sande MAJ, et al. Dynamic prediction of overall survival for patients with high-grade extremity soft tissue sarcoma. Surg Oncol. 2018;27(4):695–701. doi: 10.1016/j.suronc.2018.09.003
  • Callegaro D, Barretta F, Swallow CJ, et al. Longitudinal prognostication in retroperitoneal sarcoma survivors: development and external validation of two dynamic nomograms. Eur J Cancer. 2021 Nov;157:291–300. doi: 10.1016/j.ejca.2021.08.008
  • Callegaro D, Miceli R, Bonvalot S, et al. Development and external validation of a dynamic prognostic nomogram for primary extremity soft tissue sarcoma survivors. EClinicalMedicine. 2019;17:100215–100215. doi: 10.1016/j.eclinm.2019.11.008
  • Voss RK, Callegaro D, Chiang Y-J, et al. Sarculator is a good Model to predict survival in resected extremity and trunk sarcomas in US patients. Ann Surg Oncol. 2022;29(7):4376–4385. doi: 10.1245/s10434-022-11442-2
  • Pasquali S, Palmerini E, Quagliuolo V, et al. Neoadjuvant chemotherapy in high‐risk soft tissue sarcomas: a Sarculator‐based risk stratification analysis of the ISG‐STS 1001 randomized trial. Cancer. 2022;128(1):85–93. doi: 10.1002/cncr.33895
  • Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. JNCI. 2001;93(14):1054–1061. doi: 10.1093/jnci/93.14.1054
  • De Amorim Bernstein K, Bos SA, Veld J, et al. Body composition predictors of therapy response in patients with primary extremity soft tissue sarcomas. Acta Radiol. 2018;59(4):478–484. doi: 10.1177/0284185117723370
  • Veld J, Vossen JA, De Amorim Bernstein K, et al. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas. Eur Radiol. 2016;26(12):4649–4655. doi: 10.1007/s00330-016-4306-6
  • Kalisvaart GM, Grootjans W, Bovée JVMG, et al. Prognostic value of quantitative [18F]FDG-PET features in patients with metastases from soft tissue sarcoma. Diagnostics. 2021;11(12):2271–2271. doi: 10.3390/diagnostics11122271
  • Kambadakone A, Yoon SS, Kim T-M, et al. CT perfusion as an imaging biomarker in monitoring response to Neoadjuvant Bevacizumab and radiation in soft-tissue sarcomas: comparison with tumor morphology, circulating and tumor biomarkers, and gene expression. Am J Roentgenol. 2015;204(1):W11–W18. doi: 10.2214/AJR.13.12412
  • Fujibuchi T, Miyawaki J, Kidani T, et al. Prediction of soft tissue sarcoma from clinical characteristics and laboratory data. Cancers (Basel). 2020;12(3):679–679. doi: 10.3390/cancers12030679
  • Grimer R, Gaston C, Carter S, et al. The relationship between pretreatment anaemia and survival in patients with adult soft tissue sarcoma. J Orthop Sci. 2013;18(6):987–993. doi: 10.1007/s00776-013-0454-6
  • Mahyudin F, Edward M, Basuki MH, et al. Analysis of prognostic factors in soft tissue sarcoma: cancer registry from a single tertiary hospital in Indonesia. A retrospective cohort study. Ann Med Surg. 2020;57:257–263. doi: 10.1016/j.amsu.2020.07.053
  • Nakamura T, Matsumine A, Matsubara T, et al. Clinical significance of pretreatment serum C-reactive protein level in soft tissue sarcoma. Cancer. 2012;118(4):1055–1061. doi: 10.1002/cncr.26353
  • Szkandera J, Gerger A, Liegl-Atzwanger B, et al. Pre-treatment anemia is a poor prognostic factor in soft tissue sarcoma patients. PLOS ONE. 2014;9(9):e107297–e107297. doi: 10.1371/journal.pone.0107297
  • Nozoe T, Matono R, Ijichi H, et al. Glasgow prognostic score (GPS) can be a useful indicator to determine prognosis of patients with colorectal carcinoma. Int Surg. 2014 Sep;99:(5):512–517.
