98
Views
0
CrossRef citations to date
0
Altmetric
Review

The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies

, , , , &
Received 29 Dec 2023, Accepted 29 Apr 2024, Published online: 08 May 2024

References

  • Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease. Cell. 2017;170(4):605–635. doi: 10.1016/j.cell.2017.07.029
  • Buzzi F, Xu L, Zuellig RA, et al. Differential effects of protein kinase B/Akt isoforms on glucose homeostasis and islet mass. Mol Cell Biol. 2010;30(3):601–612. doi: 10.1128/MCB.00719-09
  • Hawkins P, Anderson K, Davidson K, et al. Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans. 2006;34(5):647–662. doi: 10.1042/BST0340647
  • Walker EH, Perisic O, Ried C, et al. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature. 1999;402(6759):313–320. doi: 10.1038/46319
  • Burke JE, Williams RL. Synergy in activating class I PI3Ks. Trends Biochem Sci. 2015;40(2):88–100. doi: 10.1016/j.tibs.2014.12.003
  • Chen J, Tang H, Hay N, et al. Akt isoforms differentially regulate neutrophil functions. Blood J Am Soc Hematol. 2010;115(21):4237–4246. doi: 10.1182/blood-2009-11-255323
  • Calamito M, Juntilla MM, Thomas M, et al. Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood. J Am Society Hematol. 2010;115(20):4043–4050. doi: 10.1182/blood-2009-09-241638
  • Juntilla MM, Patil VD, Calamito M, et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood J Am Soc Hematol. 2010;115(20):4030–4038. doi: 10.1182/blood-2009-09-241000
  • Juntilla MM, Wofford JA, Birnbaum MJ, et al. Akt1 and Akt2 are required for αβ thymocyte survival and differentiation. Proceed Nat Acad Sci. 2007;104(29):12105–12110.
  • Fayard E, Gill J, Paolino M, et al. Deletion of PKBα/Akt1 affects thymic development. PLOS ONE. 2007;2(10):e992. doi: 10.1371/journal.pone.0000992
  • Mao C, Tili EG, Dose M, et al. Unequal contribution of akt isoforms in the double-negative to double-positive thymocyte transition. J Immunol. 2007;178(9):5443–5453. doi: 10.4049/jimmunol.178.9.5443
  • Perry JM, He XC, Sugimura R, et al. Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev. 2011;25(18):1928–1942. doi: 10.1101/gad.17421911
  • Sandri M, Barberi L, Bijlsma A, et al. Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-akt-mTOR-FoxO pathway. Biogerontology. 2013;14(3):303–323. doi: 10.1007/s10522-013-9432-9
  • Schaeffer EM, Schwartzberg PL. Tec family kinases in lymphocyte signaling and function. Curr Opin Immunol. 2000;12(3):282–288. doi: 10.1016/S0952-7915(00)00088-1
  • Kishimoto H, Hamada K, Saunders M, et al. Physiological functions of pten in mouse tissues. Cell Struct Funct. 2003;28(1):11–21. doi: 10.1247/csf.28.11
  • Brognard J, Sierecki E, Gao T, et al. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of akt signaling by regulating distinct akt isoforms. Mol Cell. 2007;25(6):917–931. doi: 10.1016/j.molcel.2007.02.017
  • Rohrschneider LR, Fuller JF, Wolf I, et al. Structure, function, and biology of SHIP proteins. Genes Dev. 2000;14(5):505–520. doi: 10.1101/gad.14.5.505
  • Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3(4):317–330. doi: 10.1038/nri1056
  • Werner M, Hobeika E, Jumaa H. Role of PI3K in the generation and survival of B cells. Immunol Rev. 2010;237(1):55–71. doi: 10.1111/j.1600-065X.2010.00934.x
  • Cariappa A, Pillai S. Antigen-dependent B-cell development. Curr Opin Immunol. 2002;14(2):241–249. doi: 10.1016/S0952-7915(02)00328-X
  • Hardy RR. B-cell commitment: deciding on the players. Curr Opin Immunol. 2003;15(2):158–165. doi: 10.1016/S0952-7915(03)00012-8
  • Donahue AC, Fruman DA. PI3K signaling controls cell fate at many points in B lymphocyte development and activation. Semin Cell Dev Biol. 2004Apr;15(2):183–97. doi: 10.1016/j.semcdb.2003.12.024
  • Jellusova J, Rickert RC. The PI3K pathway in B cell metabolism. Critical reviews in biochemistry and molecular biology. Crit Rev Biochem Mol Biol. 2016;51(5):359–378. doi: 10.1080/10409238.2016.1215288
  • Corcoran A, Smart F, Cowling R, et al. The interleukin‐7 receptor alpha chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. Embo J. 1996;15(8):1924–1932. doi: 10.1002/j.1460-2075.1996.tb00543.x
  • Ramadani F, Bolland DJ, Garcon F, et al. The PI3K isoforms p110α and p110δ are essential for pre–B cell receptor signaling and B cell development. Sci Signaling. 2010;3(134):ra60–ra60. doi: 10.1126/scisignal.2001104
  • Dengler HS, Baracho GV, Omori SA, et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9(12):1388–1398. doi: 10.1038/ni.1667
  • Medema RH, Kops GJ, Bos JL, et al. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27 kip1. Nature. 2000;404(6779):782–787. doi: 10.1038/35008115
  • Baracho G, Miletic A, Omori S, et al. Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol. 2011;23(2):178–183. doi: 10.1016/j.coi.2011.01.001
  • Medvedovic J, Ebert A, Tagoh H, et al. Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol. 2011;111:179–206.
  • Abdelrasoul H, Werner M, Setz CS, et al. PI3K induces B-cell development and regulates B cell identity. Sci Rep. 2018;8(1):1–15. doi: 10.1038/s41598-018-19460-5
  • Szydłowski M, Jabłońska E, Juszczyński P. FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development. Int Rev Immunol. 2014;33(2):146–157. doi: 10.3109/08830185.2014.885022
  • Fruman DA, Snapper SB, Yballe CM, et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science. 1999;283(5400):393–397. doi: 10.1126/science.283.5400.393
  • Suzuki H, Terauchi Y, Fujiwara M, et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science. 1999;283(5400):390–392. doi: 10.1126/science.283.5400.390
  • Jou S-T, Carpino N, Takahashi Y, et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol Cell Biol. 2002;22(24):8580–8591. doi: 10.1128/MCB.22.24.8580-8591.2002
  • Okkenhaug K, Bilancio A, Farjot G, et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science. 2002;297(5583):1031–1034. doi: 10.1126/science.1073560
  • Clayton E, Bardi G, Bell SE, et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med. 2002;196(6):753–763. doi: 10.1084/jem.20020805
  • Suzuki A, Kaisho T, Ohishi M, et al. Critical roles of pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med. 2003;197(5):657–667. doi: 10.1084/jem.20021101
  • Engel P, Zhou L-J, Ord DC, et al. Abnormal B lymphocyte delevopment, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3(1):39–50. doi: 10.1016/1074-7613(95)90157-4
  • Xu Y, Fairfax K, Light A, et al. CD19 differentially regulates BCR signalling through the recruitment of PI3K. Autoimmunity. 2014;47(7):430–437. doi: 10.3109/08916934.2014.921810
  • Anzelon AN, Wu H, Rickert RC. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol. 2003;4(3):287–294. doi: 10.1038/ni892
  • Fujimoto M, Poe JC, Satterthwaite AB, et al. Complementary roles for CD19 and Bruton’s tyrosine kinase in B lymphocyte signal transduction. J Immunol. 2002;168(11):5465–5476. doi: 10.4049/jimmunol.168.11.5465
  • Setz CS, Hug E, Khadour A, et al. PI3K-mediated blimp-1 activation controls B cell selection and homeostasis. Cell Rep. 2018;24(2):391–405. doi: 10.1016/j.celrep.2018.06.035
  • Cornelis R, Hahne S, Taddeo A, et al. Stromal cell-contact dependent PI3K and APRIL induced NF-κB signaling prevent mitochondrial-and ER stress induced death of memory plasma cells. Cell Rep. 2020;32(5):107982. doi: 10.1016/j.celrep.2020.107982
  • Hodson DJ, Turner M. The role of PI3K signalling in the B cell response to antigen. Adv Exp Med Biol. 2009;633:43–53. doi: 10.1007/978-0-387-79311-5_5
  • Aagaard-Tillery KM, Jelinek DF. Phosphatidylinositol 3-kinase activation in normal human B lymphocytes. J Immunol. 1996;156(12):4543–4554. doi: 10.4049/jimmunol.156.12.4543
  • Scharenberg AM, Kinet J-P. PtdIns-3, 4, 5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell. 1998;94(1):5–8. doi: 10.1016/S0092-8674(00)81214-3
  • Marshall AJ, Niiro H, Lerner CG, et al. A novel B lymphocyte–associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. J Exp Med. 2000;191(8):1319–1332. doi: 10.1084/jem.191.8.1319
  • Niiro H, Maeda A, Kurosaki T, et al. The B lymphocyte adaptor molecule of 32 kD (Bam32) regulates B cell antigen receptor signaling and cell survival. J Exp Med. 2002;195(1):143–149. doi: 10.1084/jem.20011524
  • Weber M, Treanor B, Depoil D, et al. Phospholipase C-γ2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med. 2008;205(4):853–868. doi: 10.1084/jem.20072619
  • Henley T, Kovesdi D, Turner M. B‐cell responses to B‐cell activation factor of the TNF family (BAFF) are impaired in the absence of PI3K delta. Eur J Immunol. 2008;38(12):3543–3548. doi: 10.1002/eji.200838618
  • Ravetch JV, Bolland S. Igg fc receptors. Annu Rev Immunol. 2001;19(1):275–290. doi: 10.1146/annurev.immunol.19.1.275
  • Kerr WG. Inhibitor and activator: dual functions for SHIP in immunity and cancer. Ann N Y Acad Sci. 2011;1217(1):1. doi: 10.1111/j.1749-6632.2010.05869.x
  • Chen Z, Wang JH. Signaling control of antibody isotype switching. Adv Immunol. 2019;141:105–164.