  • Idowu OK, Ding Q, Taktak AFG, et al. Clinical implication of pretreatment neutrophil to lymphocyte ratio in soft tissue sarcoma. Biomarkers. 2012;17(6):539–544. doi: 10.3109/1354750X.2012.699554
  • Nakamura T, Grimer R, Gaston C, et al. The value of C-reactive protein and comorbidity in predicting survival of patients with high grade soft tissue sarcoma. Eur J Cancer. 2013;49(2):377–385. doi: 10.1016/j.ejca.2012.09.004
  • Szkandera J, Gerger A, Liegl-Atzwanger B, et al. The lymphocyte/monocyte ratio predicts poor clinical outcome and improves the predictive accuracy in patients with soft tissue sarcomas. Int J Cancer. 2014;135(2):362–370. doi: 10.1002/ijc.28677
  • Panotopoulos J, Posch F, Alici B, et al. Hemoglobin, alkalic phosphatase, and C-reactive protein predict the outcome in patients with liposarcoma. J Orthop Res. 2015 May;33:(5):765–770.
  • Chan JY, Zhang Z, Chew W, et al. Biological significance and prognostic relevance of peripheral blood neutrophil-to-lymphocyte ratio in soft tissue sarcoma. Sci Rep. 2018;8(1):11959–11959. doi: 10.1038/s41598-018-30442-5
  • Choi E-S, Kim H-S, Han I. Elevated preoperative systemic inflammatory markers predict poor outcome in localized soft tissue sarcoma. Ann Surg Oncol. 2014;21(3):778–785. doi: 10.1245/s10434-013-3418-3
  • García-Ortega DY, Álvarez-Cano A, Sánchez-Llamas LA, et al. Neutrophil/Lymphocyte ratio is associated with survival in synovial sarcoma. Surg Oncol. 2018;27(3):551–555. doi: 10.1016/j.suronc.2018.07.012
  • Chen S, Luo P, Yang L, et al. Prognostic analysis of surgically treated clear cell sarcoma: an analysis of a rare tumor from a single center. Int J Clin Oncol. 2019;24(12):1605–1611. doi: 10.1007/s10147-019-01487-x
  • Cheng Y, Mo F, Pu L, et al. Pretreatment inflammatory indexes as prognostic predictors of survival in patients suffering from synovial sarcoma. Front Oncol. 2019;9. doi: 10.3389/fonc.2019.00955
  • Laterza OF, Hendrickson RC, Wagner JA. Molecular Biomarkers. Drug Inf J. 2007;41(5):573–585. doi: 10.1177/009286150704100504
  • Lou S, Balluff B, Cleven AHG, et al. Prognostic metabolite biomarkers for soft tissue sarcomas discovered by Mass spectrometry imaging. J Am Soc Mass Spectrom. 2017;28(2):376–383. doi: 10.1007/s13361-016-1544-4
  • Lou S, Balluff B, de Graaff MA, et al. High‐grade sarcoma diagnosis and prognosis: biomarker discovery by mass spectrometry imaging. Proteomics. 2016;16(11–12):1802–1813. doi: 10.1002/pmic.201500514
  • Strauss SJ, Frezza AM, Abecassis N, et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2021 Dec;32:(12):1520–1536.
  • Paulussen M, Bielack S, Jurgens H, et al. Ewing’s sarcoma of the bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009 May;20:(Suppl 4):140–142.
  • National Comprehensive Cancer Network Inc. Referenced with permission from the NCCN clinical practice guidelines in oncology (NCCN Guidelines®) for bone cancer 07 Aug 2023. [cited 2023 Oct 25]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/bone.pdf
  • Nakamura K, Nakamura T, Iino T, et al. Expression of interleukin-6 and the interleukin-6 receptor predicts the clinical outcomes of patients with soft tissue sarcomas. Cancers (Basel). 2020;12(3):585–585. doi: 10.3390/cancers12030585
  • Rutkowski P, Kaminska J, Kowalska M, et al. Cytokine serum levels in soft tissue sarcoma patients: correlations with clinico-pathological features and prognosis. Int J Cancer. 2002;100(4):463–471. doi: 10.1002/ijc.10496
  • Valkov A, Sorbye SW, Kilvaer TK, et al. The Prognostic Impact of TGF-β1, Fascin, NF-κB and PKC-ζ expression in soft tissue sarcomas. PLOS ONE. 2011;6(3):e17507–e17507. doi: 10.1371/journal.pone.0017507
  • Lewitowicz P, Matykiewicz J, Koziel D, et al. CD63 and GLUT-1 overexpression could predict a poor clinical outcome in GIST: a study of 54 cases with follow-up. Gastroenterol Res Pract. 2016;2016:1–8. doi: 10.1155/2016/6478374