  • Stefanová I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002;420(6914):429–434. doi: 10.1038/nature01146
  • Akashi K, Kondo M, von Freeden-Jeffry U, et al. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor–deficient mice. Cell. 1997;89(7):1033–1041. doi: 10.1016/S0092-8674(00)80291-3
  • Ciofani M, Zuniga-Pflücker JC. Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6(9):881–888. doi: 10.1038/ni1234
  • Webb LM, Vigorito E, Wymann MP, et al. Cutting edge: T cell development requires the combined activities of the p110γ and p110δ catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol. 2005;175(5):2783–2787. doi: 10.4049/jimmunol.175.5.2783
  • Swat W, Montgrain V, Doggett TA, et al. Essential role of PI3Kδ and PI3Kγ in thymocyte survival. Blood. 2006;107(6):2415–2422. doi: 10.1182/blood-2005-08-3300
  • Sasaki T, Irie-Sasaki J, Jones RG, et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science. 2000;287(5455):1040–1046. doi: 10.1126/science.287.5455.1040
  • Rodríguez-Borlado L, Barber DF, Hernández C, et al. Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J Immunol. 2003;170(9):4475–4482. doi: 10.4049/jimmunol.170.9.4475
  • Hagenbeek TJ, Naspetti M, Malergue F, et al. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and pre-TCR–mediated signaling. J Exp Med. 2004;200(7):883–894. doi: 10.1084/jem.20040495
  • Herman A, Kappler JW, Marrack P, et al. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9(1):745–772. doi: 10.1146/annurev.iy.09.040191.003525
  • Juntilla MM, Koretzky GA. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett. 2008;116(2):104–110. doi: 10.1016/j.imlet.2007.12.008
  • Soond DR, Garçon F, Patton DT, et al. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J Immunol. 2012;188(12):5935–5943. doi: 10.4049/jimmunol.1102116
  • Rolf J, Bell SE, Kovesdi D, et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J Immunol. 2010;185(7):4042–4052. doi: 10.4049/jimmunol.1001730
  • Nagai S, Kurebayashi Y, Koyasu S. Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Ann N Y Acad Sci. 2013;1280(1):30–34. doi: 10.1111/nyas.12059
  • Freitas AA, Rocha B. Homeostasis of naive T cells: the foxo that fixes. Nat Immunol. 2009;10(2):133–134. doi: 10.1038/ni0209-133
  • Kane LP, Andres PG, Howland KC, et al. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH 2 cytokines. Nat Immunol. 2001;2(1):37–44. doi: 10.1038/83144
  • Fowell DJ, Shinkai K, Liao XC, et al. Impaired NFATc translocation and failure of Th2 development in itk-deficient CD4+ T cells. Immunity. 1999;11(4):399–409. doi: 10.1016/S1074-7613(00)80115-6
  • Schaeffer EM, Yap GS, Lewis CM, et al. Mutation of Tec family kinases alters T helper cell differentiation. Nat Immunol. 2001;2(12):1183–1188. doi: 10.1038/ni734
  • Kim EH, Suresh M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation. Front Immunol. 2013;4:20. doi: 10.3389/fimmu.2013.00020
  • Ward SG, Westwick J, Hall ND, et al. Ligation of CD28 receptor by B7 induces formation of D‐3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. Eur J Immunol. 1993;23(10):2572–2577. doi: 10.1002/eji.1830231029
  • Costello PS, Gallagher M, Cantrell DA. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol. 2002;3(11):1082–1089. doi: 10.1038/ni848
  • Harriague J, Bismuth G. Imaging antigen-induced PI3K activation in T cells. Nat Immunol. 2002;3(11):1090–1096. doi: 10.1038/ni847
  • Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):1–14. doi: 10.1186/s13045-016-0343-5
  • Okada T, Maeda A, Iwamatsu A, et al. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity. 2000;13(6):817–827. doi: 10.1016/S1074-7613(00)00079-0
  • Bruyns E, Marie-Cardine A, Kirchgessner H, et al. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR–CD3–ζ complex, recruits intracellular signaling proteins to the plasma membrane. J Exp Med. 1998;188(3):561–575. doi: 10.1084/jem.188.3.561
  • Garçon F, Patton DT, Emery JL, et al. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood. 2008;111(3):1464–1471. doi: 10.1182/blood-2007-08-108050
  • Pedros C, Zhang Y, Hu JK, et al. A TRAF-like motif of the inducible costimulator ICOS controls development of germinal center T FH cells via the kinase TBK1. Nat Immunol. 2016;17(7):825–833. doi: 10.1038/ni.3463
  • Reynolds LF, Smyth LA, Norton T, et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and-independent pathways. J Exp Med. 2002;195(9):1103–1114. doi: 10.1084/jem.20011663
  • Liu K-Q, Bunnell SC, Gurniak CB, et al. T cell receptor–initiated calcium release is uncoupled from capacitative calcium entry in itk-deficient T cells. J Exp Med. 1998;187(10):1721–1727. doi: 10.1084/jem.187.10.1721
  • Liao XC, Fournier S, Killeen N, et al. Itk negatively regulates induction of T cell proliferation by CD28 costimulation. J Exp Med. 1997;186(2):221–228. doi: 10.1084/jem.186.2.221
  • Schaeffer EM, Debnath J, Yap G, et al. Requirement for tec kinases rlk and itk in T cell receptor signaling and immunity. Science. 1999;284(5414):638–641. doi: 10.1126/science.284.5414.638
  • Soond DR, Slack E, Garden OA, et al. Does the PI3K pathway promote or antagonize regulatory T cell development and function? Front Immunol. 2012;3:244. doi: 10.3389/fimmu.2012.00244
  • Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875–888. doi: 10.1038/nri2189
  • Ouyang W, Beckett O, Ma Q, et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010;11(7):618–627. doi: 10.1038/ni.1884
  • Patton DT, Garden OA, Pearce WP, et al. Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+ CD25+ Foxp3+ regulatory T cells. J Immunol. 2006;177(10):6598–6602. doi: 10.4049/jimmunol.177.10.6598
  • Patterson S, Garcia R, O’Neill A, et al. PHLPP regulates the development, function and molecular signaling pathways of T regulatory cells. Clin Immunol. 2010;135:S6. doi: 10.1016/j.clim.2010.03.025
  • Pompura SL, Dominguez‐Villar M. The PI3K/AKT signaling pathway in regulatory T‐cell development, stability, and function. J Leukoc Biol. 2018;103(6):1065–1076. doi: 10.1002/JLB.2MIR0817-349R
  • Held W, Roland J, Raulet DH. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature. 1995;376(6538):355–358. doi: 10.1038/376355a0
  • Chiesa S, Mingueneau M, Fuseri N, et al. Multiplicity and plasticity of natural killer cell signaling pathways. Blood. 2006;107(6):2364–2372. doi: 10.1182/blood-2005-08-3504
  • Huntington ND, Vosshenrich CA, Di Santo JP. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol. 2007;7(9):703–714. doi: 10.1038/nri2154
  • Ali AK, Nandagopal N, Lee S-H. IL-15–PI3K–AKT–mTOR: a critical pathway in the life journey of natural killer cells. Front Immunol. 2015;6:355.
  • Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601. doi: 10.1038/nri1901
  • Labarrere CA, Woods J, Hardin J, et al. Early prediction of cardiac allograft vasculopathy and heart transplant failure. Am J Transplant. 2011;11(3):528–535. doi: 10.1111/j.1600-6143.2010.03401.x
  • Tassi I, Cella M, Gilfillan S, et al. p110γ and p110δ phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity. 2007;27(2):214–227. doi: 10.1016/j.immuni.2007.07.014
  • Marçais A, Cherfils-Vicini J, Viant C, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol. 2014;15(8):749–757. doi: 10.1038/ni.2936
  • Awasthi A, Samarakoon A, Dai X, et al. Deletion of PI3K-p85 α gene impairs lineage commitment, terminal maturation, cytokine generation and cytotoxicity of NK cells. Genes Immunity. 2008;9(6):522–535. doi: 10.1038/gene.2008.45
  • Kim N, Saudemont A, Webb L, et al. The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood J Am Soc Hematol. 2007;110(9):3202–3208. doi: 10.1182/blood-2007-02-075366
  • Elbim C, Bailly S, Chollet-Martin S, et al. Differential priming effects of proinflammatory cytokines on human neutrophil oxidative burst in response to bacterial N-formyl peptides. Infect Immun. 1994;62(6):2195–2201. doi: 10.1128/iai.62.6.2195-2201.1994
  • Nandagopal N, Ali AK, Komal AK, et al. The critical role of IL-15–PI3K–mTOR pathway in natural killer cell effector functions. Front Immunol. 2014;5:187. doi: 10.3389/fimmu.2014.00187
  • Loh J, Chu DT, O’Guin AK, et al. Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol. 2005;79(1):661–667. doi: 10.1128/JVI.79.1.661-667.2005
  • Jiang K, Zhong B, Gilvary DL, et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol. 2000;1(5):419–425. doi: 10.1038/80859
  • Hassani A, Asaadi Tehrani G, Zahmatkesh N, et al. Evaluation the effect of chemotherapy drugs and thiosemicarbazone complexes on the expression of URHC and CASC15 LncRNAs in acute lymphoblastic leukemia cell line. Iran J Blood Cancer. 2023;15(1):1–9. doi: 10.58209/ijbc.15.1.1
  • Moghimian B, Jafari-Joshaghan A, Shams F, et al. NLR, PLR, and HPR as novel diagnostic biomarkers for acute lymphoblastic leukemia. Iran J Blood Cancer. 2023;15(2):80–87. doi: 10.58209/ijbc.15.2.80
  • Evangelisti C, Cappellini A, Oliveira M, et al. Phosphatidylinositol 3‐kinase inhibition potentiates glucocorticoid response in B‐cell acute lymphoblastic leukemia. J Cell Physiol. 2018;233(3):1796–1811. doi: 10.1002/jcp.26135
  • Fuka G, Kantner H, Grausenburger R, et al. Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia. 2012;26(5):927–933. doi: 10.1038/leu.2011.322
  • Tasian SK, Doral MY, Borowitz MJ, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood J Am Soc Hematology. 2012;120(4):833–842. doi: 10.1182/blood-2011-12-389932
  • Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177–187. doi: 10.1182/blood-2016-05-707653
  • Neri LM, Cani A, Martelli A, et al. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia. 2014;28(4):739–748. doi: 10.1038/leu.2013.226.
  • Bashash D, Safaroghli-Azar A, Delshad M, et al. Inhibitor of pan class-I PI3K induces differentially apoptotic pathways in acute leukemia cells: shedding new light on NVP-BKM120 mechanism of action. Int J Biochem Cell Biol. 2016;79:308–317. doi: 10.1016/j.biocel.2016.09.004
  • Safaroghli-Azar A, Bashash D, Sadreazami P, et al. PI3K-δ inhibition using CAL-101 exerts apoptotic effects and increases doxorubicin-induced cell death in pre-B-acute lymphoblastic leukemia cells. Anticancer Drugs. 2017;28(4):436–445. doi: 10.1097/CAD.0000000000000477
  • Nucera S, Giustacchini A, Boccalatte F, et al. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell. 2016;29(6):905–921. doi: 10.1016/j.ccell.2016.05.007
  • Teachey DT, Obzut DA, Cooperman J, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood. 2006;107(3):1149–1155. doi: 10.1182/blood-2005-05-1935
  • Simioni C, Cani A, Martelli AM, et al. Activity of the novel mTOR inhibitor torin-2 in B-precursor acute lymphoblastic leukemia and its therapeutic potential to prevent akt reactivation. Oncotarget. 2014;5(20):10034. doi: 10.18632/oncotarget.2490
  • Yang X, He G, Gong Y, et al. Mammalian target of rapamycin inhibitor rapamycin enhances anti‐leukemia effect of imatinib on P h+ acute lymphoblastic leukemia cells. Eur J Haematol. 2014;92(2):111–120. doi: 10.1111/ejh.12202
  • Riyahi N, Safaroghli-Azar A, Sheikh-Zeineddini N, et al. Synergistic effects of PI3K and c-myc co-targeting in acute leukemia: shedding new light on resistance to selective PI3K-δ inhibitor CAL-101. Cancer Invest. 2019;37(7):311–324. doi: 10.1080/07357907.2019.1651328
  • Xia T, Zhang J, Zhou C, et al. 20 (S)-ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J Ginseng Res. 2020;44(5):725–737. doi: 10.1016/j.jgr.2019.07.003
  • Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood J Am Soc Hematol. 2009;114(3):647–650. doi: 10.1182/blood-2009-02-206722
  • You D, Xin J, Volk A, et al. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells. Cell Rep. 2015;10(12):2055–2068. doi: 10.1016/j.celrep.2015.02.056
  • Schnell SA. Therapeutic targeting of hairy and enhancer of split 1 (HES1) transcriptional programs in T-cell acute lymphoblastic. Leukemia: Columbia University; 2015.
  • Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 2007;13(10):1203–1210. doi: 10.1038/nm1636
  • Gazi M, Moharram SA, Marhäll A, et al. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett. 2017;392:9–16. doi: 10.1016/j.canlet.2017.01.035
  • Shepherd C, Banerjee L, Cheung CW, et al. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia. 2013;27(3):650–660. doi: 10.1038/leu.2012.285
  • Hales EC, Orr SM, Gedman AL, et al. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem. 2013;288(31):22836–22848. doi: 10.1074/jbc.M113.451625
  • Ling Z, Fang ZG, Wu JY, et al. The depletion of circ-PRKDC enhances autophagy and apoptosis in T-cell acute lymphoblastic leukemia via microRNA -653-5p/Reelin mediation of the PI3K / AKT / mTOR signaling pathway. Kaohsiung J Med Sci. 2021;37(5):392–401. doi: 10.1002/kjm2.12352
  • Mavrakis KJ, Van Der Meulen J, Wolfe AL, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genet. 2011;43(7):673–678. doi: 10.1038/ng.858
  • Ye H, Liu X, Lv M, et al. MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res. 2012;40(12):5201–5214. doi: 10.1093/nar/gks175
  • Schult C, Dahlhaus M, Glass A, et al. The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic drugs exerts anti-proliferative activity towards acute lymphoblastic leukemia cells. Anticancer Res. 2012;32(2):463–474.
  • Chiarini F, Grimaldi C, Ricci F, et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res. 2010;70(20):8097–8107. doi: 10.1158/0008-5472.CAN-10-1814
  • Zhang C, Ryu Y-K, Chen TZ, et al. Synergistic activity of rapamycin and dexamethasone in vitro and in vivo in acute lymphoblastic leukemia via cell-cycle arrest and apoptosis. Leuk Res. 2012;36(3):342–349. doi: 10.1016/j.leukres.2011.10.022
  • Gu L, Zhou C, Liu H, et al. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis. J Exp Clin Cancer Res. 2010;29(1):1–9. doi: 10.1186/1756-9966-29-150
  • Cheson BD, Bennett JM, Grever M, et al. National cancer institute-sponsored working group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87(12):4990–4997. doi: 10.1182/blood.V87.12.4990.bloodjournal87124990
  • Okkenhaug K, Burger JA. PI3K signaling in normal B cells and chronic lymphocytic leukemia (CLL). Curr Top Microbiol Immunol. 2016;393:123–142. doi: 10.1007/82_2015_484
  • Herman SE, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–2088. doi: 10.1182/blood-2010-02-271171
  • Longo PG, Laurenti L, Gobessi S, et al. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111(2):846–855. doi: 10.1182/blood-2007-05-089037
  • Wang LQ, Wong KY, Rosèn A, et al. Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget. 2015;6(42):44422. doi: 10.18632/oncotarget.6251
  • Palacios F, Abreu C, Prieto D, et al. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation. Leukemia. 2015;29(1):115–125. doi: 10.1038/leu.2014.158
  • Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood J Am Soc Hematol. 2011;117(2):591–594. doi: 10.1182/blood-2010-03-275305
  • Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood J Am Soc Hematol. 2014;123(22):3390–3397. doi: 10.1182/blood-2013-11-535047
  • Hoellenriegel J, Meadows SA, Sivina M, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–3612. doi: 10.1182/blood-2011-05-352492
  • Ding W, Shanafelt TD, Lesnick CE, et al. Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 2014;164(1):146. doi: 10.1111/bjh.12564
  • Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018;132(23):2446–2455. doi: 10.1182/blood-2018-05-850461
  • Morrison JA, Gulley ML, Pathmanathan R, et al. Differential signaling pathways are activated in the epstein-barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 2004;64(15):5251–5260. doi: 10.1158/0008-5472.CAN-04-0538
  • Márk Á, Hajdu M, Váradi Z, et al. Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease–a combined tissue microarray, in vitro and in vivo study. BMC Cancer. 2013;13(1):1–12. doi: 10.1186/1471-2407-13-250
  • Nagel S, Scherr M, Quentmeier H, et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia. 2005;19(5):841–846. doi: 10.1038/sj.leu.2403716
  • Georgakis GV, Li Y, Rassidakis GZ, et al. Inhibition of the phosphatidylinositol‐3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in hodgkin lymphoma. Br J Haematol. 2006;132(4):503–511. doi: 10.1111/j.1365-2141.2005.05881.x
  • Dutton A, Reynolds GM, Dawson CW, et al. Constitutive activation of phosphatidyl‐inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving akt kinase and mTOR. J Pathol. 2005;205(4):498–506. doi: 10.1002/path.1725
  • Xie L, Ushmorov A, Leithäuser F, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood J Am Soc Hematology. 2012;119(15):3503–3511. doi: 10.1182/blood-2011-09-381905
  • de Yébenes VG, Bartolomé‐Izquierdo N, Ramiro AR. Regulation of B‐cell development and function by micro RNA s. Immunol Rev. 2013;253(1):25–39. doi: 10.1111/imr.12046
  • Gibcus JH, Tan LP, Harms G, et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia. 2009;11(2):167–IN9. doi: 10.1593/neo.08980
  • Yuan Y, Niu F, Nolte IM, et al. MicroRNA high throughput loss-of-function screening reveals an oncogenic role for miR-21-5p in Hodgkin lymphoma. Cell Physiol Biochem. 2018;49(1):144–159. doi: 10.1159/000492850
  • Flinn IW, Horwitz SM, Patel M, et al. Clinical safety and activity in a Phase 1 trial of IPI-145, a potent inhibitor of phosphoinositide-3-kinase-δ, γ, in patients with advanced hematologic malignancies. Blood. 2012 Nov 16;120(21):3663. doi: 10.1182/blood.V120.21.3663.3663
  • Meadows SA, Vega F, Kashishian A, et al. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of hodgkin lymphoma. Blood J Am Soc Hematol. 2012;119(8):1897–1900. doi: 10.1182/blood-2011-10-386763
  • Guidetti A, Viviani S, Marchianò A, et al. Dual targeted therapy with the AKT inhibitor perifosine and the multikinase inhibitor sorafenib in patients with relapsed/refractory lymphomas: final results of a phase II trial. Blood. 2012 Nov 16;120(21):3679. doi: 10.1182/blood.V120.21.3679.3679
  • Johnston PB, Pinter-Brown L, Rogerio J, et al. Everolimus for Relapsed/Refractory Classical Hodgkin Lymphoma: Multicenter, Open-Label, Single-Arm, Phase 2 Study. Blood. 2012 Nov 16;120(21):2740. doi: 10.1182/blood.V120.21.2740.2740
  • Valla K, Flowers CR, Koff JL. Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin Investig Drugs. 2018;27(6):513–522. doi: 10.1080/13543784.2018.1482273
  • Zuo W, Zhu Y, Liu Z, et al. BRD4 inhibition sensitizes aggressive non-hodgkin lymphomas to PI3Kδ inhibitors by suppressing PI3K reactivation and c-MYC expression. Am J Cancer Res. 2021;11(1):215.
  • Mahadevan D, Vick E, Huber B, et al. Aurora plus PI3K inhibition abrogates PD-L1 induction in peripheral T-cell non-hodgkin lymphoma. Washington (DC): American Society of Hematology; 2015.
  • Go H, Jang J-Y, Kim P-J, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget. 2015;6(17):15035. doi: 10.18632/oncotarget.3729
  • Bedewy AM, Elmaghraby SM, Shehata AA, et al. Prognostic value of miRNA-155 expression in B-cell non-hodgkin lymphoma. Turkish Journal Of Hematology. 2017;34(3):207. doi: 10.4274/tjh.2016.0286
  • Qian D, Chen K, Deng H, et al. MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and wnt-16. Clin Cancer Res. 2015;21(21):4881–4891. doi: 10.1158/1078-0432.CCR-14-2947
  • Miller BW, Przepiorka D, de Claro RA, et al. FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res. 2015;21(7):1525–1529. doi: 10.1158/1078-0432.CCR-14-2522
  • Barrientos JC. Idelalisib for the treatment of indolent non-Hodgkin lymphoma: a review of its clinical potential. Onco Targets Ther. 2016;9:2945. doi: 10.2147/OTT.S102573
  • Brown JR, Davids MS, Rodon J, et al. Update on the safety and efficacy of the pan class I PI3K inhibitor SAR245408 (XL147) in chronic lymphocytic leukemia and non-Hodgkin’s lymphoma patients. Washington (DC): American Society of Hematology; 2013.