  • Dadone-Montaudié B, Laroche-Clary A, Mongis A, et al. Novel therapeutic insights in Dedifferentiated liposarcoma: a role for FGFR and MDM2 dual targeting. Cancers (Basel). 2020;12(10):3058–3058. doi: 10.3390/cancers12103058
  • Hoshino M, Kawashima H, Ogose A, et al. Serum CA 125 expression as a tumor marker for diagnosis and monitoring the clinical course of epithelioid sarcoma. J Cancer Res Clin Oncol. 2010;136(3):457–464. doi: 10.1007/s00432-009-0678-1
  • Suehara Y, Kondo T, Seki K, et al. Pfetin as a prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics. Clin Cancer Res. 2008;14(6):1707–1717. doi: 10.1158/1078-0432.CCR-07-1478
  • Kikuta K, Gotoh M, Kanda T. Pfetin as a prognostic biomarker in gastrointestinal stromal tumor: novel monoclonal antibody and external validation study in multiple clinical facilities. Jpn J Clin Oncol. 2010;40(1):NP–NP. doi: 10.1093/jjco/hyp125
  • Kubota D, Orita H, Yoshida A, et al. Pfetin as a prognostic biomarker for gastrointestinal stromal tumor: validation study in multiple clinical facilities. Jpn J Clin Oncol. 2011;41(10):1194–1202. doi: 10.1093/jjco/hyr121
  • Muz B, de la Puente P, Azab F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ). 2015;3:83–92. doi: 10.2147/HP.S93413
  • Tap WD, Papai Z, Van Tine BA, et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017;18(8):1089–1103. doi: 10.1016/S1470-2045(17)30381-9
  • Shintani K, Matsumine A, Kusuzaki K, et al. Expression of hypoxia-inducible factor (HIF)-1α as a biomarker of outcome in soft-tissue sarcomas. Virchows Arch. 2006;449(6):673–681. doi: 10.1007/s00428-006-0304-4
  • Kim JI, Choi KU, Lee IS, et al. Expression of hypoxic markers and their prognostic significance in soft tissue sarcoma. Oncol Lett. 2015;9(4):1699–1706. doi: 10.3892/ol.2015.2914
  • Karampinis I, Joas E, Dreyer A, et al. The evaluation of circulating endothelial progenitor cells and related angiogenic markers as prognostic factors in soft-tissue tumors. Eur J Surg Oncol. 2018;44(4):496–501. doi: 10.1016/j.ejso.2018.01.083
  • Woll PJ, Gaunt P, Gaskell C, et al. Axitinib in patients with advanced/metastatic soft tissue sarcoma (axi-STS): an open-label, multicentre, phase II trial in four histological strata. Br j cancer. 2023;129(9):1490–1499. doi: 10.1038/s41416-023-02416-6
  • Gounder MM, Agaram NP, Trabucco SE, et al. Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat Commun. 2022 Jun 15;13(1):3406. doi: 10.1038/s41467-022-30496-0
  • Schaefer IM, Cote GM, Hornick JL. Contemporary sarcoma diagnosis, genetics, and genomics. J Clin Oncol. 2018 Jan 10;36(2):101–110.
  • Francis P, Namløs HM, Müller C, et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics. 2007 Mar 14;8(1):73. doi: 10.1186/1471-2164-8-73
  • Williamson D, Lu Y-J, Gordon T, et al. Relationship between MYCN copy number and expression in Rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol. 2005;23(4):880–888. doi: 10.1200/JCO.2005.11.078
  • Italiano A, Laurand A, Laroche A, et al. ERCC5/XPG, ERCC1, and BRCA1 gene status and clinical benefit of trabectedin in patients with soft tissue sarcoma. Cancer. 2011;117(15):3445–3456. doi: 10.1002/cncr.25925
  • Bill KLJ, Seligson ND, Hays JL, et al. Degree of MDM2 amplification affects clinical outcomes in Dedifferentiated liposarcoma. Oncology. 2019 Jul;24:(7):989–996.
  • Antonescu CR, Owosho AA, Zhang L, et al. Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol. 2017 Jul;41:(7):941–949.
  • Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012 Mar;51:(3):207–218.
  • Sparber-Sauer M, Corradini N, Affinita MC, et al. Clinical characteristics and outcomes for children, adolescents and young adults with “CIC-fused” or “BCOR-rearranged” soft tissue sarcomas: a multi-institutional European retrospective analysis. Cancer Med. 2023 Jul 01;12(13):14346–14359. doi: 10.1002/cam4.6113
  • Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998 Jan 15;338(3):153–160. doi: 10.1056/NEJM199801153380303
  • Panagopoulos I, Mertens F, Isaksson M, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001 Aug;31:(4):362–372.
  • Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002 Jan 1;62(1):135–140.
  • Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer. 2003 May;37(1):1–19. doi: 10.1002/gcc.10202
  • Rutkowski P, Van Glabbeke M, Rankin CJ, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol. 2010 Apr 1;28(10):1772–1779. doi: 10.1200/JCO.2009.25.7899
  • Chen BF, Chen ML, Liang DC, et al. Detection of PAX3-FKHR and PAX7-FKHR fusion transcripts in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction using paraffin-embedded tissue. Zhonghua Yi Xue Za Zhi (Taipei). 1999 Feb;62(2):86–91.
  • Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002 Jun 1;20(11):2672–2679. doi: 10.1200/JCO.2002.03.137
  • Zhang R, Yang Y, Hu C, et al. Comprehensive analysis reveals potential therapeutic targets and an integrated risk stratification model for solitary fibrous tumors. Nat Commun. 2023 Nov 18;14(1):7479. doi: 10.1038/s41467-023-43249-4
  • Bieg M, Moskalev EA, Will R, et al. Gene expression in solitary fibrous tumors (SFTs) correlates with anatomic localization and NAB2-STAT6 gene fusion variants. Am J Pathol. 2021 Apr;191:(4):602–617.
  • Barthelmeß S, Geddert H, Boltze C, et al. Solitary fibrous Tumors/Hemangiopericytomas with different variants of the NAB2-STAT6 gene fusion are characterized by specific histomorphology and distinct clinicopathological features. Am J Pathol. 2014 Apr 01;184(4):1209–1218. doi: 10.1016/j.ajpath.2013.12.016
  • Salguero-Aranda C, Martínez-Reguera P, Marcilla D, et al. Evaluation of NAB2-STAT6 fusion variants and other molecular alterations as prognostic biomarkers in a case series of 83 solitary fibrous tumors. Cancers (Basel). 2021 Oct 19;13(20):5237. doi: 10.3390/cancers13205237
  • Georgiesh T, Namløs HM, Sharma N, et al. Clinical and molecular implications of NAB2-STAT6 fusion variants in solitary fibrous tumour. Pathology. 2021 Oct 01;53(6):713–719. doi: 10.1016/j.pathol.2020.11.010
  • Lee C-J, Schöffski P, Modave E, et al. Comprehensive molecular analysis of inflammatory myofibroblastic tumors reveals diverse genomic landscape and potential predictive markers for response to crizotinib. Clin Cancer Res. 2021;27(24):6737–6748. doi: 10.1158/1078-0432.CCR-21-1165
  • Wozniak A, Lee C-J, van Wezel T, et al. Abstract 3191: detection of molecular drivers in inflammatory myofibroblastic tumor: study on archival tissue from EORTC 90101 “CREATE” phase II clinical trial. Cancer Res. 2020;80(16_Supplement):3191–3191. doi: 10.1158/1538-7445.AM2020-3191
  • Chen S-T, Lee J-C. An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: combination of distinct morphologic, immunohistochemical, and genetic features. Hum Pathol. 2008 Dec 01;39(12):1854–1858.
  • Jiang Q, Tong H-X, Hou Y-Y, et al. Identification of EML4-ALK as an alternative fusion gene in epithelioid inflammatory myofibroblastic sarcoma. Orphanet J Rare Diseases. 2017 May 23;12(1):97. doi: 10.1186/s13023-017-0647-8
  • Mariño-Enríquez A, Wang W-L, Roy A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory Myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35(1):135–144. doi: 10.1097/PAS.0b013e318200cfd5
  • Zhang J, Han Y, Wang W, et al. Molecular characterization of cancers with ALK gene fusions in nonlung tumors. J Clin Oncol. 2022 Jun 01;40(16_suppl):3121–3121. doi: 10.1200/JCO.2022.40.16_suppl.3121
  • FDA approves crizotinib for ALK-positive inflammatory myofibroblastic tumor. [cited 2023 Dec 24]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-alk-positive-inflammatory-myofibroblastic-tumor
  • Butrynski JE, D’Adamo DR, Hornick JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010 Oct 28;363(18):1727–1733. doi: 10.1056/NEJMoa1007056
  • Schöffski P, Kubickova M, Wozniak A, et al. Long-term efficacy update of crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumour from EORTC trial 90101 CREATE. Eur J Cancer. 2021 Oct 01;156:12–23.
  • Schöffski P, Sufliarsky J, Gelderblom H, et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir Med. 2018;6(6):431–441. doi: 10.1016/S2213-2600(18)30116-4
  • Schoot RA, Orbach D, Minard Colin V, et al. Inflammatory myofibroblastic tumor with ROS1 gene fusions in children and young adolescents. JCO Precision Oncol. 2023 Sep 01;(7):e2300323. doi: 10.1200/PO.23.00323
  • Baranov E, Black MA, Fletcher CDM, et al. Nuclear expression of DDIT3 distinguishes high-grade myxoid liposarcoma from other round cell sarcomas. Mod Pathol. 2021 Jul;34:(7):1367–1372.
  • Bode-Lesniewska B, Frigerio S, Exner U, et al. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer. 2007 Nov 01;46(11):961–971. doi: 10.1002/gcc.20478
  • Antonescu CR, Tschernyavsky SJ, Decuseara R, et al. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001 Dec;7(12):3977–3987.
  • Powers MP, Wang WL, Hernandez VS, et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010 Oct;23:(10):1307–1315.
  • Jiang Z, Zhang J, Li Z, et al. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors. Onco Targets Ther. 2016;9:3387–3398. doi: 10.2147/OTT.S101858
  • Yan L, Zou L, Zhao W, et al. Clinicopathological significance of c-KIT mutation in gastrointestinal stromal tumors: a systematic review and meta-analysis. Sci Rep. 2015 Sep 09;5(1):13718. doi: 10.1038/srep13718
  • Zong L, Chen P. Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumors: a meta-analysis. World J Surg Oncol. 2014 Mar 28;12(1):71.
  • Rubió-Casadevall J, Borràs JL, Carmona-García MC, et al. Correlation between mutational status and survival and second cancer risk assessment in patients with gastrointestinal stromal tumors: a population-based study. World J Surg Oncol. 2015 Feb 13;13(1):47. doi: 10.1186/s12957-015-0474-0
  • Wozniak A, Rutkowski P, Schöffski P, et al. Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: a European multicenter analysis based on ConticaGIST. Clin Cancer Res. 2014 Dec 1;20(23):6105–6116. doi: 10.1158/1078-0432.CCR-14-1677
  • Joensuu H, Rutkowski P, Nishida T, et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol. 2015 Feb 20;33(6):634–642. doi: 10.1200/JCO.2014.57.4970
  • Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2023 Nov 1;41(31):4829–4836. doi: 10.1200/JCO.22.02771
  • Yoo C, Ryu M-H, Jo J, et al. Efficacy of imatinib in patients with platelet-derived growth factor receptor alpha–mutated gastrointestinal stromal tumors. Cancer Res Treat. 2016 4;48(2):546–552. doi: 10.4143/crt.2015.015
  • Agaimy A, Terracciano LM, Dirnhofer S, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol. 2009 Jul;62:(7):613–616.
  • Agaram NP, Wong GC, Guo T, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2008 Oct;47:(10):853–859.
  • Huss S, Pasternack H, Ihle MA, et al. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum Pathol. 2017 Apr 01;62:206–214.
  • Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA. 2011 Jan 4;108(1):314–318. doi: 10.1073/pnas.1009199108
  • Boikos SA, Pappo AS, Killian JK, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol. 2016 Jul 1;2(7):922–928. doi: 10.1001/jamaoncol.2016.0256
  • Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009 Apr;33(4):542–550. doi: 10.1097/PAS.0b013e3181882c54
  • Papp G, Changchien YC, Péterfia B, et al. SMARCB1 protein and mRNA loss is not caused by promoter and histone hypermethylation in epithelioid sarcoma. Mod Pathol. 2013 Mar;26:(3):393–403.