  • Patnaik A, Ramanathan RK, Appleman LJ, et al. Phase I study of intravenous PI3K inhibitor bay 80-6946: Preliminary activity in patients with relapsed non-Hodgkin lymphoma (NHL) treated in an MTD expansion cohort. Blood. 2012 Nov 16;120(21):3704. doi: 10.1182/blood.V120.21.3704.3704
  • Krause G, Hassenrück F, Hallek M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Design Develop Therapy. 2018;12:2577. doi: 10.2147/DDDT.S142406
  • Flinn IW, Patel M, Oki Y, et al. Duvelisib, an oral dual PI3K‐δ, γ inhibitor, shows clinical activity in indolent non‐Hodgkin lymphoma in a phase 1 study. Am J Hematol. 2018;93(11):1311–1317. doi: 10.1002/ajh.25228
  • Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–2139. doi: 10.1056/NEJMoa040938
  • Phillips TJ, Corradini P, Gurion R, et al. Phase 2 study evaluating the efficacy and safety of parsaclisib in patients with relapsed or refractory marginal zone lymphoma (CITADEL-204). Blood. 2020;136(Supplement 1):27–28. doi: 10.1182/blood-2020-134451
  • Hu J, Wang J, Dai X, et al. Abstract 5454: amdizalisib (HMPL-689), a highly selective PI3Kδ inhibitor, exhibits potent anti-tumor activity in pre-clinical B-cell lymphoma models. Cancer Res. 2022;82(12_Supplement):5454–5454. doi: 10.1158/1538-7445.AM2022-5454
  • Wang T, Sun X, Qiu L, et al. The oral PI3Kδ inhibitor linperlisib for the treatment of relapsed and/or refractory follicular lymphoma: a phase II, single-arm, open-label clinical trial. Clin Cancer Res. 2023;29(8):1440–1449. doi: 10.1158/1078-0432.CCR-22-2939
  • Sohani M, Rastgar A, Kheyrandish S. Harnessing the power of MAGE proteins in cancer immunotherapy for multiple myeloma. Iran J Blood Cancer. 2023;15(5):304–327.
  • Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leukemia Lymphoma. 2018;59(11):2524–2534. doi: 10.1080/10428194.2017.1421760
  • J-H H, Shi Y, Frost P, et al. Interleukin-6 activates phosphoinositol-3′ kinase in multiple myeloma tumor cells by signaling through RAS-dependent and, separately, through p85-dependent pathways. Oncogene. 2004;23(19):3368–3375. doi: 10.1038/sj.onc.1207459
  • Menu E, Kooijman R, Van Valckenborgh E, et al. Specific roles for the PI3K and the MEK–ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer. 2004;90(5):1076–1083. doi: 10.1038/sj.bjc.6601613
  • Baumann P, Schneider L, Mandl-Weber S, et al. Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anticancer Drugs. 2012;23(1):131–138. doi: 10.1097/CAD.0b013e32834c8683
  • Safaroghli-Azar A, Bashash D, Kazemi A, et al. Anticancer effect of pan-PI3K inhibitor on multiple myeloma cells: shedding new light on the mechanisms involved in BKM120 resistance. Eur J Pharmacol. 2019;842:89–98. doi: 10.1016/j.ejphar.2018.10.036
  • Ramakrishnan V, Gomez M, Prasad V, et al. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget. 2016;7(35):56253. doi: 10.18632/oncotarget.11028
  • Wang L, Lin N, Li Y. The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep. 2019;41(3):1678–1690. doi: 10.3892/or.2019.6968
  • Jiang Y, Chang H, Chen G. Effects of microRNA‑20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol Lett. 2018;15(6):10001–10007. doi: 10.3892/ol.2018.8555
  • Yang N, Chen J, Zhang H, et al. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis. 2017;8(8):e2975–e2975. doi: 10.1038/cddis.2017.358
  • Xu H, Li J, Zhou Z. NEAT1 promotes cell proliferation in multiple myeloma by activating PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2018;22(19):6403–6411. doi: 10.26355/eurrev_201810_16053
  • Munugalavadla V, Mariathasan S, Slaga D, et al. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma. Oncogene. 2014;33(3):316–325. doi: 10.1038/onc.2012.594
  • Baumann P, Mandl-Weber S, Oduncu F, et al. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res. 2009;315(3):485–497. doi: 10.1016/j.yexcr.2008.11.007
  • Mimura N, Hideshima T, Shimomura T, et al. Selective and potent akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res. 2014;74(16):4458–4469. doi: 10.1158/0008-5472.CAN-13-3652
  • Bressanin D, Evangelisti C, Ricci F, et al. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget. 2012;3(8):811. doi: 10.18632/oncotarget.579
  • Hall CP, Reynolds CP, Kang MH. Modulation of glucocorticoid resistance in pediatric T-cell acute lymphoblastic leukemia by increasing BIM expression with the PI3K/mTOR inhibitor BEZ235. Clin Cancer Res. 2016;22(3):621–632. doi: 10.1158/1078-0432.CCR-15-0114
  • Zhelev Z, Ivanova D, Bakalova R, et al. Synergistic cytotoxicity of melatonin and new-generation anticancer drugs against leukemia lymphocytes but not normal lymphocytes. Anticancer Res. 2017;37(1):149–159. doi: 10.21873/anticanres.11300
  • Pikman Y, Alexe G, Roti G, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(4):1012–1024. doi: 10.1158/1078-0432.CCR-15-2869
  • Chen Y, Peubez C, Smith V, et al. CUDC -907 blocks multiple pro-survival signals and abrogates microenvironment protection in CLL. J Cellular Mol Medi. 2019;23(1):340–348. doi: 10.1111/jcmm.13935
  • Gaudio E, Kwee I, Spriano F, et al. The phosphatidylinositol-3-kinase (PI3K) inhibitor (i) copanlisib is active in preclinical models of B-cell lymphomas as single agent and in combination with conventional and targeted agents including venetoclax and palbociclib. Cancer Research. 2017;77(13_Supplement):154–154. doi: 10.1158/1538-7445.AM2017-154
  • Ito S, Oyake T, Murai K, et al. Deguelin Induces Cell Growth Arrest and Cell Death by Destabilizing Phosphorylated STAT3 and Survivin in Adult T-Cell Leukemia Cells. Blood. 2009;114(22):4784. doi: 10.1182/blood.V114.22.4784.4784
  • Maharaj KK, Powers JJ, Pabon-Saldana M, et al. Modulation of T cell compartment in a preclinical CLL murine model by a selective PI3K delta inhibitor, TGR-1202. Washington (DC): American Society of Hematology; 2016.