  • Stacchiotti S, Schoffski P, Jones R, et al. Safety and efficacy of tazemetostat, a first-in-class EZH2 inhibitor, in patients (pts) with epithelioid sarcoma (ES) (NCT02601950). J Clin Oncol. 2019;37(15_suppl):11003–11003. doi: 10.1200/JCO.2019.37.15_suppl.11003
  • Bartel F, Meye A, Würl P, et al. Amplification of the mdm2 gene, but not expression of splice variants of mdm2 mrna, is associated with prognosis in soft tissue sarcoma. Int J Cancer. 2001 May 20;95(3):168–175. doi: 10.1002/1097-0215(20010520)95:3<168:AID-IJC1029>3.0.CO;2-A
  • Cornillie J, Wozniak A, Li H, et al. Anti-tumor activity of the MDM2-TP53 inhibitor BI-907828 in dedifferentiated liposarcoma patient-derived xenograft models harboring MDM2 amplification. Clin Transl Oncol. 2020 Apr 01;22(4):546–554. doi: 10.1007/s12094-019-02158-z
  • Ohnstad HO, Castro R, Sun J, et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer. 2013 Mar 01;119(5):1013–1022. doi: 10.1002/cncr.27837
  • LoRusso P, Yamamoto N, Patel MR, et al. The MDM2–p53 antagonist brigimadlin (BI 907828) in patients with advanced or metastatic solid tumors: results of a phase ia, first-in-human, dose-escalation study. Cancer Discovery. 2023;13(8):1802–1813. doi: 10.1158/2159-8290.CD-23-0153
  • Schöffski P, Lahmar M, Lucarelli A, et al. Brightline-1: phase II/III trial of the MDM2–p53 antagonist BI 907828 versus doxorubicin in patients with advanced DDLPS. Future Oncol. 2023 Mar 01;19(9):621–629. doi: 10.2217/fon-2022-1291
  • Marinoff AE, Spurr LF, Fong C, et al. Clinical targeted next-generation panel sequencing reveals MYC amplification is a poor prognostic factor in Osteosarcoma. JCO Precis Oncol. 2023 Mar;7:(7):e2200334.
  • Tsiatis AC, Herceg ME, Keedy VL, et al. Prognostic significance of c-Myc expression in soft tissue leiomyosarcoma. Mod Pathol. 2009 Nov 01;22(11):1432–1438. doi: 10.1038/modpathol.2009.113
  • Shen J-N, Scotlandi K, Baldini N, et al. Prognostic significance of nuclear accumulation of c-myc and mdm2 proteins in synovial sarcoma of the extremities. Oncology. 2000;58(3):253–260. doi: 10.1159/000012109
  • Demır D, Yaman B, Anacak Y, et al. Prognostic significance of bcl-2, c-myc, survivin and tumor grade in synovial sarcoma. Turk Patoloji Derg. 2014;30(1):55–65. doi: 10.5146/tjpath.2014.01164
  • Hogeboom-Gimeno AG, van Ravensteijn SG, Desar IME, et al. MYC amplification in angiosarcoma depends on etiological/clinical subgroups – Diagnostic and prognostic value. Ann Diagn Pathol. 2023 Apr 01;63:152096.
  • Morrison C, Radmacher M, Mohammed N, et al. MYC amplification and Polysomy 8 in Chondrosarcoma: array comparative genomic hybridization, Fluorescent in situ hybridization, and association with outcome. J Clin Oncol. 2005 Dec 20;23(36):9369–9376. doi: 10.1200/JCO.2005.03.7127
  • Cheng J, Gao J, Tao K. Prognostic role of Gli1 expression in solid malignancies: a meta-analysis. Sci Rep. 2016 Feb 22;6(1):22184.
  • Wang Y, Sun C, Jiang J, et al. GLI1 expression is an important prognostic factor that contributes to the poor prognosis of rhabdomyosarcoma. Histol Histopathol. 2016 Mar;31:(3):329–337.
  • Pressey JG, Anderson JR, Crossman DK, et al. Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011 Dec 1;57(6):930–938. doi: 10.1002/pbc.23174
  • Yoon JW, Lamm M, Chandler C, et al. Up-regulation of GLI1 in vincristine-resistant rhabdomyosarcoma and Ewing sarcoma. BMC Cancer. 2020 Jun 3;20(1):511. doi: 10.1186/s12885-020-06985-0
  • Jilg S, Rassner M, Maier J, et al. Circulating cKIT and PDGFRA DNA indicates disease activity in gastrointestinal stromal tumor (GIST). Int J Cancer. 2019 Oct 15;145(8):2292–2303. doi: 10.1002/ijc.32282
  • Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012 Mar 1;72(5):1126–1136. doi: 10.1158/0008-5472.CAN-11-1803
  • Yun S, Kim WK, Kwon Y, et al. Survivin is a novel transcription regulator of KIT and is downregulated by miRNA-494 in gastrointestinal stromal tumors. Int J Cancer. 2018 May 15;142(10):2080–2093. doi: 10.1002/ijc.31235
  • Niinuma T, Kai M, Kitajima H, et al. Downregulation of miR-186 is associated with metastatic recurrence of gastrointestinal stromal tumors. Oncol Lett. 2017 Nov;14:(5):5703–5710.