  • Rebolleda N, Losada-Fernandez I, Perez-Chacon G, et al. Synergistic activity of deguelin and fludarabine in cells from chronic lymphocytic leukemia patients and in the New Zealand black murine model. PLOS ONE. 2016;11(4):e0154159. doi: 10.1371/journal.pone.0154159
  • Xu W, Kim J-W, Jung WJ, et al. Crizotinib in combination with everolimus synergistically inhibits proliferation of anaplastic lymphoma kinase‒positive anaplastic large cell lymphoma. Cancer Res Treat. 2018;50(2):599. doi: 10.4143/crt.2016.357
  • Faia K, White K, Murphy E, et al. The phosphoinositide-3 kinase (PI3K)-δ, γ inhibitor, duvelisib shows preclinical synergy with multiple targeted therapies in hematologic malignancies. PLOS ONE. 2018;13(8):e0200725. doi: 10.1371/journal.pone.0200725
  • Spriano F, Tarantelli C, Gaudio E, et al. Single and combined BTK and PI3Kδ inhibition with acalabrutinib and ACP‐319 in pre‐clinical models of aggressive lymphomas. Br J Haematol. 2019;187(5):595–601. doi: 10.1111/bjh.16118
  • Mazan-Mamczarz K, Peroutka RJ, Steinhardt JJ, et al. Distinct inhibitory effects on mTOR signaling by ethanol and INK128 in diffuse large B-cell lymphoma. Cell Commun Signaling. 2015;13(1):1–17. doi: 10.1186/s12964-015-0091-0
  • Scuoppo C, Wang J, Persaud M, et al. Repurposing dasatinib for diffuse large B cell lymphoma. In: Proceed Nat Acad Sci. 2019;116(34):16981–16986.
  • Larson S, Peng MY, Mead M, et al. Phospho-S6 levels correlate with response to Copanlisib (BAY 80-6946) in multiple myeloma. Cancer Research. 2017 Jul 1;77(13_Supplement):136–136. doi: 10.1158/1538-7445.AM2017-136
  • Yang C, Huang X, Liu H, et al. PDK1 inhibitor GSK2334470 exerts antitumor activity in multiple myeloma and forms a novel multitargeted combination with dual mTORC1/C2 inhibitor PP242. Oncotarget. 2017;8(24):39185. doi: 10.18632/oncotarget.16642
  • Han K, Xu X, Chen G, et al. Identification of a promising PI3K inhibitor for the treatment of multiple myeloma through the structural optimization. J Hematol Oncol. 2014;7(1):1–13. doi: 10.1186/1756-8722-7-9
  • Yu W, Chen Y, Xiang R, et al. Novel phosphatidylinositol 3-kinase inhibitor BKM120 enhances the sensitivity of multiple myeloma to bortezomib and overcomes resistance. Leukemia Lymphoma. 2017;58(2):428–437. doi: 10.1080/10428194.2016.1190968
  • Hanker AB, Kaklamani V, Arteaga CL. Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in solid tumors. Cancer Discov. 2019;9(4):482–491. doi: 10.1158/2159-8290.CD-18-1175
  • von Keudell G, Moskowitz AJ. The role of PI3K inhibition in lymphoid malignancies. Curr Hematol Malignancy Rep. 2019;14(5):405–413. doi: 10.1007/s11899-019-00540-w
  • Hanlon A, Brander DM. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematol 2014 Am Soc Hematol Educ Program Book. 2020;2020(1):346–356. doi: 10.1182/hematology.2020000119
  • Nunnery S, Mayer I. Management of toxicity to isoform α-specific PI3K inhibitors. Ann Oncol. 2019;30:x21–x26. doi: 10.1093/annonc/mdz440
  • Esposito A, Viale G, Curigliano G. Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer: a review. JAMA Oncol. 2019;5(9):1347–1354. doi: 10.1001/jamaoncol.2019.0034
  • Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nature reviews drug discovery. Nat Rev Drug Discov. 2014;13(2):140–156. doi: 10.1038/nrd4204
  • De Santis MC, Gulluni F, Campa CC, et al. Targeting PI3K signaling in cancer: challenges and advances. Biochim Biophys Acta (BBA)- Rev Cancer. 2019;1871(2):361–366. doi: 10.1016/j.bbcan.2019.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.