  • Akcakaya P, Caramuta S, Ahlen J, et al. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome. Br J Cancer. 2014 Nov 25;111(11):2091–2102. doi: 10.1038/bjc.2014.548
  • Fernandez-Serra A, Moura DS, Sanchez-Izquierdo MD, et al. Prognostic impact of let-7e MicroRNA and its target genes in localized high-risk intestinal GIST: a Spanish Group for Research on sarcoma (GEIS) study. Cancers (Basel). 2020 Oct 14;12(10):2979. doi: 10.3390/cancers12102979
  • Badalamenti G, Barraco N, Incorvaia L, et al. Are long noncoding RNAs new potential biomarkers in gastrointestinal stromal tumors (GISTs)? The role of H19 and MALAT1. 2019. (1687-8450 (Print)). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885275/
  • Kou Y, Yang R, Wang Q. Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. J Biosci. 2018;43(5):1015–1023. doi: 10.1007/s12038-018-9805-y
  • Lak NSM, van Zogchel LMJ, Zappeij-Kannegieter L, et al. Cell-Free DNA as a diagnostic and prognostic biomarker in Pediatric Rhabdomyosarcoma. JCO Precis Oncol. 2023 Jan;7(7):e2200113. doi: 10.1200/PO.22.00113
  • Missiaglia E, Shepherd CJ, Aladowicz E, et al. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. (1872-7980 (Electronic)).
  • Kapodistrias N, Mavridis K, Batistatou A, et al. Assessing the clinical value of microRnas in formalin-fixed paraffin-embedded liposarcoma tissues: overexpressed miR-155 is an indicator of poor prognosis. Oncotarget. 2017;8(4):6896–6913. (1949-2553 (Electronic)): doi: 10.18632/oncotarget.14320
  • Lee DH, Amanat S, Goff C, et al. Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival. Oncogenesis. 2013 May 20;2(5):e47. doi: 10.1038/oncsis.2013.10
  • Nezu Y, Hagiwara K, Yamamoto Y, et al. miR-135b, a key regulator of malignancy, is linked to poor prognosis in human myxoid liposarcoma. (1476-5594 (Electronic)).
  • Chibon F, Lagarde P, Salas S, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010 Jul;16:(7):781–787.
  • Chibon F, Lesluyes T, Valentin T, et al. CINSARC signature as a prognostic marker for clinical outcome in sarcomas and beyond. Genes Chromosomes Cancer. 2019;58(2):124–129. doi: 10.1002/gcc.22703
  • Italiano A, Lagarde P, Brulard C, et al. Genetic profiling identifies two classes of soft-tissue leiomyosarcomas with distinct clinical characteristics. Clin Cancer Res. 2013 Mar 1;19(5):1190–1196. doi: 10.1158/1078-0432.CCR-12-2970
  • Croce S, Lesluyes T, Valle C, et al. The nanocind signature is an independent prognosticator of recurrence and death in uterine leiomyosarcomas. Clin Cancer Res. 2020 Feb 15;26(4):855–861. doi: 10.1158/1078-0432.CCR-19-2891
  • Lagarde P, Przybyl J, Brulard C, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013;31(5):608–615. doi: 10.1200/JCO.2012.46.0147
  • Lagarde P, Pérot G, Kauffmann A, et al. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin Cancer Res. 2012 Feb 1;18(3):826–838. doi: 10.1158/1078-0432.CCR-11-1610
  • Italiano A, Blay J-Y, Cesne AL, et al. Benefit of intensified perioperative chemotherapy within high-risk CINSARC patients with resectable soft tissue sarcomas (CIRSARC). J Clin Oncol. 2019;37(15_suppl):TPS11078–TPS11078. doi: 10.1200/JCO.2019.37.15_suppl.TPS11078
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT04307277, Interest of Peri operative CHemotherapy in patients with CINSARC high-risk localized soft tissue sarcoma (CHIC-STS01) 2024-02-28 2000. [cited 2024 Feb 28]]. Available from: https://clinicaltrials.gov/study/NCT04307277
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 - identifier NCT02789384, CINSARC Signature and correlation with hemotherapy efficacy in soft-tissue sarcomas. A biomarker study. (NEOSarcomics) 2023-03-02. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT02789384
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733–45. doi: 10.1093/nar/gkv1189
  • Fusco MJ, West H, Walko CM. Tumor mutation burden and cancer treatment. JAMA Oncol. 2021;7(2):316–316. doi: 10.1001/jamaoncol.2020.6371
  • Sinicrope FA, Sargent DJ. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin Cancer Res. 2012 Mar 15;18(6):1506–1512.
  • Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017 Apr 19;9(1):34. doi: 10.1186/s13073-017-0424-2
  • Abeshouse A, Adebamowo C, Adebamowo SN, et al. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017 Nov 02;171(4):950–965.e28. doi: 10.1016/j.cell.2017.10.014
  • Xu L-B, Zhao Z-G, Xu S-F, et al. The landscape of gene mutations and clinical significance of tumor mutation burden in patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy. Int J Biol Markers. 2020;35(3):14–22. doi: 10.1177/1724600820925095
  • Casey DL, Wexler LH, Pitter KL, et al. Genomic determinants of clinical outcomes in Rhabdomyosarcoma. Clin Cancer Res. 2020 Mar 1;26(5):1135–1140. doi: 10.1158/1078-0432.CCR-19-2631
  • Xie L, Yang Y, Guo W, et al. The clinical implications of tumor mutational burden in Osteosarcoma. Front Oncol. 2020;10:595527. doi: 10.3389/fonc.2020.595527
  • Rucińska M, Kozłowski L, Pepiński W, et al. High grade sarcomas are associated with microsatellite instability (chromosom 12) and loss of heterozygosity (chromosom 2). Med Sci Monit. 2005 Feb;11(2):Br65–8.
  • Gounder M, Schöffski P, Jones RL, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 2020 Nov 01;21(11):1423–1432. doi: 10.1016/S1470-2045(20)30451-4
  • Gambacorti-Passerini C, Orlov S, Zhang L, et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): a phase 1b open-label study. Am J Hematol. 2018 May;93:(5):607–614.
  • Kokkali S, Georgaki E, Mandrakis G, et al. Genomic profiling and clinical outcomes of targeted therapies in adult patients with soft tissue sarcomas. Cells. 2023 Nov 15;12(22):2632. doi: 10.3390/cells12222632
  • Carmagnani Pestana R, Moyers JT, Roszik J, et al. Impact of biomarker-matched therapies on outcomes in patients with sarcoma enrolled in Early-Phase Clinical Trials (SAMBA 101). Clin Cancer Res. 2023 May 1;29(9):1708–1718. doi: 10.1158/1078-0432.CCR-22-3629
  • Riskjell AI, Mäkinen VN, Sandfeld-Paulsen B, et al. Targeted treatment of Soft-Tissue Sarcoma. J Pers Med. 2023 Apr 26;13(5):730. doi: 10.3390/jpm13050730
  • Frezza AM, Stacchiotti S, Chibon F, et al. CINSARC in high-risk soft tissue sarcoma patients treated with neoadjuvant chemotherapy: results from the ISG-STS 1001 study. Cancer Med. 2023 Jan;12:(2):1350–1357.
  • Pasquali S, Palmerini E, Quagliuolo V, et al. Neoadjuvant chemotherapy in high-risk soft tissue sarcomas: a Sarculator-based risk stratification analysis of the ISG-STS 1001 randomized trial. Cancer. 2022;128(1):85–93. doi: 10.1002/cncr.33895
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT04072042. BIOmarker driven trial of VEGFR2 inhibitor in advanced sarcoma (BIOVAS) 2023-10-03 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT04072042
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT05739084, gene signatures searching of sensitivity/resistance to neoadjuvant radiotherapy in patients with resectable STS (RADIOSARC) 2023-02-22 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT05739084
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT03896620, Recognition of Circulating Tumor DNA in soft tissue sarcoma 2023-06-22 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT03896620
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT03818412, circulating tumor DNA in soft tissue sarcoma 2023-01-10 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT03818412
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT04925089, localized leiomyosarcoma biomarker protocol 2023-Jun-29 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT04925089
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT05653388, metastatic leiomyosarcoma biomarker protocol 2023-04-06 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT05653388
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT03099681, an observational study on Epithelioid Sarcoma (EPISObs) 2023-09-13 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT03099681
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); Feb 29 - identifier NCT04224064, identification of a new blood biomarker for the diagnosis and prognosis of liposarcomas (ESPACE) 2022-03-14 2000. [cited 2024 Feb 23]. Available from: https://clinicaltrials.gov/study/NCT04224064
  • Dagher R, Cohen M, Williams G, et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res. 2002 Oct;8(10):3034–3038.
  • Blay J-Y, Serrano C, Heinrich MC, et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020 Jul 01;21(7):923–934. doi: 10.1016/S1470-2045(20)30168-6
  • Serrano C, Martín-Broto J, Asencio-Pascual JM, et al. GEIS Guidelines for gastrointestinal stromal tumors. Ther Adv Med Oncol. 2023;15:17588359231192388. doi: 10.1177/17588359231192388

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.